
18-330 Exploit Notes

Note: This is provided as a resource and is not meant to include all material from lectures or recitations.

Note 1. Buffer overflows and format-string attacks are both instances of a channeling vulnerability, a

recurring theme in this course. In many computer systems, there is supposed to be a separation between a

control channel and a data channel. The control channel tells the program how to interpret the corresponding

data. If the two channels are not properly separated, then an attacker can leverage influence over the data

to exert control over the program! In a buffer overflow, the stack mixes data (e.g., values of local variables)

with control (return addresses). In a format-string vulnerability, the attacker gains control of the format

string (the control channel), which enables abuse of the data channel (the other arguments).

1 Buffer Overflows

Buffer overflows are covered in 213, so for additional background please consult those lectures, as well as

Chapter 3 of Computer Systems: A Programmers Perspective – Volume 2 for more details.

2 Format-String Attacks

2.1 Format Strings and Variadic Functions

Format-string functions are pervasive in programming languages. The canonical example is printf(char* fmt, ...),

but there are many more, including fprintf, sprintf, syslog, setproctitle, as well as custom error and

other reporting functions. These are all examples of variadic functions. Unlike most functions, variadic

functions do not have a fixed arity; i.e., they can take a variable number of arguments. The number and

types of the arguments are dictated by a format argument (e.g., fmt above).

At the assembly level, non-variadic functions are relatively easy to handle. The compiler knows the

number and types of arguments, so it can emit instructions to put them into the proper locations (e.g., on

x64 with the System V calling convention, the compiler puts the first 6 arguments into registers, and then

pushes the rest, if any, onto the stack), and it emits instructions for the callee to access the arguments either

directly in the registers or via a frame/stack pointer.

For variadic functions, the compiler emits code that will dynamically walk through the registers and stack

at run time, based on the value in the format string. In other words, the format string passed to a variadic

function controls the way in which the callee finds and interprets its arguments.

On x64 with the System V calling convention, this means that a variadic function like printf looks for

a pointer to its format string argument in rdi. It then starts parsing that string. Simplifying slightly, each

time it finds a % followed by a format argument (e.g., %s or %d), it looks for the corresponding value in the

“next” slot for arguments, as dictated by the calling convention. Recall that the order of arguments on x64

System V is: rdi, rsi, rdx, rcx, r8, r9. If there are more than six arguments, then the additional

1



arguments are placed on the stack; i.e., the seventh function argument is located at rsp + 8 (where rsp

is the value when we started executing the variadic function), placing it just above the return address the

callee will use to return to its caller. Likewise, the eigth argument is at rsp + 16, the ninth at rsp + 24,

and so on.

When printf analyzes its format string argument (passed in rdi), when it first encounters a format

argument like %d, it will look for the corresponding value in rsi. For the second format argument, it will

look in rdx, and so on, moving first through the registers, and then through the stack slots discussed above.

Note that the format argument also tells printf how to interpret the value it finds. If rsi holds the 64-

bit value 0x0000000012345678, then if the first format argument is %x, then 0x0000000012345678 will be

printed as a hexidecimal number, but if the first format argument is %s, then 0x0000000012345678 will be

treated as a pointer to a string, so printf will attempt to read characters starting at the memory address

0x0000000012345678 and print those until it encounters a NULL terminator.

Example 1. Suppose we have the following code snippet:

char s1 [ ] = ” h e l l o ” ;

char s2 [ ] = ” world ” ;

p r i n t f (”%s %s %u” , s1 , s2 , 4 2 ) ;

When printf begins executing, it will look in rdi for its first argument. In rdi will be a pointer to the

format string "%s %s %u". Based on parsing that string, printf will treat rsi as a pointer to a string

(which in this case will be the value of s1), rdx as a pointer to a string (which in this case will be the value

of s2), and rcx as an unsigned integer. Hence, it will print “hello world 42”.

In the subsections below, we will look at how an attacker who can control the format string passed to a

variadic function can abuse that control to read and/or write to arbitrary memory.

2.2 Viewing the Stack

At its simplest, a variadic function can be abused to view a portion of memory, with the simplest portion

being the stack. Illicitly reading memory is typically the first step in a more complicated attack (e.g., it can

be a useful way to bypass stack canaries, which we discuss later).

