
A Comprehensive Symbolic Analysis of TLS 1.3
Cas Cremers

University of Oxford, UK
Marko Horvat

MPI-SWS, Germany
Jonathan Hoyland

Royal Holloway, University of
London, UK

Sam Scott
Royal Holloway, University of

London, UK

Thyla van der Merwe
Royal Holloway, University of

London, UK

ABSTRACT
The TLS protocol is intended to enable secure end-to-end commu-
nication over insecure networks, including the Internet. Unfortu-
nately, this goal has been thwarted a number of times throughout
the protocol’s tumultuous lifetime, resulting in the need for a new
version of the protocol, namely TLS 1.3. Over the past three years, in
an unprecedented joint design effort with the academic community,
the TLS Working Group has been working tirelessly to enhance
the security of TLS.

We further this effort by constructing the most comprehensive,
faithful, and modular symbolic model of the TLS 1.3 draft 21 release
candidate, and use the Tamarin prover to verify the claimed TLS 1.3
security requirements, as laid out in draft 21 of the specification. In
particular, our model covers all handshake modes of TLS 1.3.

Our analysis reveals an unexpected behaviour, which we expect
will inhibit strong authentication guarantees in some implementa-
tions of the protocol. In contrast to previous models, we provide
a novel way of making the relation between the TLS specification
and our model explicit: we provide a fully annotated version of
the specification that clarifies what protocol elements we modelled,
and precisely how we modelled these elements. We anticipate this
model artifact to be of great benefit to the academic community
and the TLS Working Group alike.

KEYWORDS
symbolic verification, authenticated key exchange, TLS 1.3

1 INTRODUCTION
The Transport Layer Security (TLS) protocol is the de facto means
for securing communications on the World Wide Web. Initially
released as Secure Sockets Layer (SSL) by Netscape Communica-
tions in 1995, the protocol has been subject to a number of version
upgrades over the course of its 20-year lifespan. Rebranded as TLS
when it fell under the auspices of the Internet Engineering Task

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’17, October 30-November 3, 2017, Dallas, TX, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00
https://doi.org/10.1145/3133956.3134063

Force (IETF) in the mid-nineties, the protocol has been incremen-
tally modified and extended. In the case of TLS 1.2 and below, these
modifications have taken place in a largely retroactive fashion;
following the announcement of an attack [6, 7, 18, 20, 32, 43, 49],
the TLS Working Group (WG) would either respond by releasing a
protocol extension (A Request for Comments (RFC) intended to pro-
vide increased functionality and/or security enhancements) or by
applying the appropriate “patch" to the next version of the protocol.
For a more detailed analysis of the development and standardisation
of TLS see [45].

Prior to the announcement of the BEAST [26] and CRIME [27]
attacks of 2011 and 2012, respectively, such a strategy was valid
given the frequency with which versions were updated, and the
limited number of practical attacks against the protocol.

Post-2011, however, the heightened interest in the protocol and
the resulting flood of increasingly practical attacks against it [1–
3, 5, 9, 13, 15, 16, 26, 27, 29, 31, 41, 42, 44] rendered this design
philosophy inadequate. Coupled with pressure to increase the pro-
tocol’s efficiency (owing to the release of Google’s QUIC Crypto
[37]), the IETF started drafting the next version of the protocol, TLS
1.3, in the Spring of 2014. Unlike the development of TLS 1.2 and
below, the TLS WG adopted an “analysis-prior-to-deployment” de-
sign philosophy, welcoming contributions from the academic com-
munity before official release. There have been substantial efforts
from the academic community in the areas of program verification–
analysing implementations of TLS [12, 14], the development of com-
putational models– analysing TLS within Bellare-Rogaway style
frameworks [24, 25, 28, 33, 35, 38], and the use of formal methods
tools such as ProVerif[17] and Tamarin[48] to analyse symbolic
models of TLS [4, 10, 22, 30]. All of these endeavours have helped
to both find weaknesses in the protocol and confirm and guide the
design decisions of the TLS WG.

The TLS 1.3 draft specification however, has been a rapidly mov-
ing target, with large changes being effected in a fairly regular
fashion. This has often rendered much of the analysis work ‘out-
dated’ within the space of few months as large changes to the
specification effectively result in a new protocol, requiring a new
wave of analysis.

In this work we contribute to what is hopefully the last wave of
analysis of TLS 1.3 prior to its official release. We present a tool-
supported, symbolic verification of a near-final draft of TLS 1.3,
adding to the large effort by the TLS community to ensure that
TLS 1.3 is free of themanyweaknesses affecting earlier versions, and
that it is imbued with security guarantees befitting such a critical
protocol. We note that most of the cryptographic mechanisms in
the current TLS 1.3 draft are stable, and other than fluctuations

https://doi.org/10.1145/3133956.3134063

surrounding the zero-Round-Trip-Time (0-RTT) mechanism [40],
we do not expect substantial changes to come.

1.1 Contributions
Our main contributions in this work are as follows:

(1) We develop a symbolic model of the latest specification of
TLS 1.3 (draft 21) that considers all the possible interactions
of the available handshake modes, including PSK-based
resumption and 0-RTT. Its fine-grained, modular struc-
ture greatly extends and refines the coverage of previous
symbolic models that were successfully used to discover
sophisticated interaction attacks, including that of Cremers
et al. [22]. Our model effectively captures a new TLS 1.3
protocol, incorporating the many changes that have been
made to the protocol since the development of these previ-
ous models. We also note that our model is highly flexible
and can easily accommodate the removal of the 0-RTT
mechanism, should the need arise.

