Problem in Protein Thermodynamics:

Sample Question: Determine $\square \mathrm{H}$ and $\square \mathrm{S}$ for the unfolding of Protein G from the melting data.

$$
\begin{aligned}
& \square G=\square H \square T \square S \\
& \square G=\square R T \ln \frac{[U]}{[N]}=\square R T \ln K_{E Q} \\
& f_{N}=\frac{[N]}{[N]+[U]}=\frac{\mathbf{1}}{\mathbf{1}+K_{E Q}} \\
& f_{U}=\frac{[U]}{[N]+[U]}=\frac{K_{E Q}}{\mathbf{1}+K_{E Q}}
\end{aligned}
$$

Steps:

1. Vary temperature, record temperature and fraction folded (fN).
2. Convert temperature from C to K if necessary $(\mathrm{K}=\mathrm{C}+273)$.
3. Calculate fraction unfolded, fu . ($\mathrm{f}=1=1-\mathrm{fN}$).
4. Calculate $\mathrm{KEQ}(\mathrm{KEQ}=\mathrm{fu} / \mathrm{fN})$.
5. Plot In KEQ versus 1/T (K).
6. Use the graphing wizard in Excel (scatter plot).
7. Select plotted data with mouse.
8. Under chart options, select "Add Trendline".
9. Use linear, under "Options", select "Display linear equation on chart".

Slope $=-\square H / R$ or
$\square \mathrm{H}=$-slope $\times 8.3 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$

The slope of the line is $-12,685$.
Therefore $\square \mathrm{H}=-(-12,685) \times 8.3$ $\mathrm{J} / \mathrm{mol}-\mathrm{deg} \mathrm{K}=105 \mathrm{~kJ} / \mathrm{mol}$.
$\square S=\square H / T M$.
Obtain Tm from melting curve at $\mathrm{fu}=0.5$.

Tм is 340 K .

Thus $\square \mathrm{S}=105,000 \mathrm{~J} / \mathrm{mol} / 340$ degK = $308 \mathrm{~J} / \mathrm{mol}-$ degK.

$T(K)$	$f U / f N$	KEQ	$1 / \mathrm{T}$	In KEQ
330	$0.25 / 0.75$	0.33	0.0030303	-1.09861229
340	$0.5 / 0.5$	1	0.0029411	0
350	$0.75 / 0.25$	3	0.0028571	1.09861229

