Biochemistry I Fall Term, 2002
Hb F: Problem Set \#4, question \#5 Given in the problem:

1) $\mathrm{HbF} \mu \mathrm{g} / \mathrm{ml}=$
2) $\mathrm{Mr}_{\mathrm{r}}=$

Calculated $[\mathrm{HbF}]=\quad \mu \mathrm{M}$.
What was found in the experiment:

$\left[\mathrm{O}_{2}\right]_{\text {added }}$	$\left[\mathrm{O}_{2}\right]_{\text {bound }}$	$\left[\mathrm{O}_{2}\right]_{\text {free }}$	Y	$\log \left[\mathrm{O}_{2}\right]$	$\log (\mathrm{Y} / 1-\mathrm{Y})$
$(\mu \mathrm{M})$	$(\mu \mathrm{M})$	$(\mu \mathrm{M})$			

Graph of the calculated results $\left([\mathbf{A}]=\left[\mathbf{O}_{\mathbf{2}}\right]\right.$ in this case $)$:

The observed $K_{d}=$ \qquad .

The Hill coefficient, $\mathrm{n}_{\mathrm{H}}=$ \qquad .

