18-330 Cryptography Notes: Pseudorandomness

Note: This is provided as a resource and is not meant to include all material from lectures or recitations. The proofs shown, however, are good models for your homework and exams.

1 PRF Security

Let function $F: \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{Y}$ be a function that satisfies these conditions:

- F is deterministic
- $\forall k \in \mathcal{K}, \forall x \in \mathcal{X}, F(k, x)$ can be computed in polynomial time (in $\log |\mathcal{K}|$).

To evaluate whether F is a secure PRF, we must first define what security means. We do so via the following game (or experiment) $\text{Exp}_{A,F}$, which is parameterized by the adversary A and the (alleged) PRF F.

1. The experiment takes as input bit $b \in \{0, 1\}$, chosen uniformly at random.
2. If b is 0, then the Challenger samples k from \mathcal{K} uniformly at random and sets $f(x) := F(k, x)$. Note that f remains the same for the rest of the experiment.
3. If b is 1, then the Challenger samples f, uniformly at random, from the space of all functions from \mathcal{X} to \mathcal{Y}. Note that f remains the same for the rest of the experiment.
4. The Adversary runs some logic in order to select $x \in \mathcal{X}$.
5. The Adversary sends the chosen x to the Challenger.
6. The Challenger replies with $f(x)$ as defined above (i.e., either the result of applying the PRF with the chosen k, or the result of applying the randomly selected function).
7. Repeat steps 4 through 6 up to some $\text{poly}(\log |\mathcal{K}|)$ number of times.
8. Finally, the Adversary runs some logic in order to choose $b' \in \{0, 1\}$, which is the output of the experiment.

Definition 1. The PRF advantage $\text{Adv}_{PRF}[A,F,q]$ is defined as:

$$\text{Adv}_{PRF}[A,F] := |\Pr[\text{Exp}_{A,F}(0) = 1] - \Pr[\text{Exp}_{A,F}(1) = 1]|$$

where A makes at most q queries.

Definition 2. We say that F is a secure PRF if, for all efficient A, $\text{Adv}_{PRF}[A,F,q] < \epsilon$, for some small (negligible) ϵ.

1
1.1 PRF Proof of Security

Let $F: K \times X \rightarrow \{0, 1\}^{128}$ be a secure PRF. We show that $G(k, x) = (F(k, x) + 42) \mod 2^{128}$ is also a secure PRF.

Proof. Suppose for sake of contradiction that G is not a secure PRF. Then there must exist an efficient adversary A_G that breaks G. We can then construct an adversary A_F that breaks F. We define A_F as follows:

Algorithm 1: Adversary A_F

1. Execute A_G
2. while Receive query for $q \in X$ from A_G do
 3. Query Challenger with q and receive response r.
 4. Return $(r + 42) \mod 2^{128}$ to A_G.
5. end
6. When A_G outputs a guess b', output b' as the guess for A_F.

We prove that A_F is an efficient adversary that breaks F (i.e., wins the PRF security game with F a non-negligible amount of the time).

First, we argue that our adversary A_F perfectly simulates the challenger for A_G. If A_F is playing in experiment 0 (i.e., A_F is interacting with the PRF), then A_F’s response to each of A_G’s queries is exactly the definition of G. If A_F is playing in experiment 1 (i.e., A_F is interacting with a truly random function), then the response r it receives is randomly selected. A random value offset by 42 (mod 2^{128}) is still random, so A_F returns a randomly selected value to A_G. Therefore, we have correctly simulated the PRF game in A_F’s interactions with A_G.

Now, we calculate the advantage of A_F.

$$Adv_{PRF}[A, F] = |Pr[Exp_{A,F}(0) = 1] - Pr[Exp_{A,F}(1) = 1]|$$

(1)

$$Adv_{PRF}[A, F] = |Pr[Exp_{A,G}(0) = 1] - Pr[Exp_{A,G}(1) = 1]|$$

(2)

$$Adv_{PRF}[A, F] = Adv_{PRF}[A, G]$$

(3)

Where the first step is justified by the reasoning above; namely, the probability that A_F outputs 1 when running in Experiment 0 is exactly that of A_G, and similarly for Experiment 1. The second step is just applying the definition of Adv_{PRF} to G.

Since we assumed G is not a secure PRF, it must be the case that $Adv_{PRF}[A, G]$ is large, which means that $Adv_{PRF}[A, F]$ is large (by Equation 3 above). But that means F is not a secure PRF, and yet we know F is a secure PRF (because that was given in the problem statement), so we have arrived at a contradiction. This means our assumption that G is insecure must be false. Hence G is a secure PRF.

\[\square\]

2 PRP Security

The definition of a secure PRP is nearly identical to that for PRF, except that everywhere we previously mentioned a function, we now work with a permutation. Changes relative to the PRF definition are highlighted below.
Let function \(F : K \times X \rightarrow X \) be a function that satisfies these conditions:

- \(F \) is deterministic
- \(\forall k \in K, \forall x \in X, F(k, x) \) can be computed in polynomial time.
- \(\forall k \in K, F(k, x) \) is a permutation (i.e., it is bijective).

To evaluate whether \(F \) is a secure PRP, we must first define what security means. We do so via the following game (or experiment) \(Exp_{A,F} \), which is parameterized by the adversary \(A \) and the (alleged) PRP \(F \).

1. The experiment takes as input bit \(b \in \{0,1\} \), chosen uniformly at random.
2. If \(b \) is 0, then the Challenger samples \(k \) from \(K \) uniformly at random and sets \(f(x) := F(k, x) \). Note that \(f \) remains the same for the rest of the experiment.
3. If \(b \) is 1, then the Challenger samples \(f \), uniformly at random, from the space of all permutations from \(X \) to \(X \). Note that \(f \) remains the same for the rest of the experiment.
4. The Adversary runs some logic in order to select \(x \in X \).
5. The Adversary sends the chosen \(x \) to the Challenger.
6. The Challenger replies with \(f(x) \) as defined above (i.e., either the result of applying the PRP with the chosen \(k \), or the result of applying the randomly selected function).
7. Repeat steps 4 through 6 up to some \(poly(\log |K|) \) number of times.
8. Finally, the Adversary runs some logic in order to choose \(b' \in \{0,1\} \), which is the output of the experiment.

Definition 3. The PRP advantage \(Adv_{PRP}[A,F,q] \) is defined as:

\[
Adv_{PRP}[A,F,q] := |Pr[Exp_{A,F}(0) = 1] - Pr[Exp_{A,F}(1) = 1]|
\]

where \(A \) makes at most \(q \) queries.

Definition 4. We say that \(F \) is a secure PRP if, for all efficient \(A \), \(Adv_{PRP}[A,F,q] < \epsilon \).