Consider the following code snippet:

1 . i n t foo ( char ∗ fmt ) {
2 . char buf [ 6 4 ] ;

3 . memset ( buf , 0 , 6 4 ) ;

4 . s t r cpy ( buf , fmt ) ;

5 . p r i n t f ( buf ) ;

6 . }

In this function, buf is a local variable, and hence, the compiler will emit instructions that will allocate 64

bytes on the stack for it. Above the buf on the stack, we will find the caller’s value of rbp (saved during the

prologue of foo) and above that, the return address for foo’s caller (pushed there by the call to foo).

On Line 3, we zero out the buffer, and then on Line 4, we copy the format string passed to foo into

the buffer. Finally, on Line 5, we call printf; notice that the programmer incorrectly uses buf as the
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Figure 1: Registers and stack diagram showing how an attacker can view the stack.

first argument to printf, meaning it will be used as the format string that dictates how to interpret

additional arguments. If the programmer intended to print buf as a string, it would have been safer to

call printf("%s", buf). Unfortunately, in benign cases (i.e., when fmt does contain a normal string),

the behavior with the buggy code above will be the same as the safe version, making it harder to detect

vulnerabilities like this.

Suppose the attacker wishes to learn some values on the stack and can cause fmt to point at the

string: "%llx%llx%llx%llx%llx%llx%llx%llx%llx%llx%llx%llx%llx%llx%llx%llx%llx", i.e., 17 copies

of "%llx". When foo executes, this string will be copied into buf (on Line 4).1 When printf is called (on

Line 5), it will interpret the string above as a format string. Hence, it will be expecting 17 64-bit integer

values as arguments. As discussed earlier, printf has no way of knowing how many arguments were really

passed, so it does not know that foo only passed along one “real” argument. As a result, printf will first

print the 5 values it finds in registers (i.e., in rsi, rdx, rcx, r8, r9), and then it will print the remaining

12 values from the stack (see Figure 1). It will expect the first of those values to be just above the return

address in printf’s stack frame. It will expect the next one to be 8 bytes above there, and so on. For our

particular compiler, the 12th stack value (the 17th argument) printed will be foo’s return address.

Obviously, this example can be generalized to view other values of interest on the stack.

2.3 Viewing a Specific Address

Suppose we want to view not just a stack address, but a very specific address in memory (e.g., 0xfeeb1234),

perhaps because we know an important secret key is stored there. The important observation is that an

adversary can use its control over the data channel to put the desired address into memory, and then use its

1As a side effect, this will overwrite the lower bytes of the caller’s rbp that was saved on the stack (since the string above is

68 bytes long, plus 1 byte for the NULL terminator), which may cause the program to crash later.
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Figure 2: Registers and stack diagram showing how an attacker can view a specific address.

control over the control channel (the format string) to cause printf (or other variadic function) to interpret

that data as a memory address to be printed.

As an example, using the same code snippet for foo from Section 2.2, suppose the attacker arranges for

fmt to point at the string "%9$sZZZZ\x34\x12\xeb\xfe". The strcpy on Line 4 will place this string in the

buf array on the stack. On the next line, printf takes buf as its first (and only intended) argument, which

means that printf will interpret it as a format string. The first format specifier is %9$s, which is a little

known format type that says to print the 9th argument as a string (the ’s’ indicates the string type). Of

course, printf does not know that it was only called with one argument, so it will blithely go looking for its

9th argument following the algorithm outlined in Section 2.1. We know that only the first five non-format-

string arguments to printf will fit into registers, so the rest must be on the stack. As shown in Figure 2,

in this instance, the attacker’s careful choice of format string results in the value 0xfeeb1234 sitting on the

stack at just the right slot; i.e., the slot where printf will look for its 9th argument. Because printf was

told to treat that argument as a string, it will interpret 0xfeeb1234 as an address and start printing out the

data stored at that address until it hits a NULL terminator.

Note 2. If we want to use the address 0xfeeb1234, why does the format string use the reverse set of bytes,

i.e., "x34\x12\xeb\xfe"? Remember that strcpy (conceptually) copies the source string to the destination

string one byte at a time. Hence, in memory, we will find the byte 0x34 at the lowest memory address, the

byte 0x12 at that address plus 1, and so on. If we read those four bytes from memory and interpret them

as a 32-bit value, then on a little-endian machine, the integer value is 0xfeeb1234.

