
18-330 Cryptography Notes: Introduction

Note: This is provided as a resource and is not meant to include all material from lectures or recitations.

The proofs shown, however, are good models for your homework and exams.

1 Symmetric Key Cryptography

Definition 1. A symmetric key cipher consists of 3 polynomial time algorithms:

1. KeyGen(λ): A randomized algorithm that returns a key k ∈ K. λ is called the security parameter;

typically the strength of k should be proportional to λ.

2. E(k,m): A potentially randomized algorithm that encrypts a message (or plaintext) m ∈ M with the

key k. It returns a ciphertext c in C.

3. D(k, c): A deterministic algorithm that decrypts c with key k. On success, it returns m ∈M. Otherwise

it fails and returns ⊥.

We say that the cipher (KeyGen,E,D) is defined over (K,M, C). The textbook definition omits KeyGen

in the definition of a Shannon cipher and defines a cipher as E = (E,D).

2 Perfect Secrecy

Definition 2. Let M = {0, 1}n. Consider an experiment where the random variable k is uniformly dis-

tributed over K. An encryption scheme is perfectly secure if:

∀m0,m1 ∈M, ∀c ∈ C,Pr[E(k,m0) = c] = Pr[E(k,m1) = c]

where the probability is over the choice of k.

2.1 Shannon’s Theorem

Theorem 1. Let E = (KeyGen,E,D) be a Shannon cipher defined over (K,M, C). If E is perfectly secure,

then |K| ≥ |M|.

2.2 One Time Pad: Proof of Perfect Secrecy

Definition 3. One Time Pad (OTP) is an encryption scheme. We define it as follows over M = C = K =

{0, 1}λ:

• KeyGen(λ): Choose k uniformly at random from K.
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• E(k,m) = k ⊕m = c

• D(k, c) = k ⊕ c = m

We prove that this scheme is perfectly secure:

Proof. Suppose that E = (KeyGen,E,D) is a one-time pad defined over (K,M, C), where K :=M := C :=

{0, 1}λ. Consider any messages m1,m2 ∈ M and ciphertext c ∈ C. Notice that for any key m ∈ M, there

exists only one k such that m ⊕ k = c. Why? Suppose there were two different keys k0, k1 ∈ K where

k0 6= k1, but m⊕ k0 = c = m⊕ k1. Then if we XOR both sides with m, we get:

m⊕m⊕ k0 = m⊕m⊕ k1
0⊕ k0 = 0⊕ k1

k0 = k1

but we started from the assumption that k0 6= k1, which means we arrived at a contradiction. Hence, only

one k can satisfy m⊕ k = c.

Hence, in our main proof, we have:

Pr[E(m1) = c] =

∣∣{k ∈ {0, 1}λ : k ⊕m1 = c}
∣∣

|K|

=
1

2λ

Nothing about the calculations above made use of any specific information about m1, so we by the same

logic, we can conclude that Pr[E(m2) = c] = 1
2λ

. We conclude that for any m1,m2, c, Pr[E(k,m1) = c] =

Pr[E(k,m2) = c] holds, and therefore E is perfectly secure.

3 Miscellaneous

This class doesn’t distinguish between polynomial time (PT) algorithms and probabilistic polynomial time

(PPT) algorithms. A PPT algorithm is different from a PT algorithm in that it runs in polynomial time in

expectation. This isn’t important for class, but occasionally PPT is mentioned in place of PT and vice versa.
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