Note 3. You may wonder why we included the "ZZZZ" in the format string. Notice that each stack “slot”

is 8 bytes wide (on x64). The "%9$s" portion of the attacker’s format string is only 4 bytes. Hence, without

the "ZZZZ", the stack would contain "%9$s\x34\x12\xeb\xfe" in the stack slot where printf looks for its

8th argument and zeroes in the slot for its 9th argument, so the attack would fail.
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Figure 3: Stack diagram showing how an attacker can overwrite the return address by hijacking a call to
sprintf.

2.4 Buffer Overflow by Format String

In the sections above, we focused on ways of reading information from memory. However, variadic functions

can also be abused to write to memory as well. One “brute force” way to do so is via a variadic function

like sprintf, which computes a formatted string and stores it in a caller-supplied buffer.

Consider the following code snippet:

1 . i n t foo ( char ∗ fmt ) {
2 . char buf [ 6 4 ] ;

3 . memset ( buf , 0 , 6 4 ) ;

4 . s p r i n t f ( buf , fmt ) ;

5 . }

Suppose the adversary can arrange for fmt to point at the string "%72u\x34\x12\xeb\xfe". The initial

format specifier %72u tells printf to treat the first argument as an unsigned integer, but to format the integer

such that it takes up 72 characters (i.e., to pad it with enough spaces such that the spaces plus the characters

representing the integer sum to 72). This kind of format specifier can be useful when printing tables of data

where the numbers need to align even if some are longer or shorter than average.

When sprintf processes its format string, %72u tells it to look for its first argument (this time in rdx,
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since rdi holds the pointer to buf, and rsi holds the pointer to fmt) and print 72 characters to represent it.

The remainder of the format string tells sprintf to print the eight hex digits (i.e., four bytes) corresponding

to 0xfeeb1234 (see Figure 3). Hence, these four bytes will overwrite the lower four bytes of the return

address stored on the stack, giving the attacker control over where foo will return to.

2.5 Writing to a Specific Address

Now suppose that we want to write to a specific address in memory (e.g., our favorite target 0xfeeb1234),

perhaps because we know the program we’re attacking will eventually use the value at that memory location

for a control transfer (e.g., as a function pointer). One way to do this is to abuse the printf specifier %n,

which tells printf (and others in that family) to print the number of characters printed thus far in processing

the format string. The intended usage is for code like this:

i n t i ;

p r i n t f (” abcde%n\n” , ( i n t ∗) &i ) ;

p r i n t f (” i = %d\n” , i ) ;

which will output:

abcde

i = 5

because at the point where the first call to printf reaches the "%n" specifier in its format string, it has

printed 5 characters (namely "abcde"), so 5 is stored in i.

We can use this to write the 4-byte value 0x80402010 to address 0xfeeb1234. Conceptually, we want to

arrange for the victim program to make the following series of four printf calls:

p r i n t f (”%16u%n” , 330 , 0 xfeeb1234 ) ;

p r i n t f (”%32u%n” , 330 , 0 xfeeb1234 + 1 ) ;

p r i n t f (”%64u%n” , 330 , 0 xfeeb1234 + 2 ) ;

p r i n t f (”%128u%n” , 330 , 0 xfeeb1234 + 3 ) ;

In these calls, the value 330 doesn’t matter and can really be any value. Looking at the first printf, the

important part is that thanks to the width specifier in "%16u", by the time we reach the "%n" format specifier,

printf will have printed 16 characters, so it will write 0x00000010 to 0xfeeb1234. Of course, that’s not

the full value we wanted to write, so that’s why we need more calls to printf. In the second call, thanks

to the width specifier in %32u, by the time we reach the %n format specifier, printf will have printed 32

characters, so it will write 0x00000020 to 0xfeeb1234 + 1. Note the offset by one. This means that if we

look at memory starting from 0xfeeb1234, we’ll actually read 0x00002010. Each subsequent printf fills in

another byte of the desired value until we finally have 0x80402010. Note that as a side effect, we overwrite

the three bytes following 0xfeeb1234 + 3 with zeroes. Let’s hope nothing important was there!

Of course, we don’t actually need four separate calls to printf. As an exercise to the reader, we suggest

you think about how the effects described above could be caused via a single call to printf (hint: you may

need to pass a lot more arguments!).
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