(2) We prove the majority of the specified security require-
ments of TLS 1.3, including the secrecy of session keys,
perfect forward secrecy (PFS) of session keys (where ap-
plicable), peer authentication, and key compromise imper-
sonation resistance. We also show that after a successful
handshake the client and server agree session keys and
that session keys are unique across handshakes.

(3) We uncover a behaviour that may lead to security problems
in applications that assume that TLS 1.3 provides strong
authentication guarantees.

(4) We provide a novel way of exhibiting the relation between
the specification and our model: we provide an annotated
version of the TLS 1.3 specification that clarifies which
parts are modelled and how, and which parts were ab-
stracted. This provides an unprecedented level of modelling
transparency and enables a straightforward assessment of
the faithfulness and coverage of our model. We anticipate
that this output will be of great benefit to the academic
community analysing TLS 1.3, as well as the TLS Work-
ing Group as it provides a clear and easy-to-understand
mapping between the TLS 1.3 specification and a TLS 1.3
model.

All our Tamarin input files, proofs, and the annotated TLS 1.3 spec-
ification that shows the relation between the RFC and the model,
can be downloaded from [21].

1.2 Related work
As mentioned, there has been a great deal of work conducted in
the complementary analysis spheres pertinent to TLS 1.3. Of most
interest to this work are the symbolic analyses presented in [22],
[4] and [10].

The work in [22] by Cremers et al. offered a symbolic model
and accompanying analysis of draft 10 of the TLS 1.3 specification,
using the Tamarin prover. Since then, there have been multiple
changes made to the specification - 10 drafts worth of changes to be
precise. These updates have included major revisions of the 0-RTT
mechanism and the key derivation schedule. In draft 10, the send-
ing of early data required a client to possess a semi-static (EC)DH

value of the server. This particular handshake mode was removed
and replaced by a pre-shared key (PSK) 0-RTT handshake mode–
early data can now only be encrypted using a PSK. In fact, the PSK
mechanism has been greatly enhanced since draft 10 with new PSK
variants and binding values being incorporated in to the specifi-
cation. Post-handshake authentication was officially incorporated
from draft 11 onwards and a few drafts later, post-handshake au-
thentication was enabled to operate with the PSK handshake mode.
Another change to be incorporated after draft 10 was the inclu-
sion of 0.5-RTT data - the server being able to send fully protected
application data as part of its first flight of messages.

All of these changes have resulted in what is effectively a very
different TLS 1.3 protocol, particularly from a symbolic perspective.
As a Tamarin model aims to consider the interaction of all possible
handshake modes and variants, changes to these modes, as well
as the inclusion of new post-handshake combinations, results in a
very different different set of traces to be considered when proving
security properties. Hence, this work presents a substantially differ-
ent model to [22], and follows a far more fine-grained and flexible
approach to modelling TLS 1.3.

The work in [4] is an analysis of TLS 1.3 by the Cryptographic
protocol Evaluation towards Long-LivedOutstanding Security (CEL-
LOS) Consortium using the ProVerif tool. Announced on the TLS
WG mailing list at the start of 2016, it showed the initial (EC)DHE
handshake of draft 11 to be secure in the symbolic setting. In com-
parison to our work, this analysis covers only one handshake mode
of a draft that is now somewhat outdated.

The ProVerif models of draft 18 presented by Bhargavan et al.
in [10] include most TLS 1.3 modes, and cover rich threat models
by considering downgrade attacks (both with weak crypto and
downgrade to TLS 1.2). However, unlike our work, they do not con-
sider all modes, as they do not consider the post-handshake client
authentication mode. While they cover relative strong authentica-
tion guarantees (which led to the discovery of an unknown key
share attack), their analysis did not uncover the potential mismatch
between client and server view that we describe in Section 5.2.

1.3 Paper organisation
The paper is organised as follows. In Section 2 we describe the
TLS 1.3 protocol and the security properties claimed in the spec-
ification. Section 3 describes our Tamarin model and provides a
few Tamarin prover fundamentals. In Section 4, we describe our en-
coding of the security guarantees, followed by Section 5 where we
describe our results. Section 6 covers the relationship between our
model and the specification document, discussing howwe provide a
website that describes our model side-by-side with the specification,
giving us unprecedented modelling transparency. We conclude in
Section 7.

2 TLS 1.3
In this section we provide a brief description of the TLS 1.3 pro-
tocol as is necessary for understanding our symbolic model, and
we outline the claimed security properties and guarantees of the
protocol.

2.1 New mechanisms
The three years of effort that has gone into crafting and fine-tuning
both the security and efficiency mechanisms of TLS 1.3 is readily
apparent in the large structural departures from TLS 1.2. The two
protocols have broadly similar goals but exhibit many differences.
For example, a full TLS 1.3 handshake requires one fewer round
trip before a client can transmit protected application data, and the
new zero round trip time (0-RTT) mechanism allows less sensitive
application data to be sent by the client as part of its first flight of
messages.

TLS 1.3 has three key exchange modes, namely, Diffie–Hellman
exchange (DHE), pre-shared key (PSK) exchange, and PSK coupled
with DHE. These modes enable useful features like session resump-
tion and the transmission of early application data. Additionally,
there are a number of handshake variants that allow for group rene-
gotiation and the sending of context-dependent, optional messages.
Each of these variants has different properties and offers different
security guarantees.

Furthermore, TLS 1.3 has three post-handshake mechanisms
covering traffic key updates, post-handshake client authentication,
and the sending of new session tickets (NSTs) for subsequent re-
sumption via a PSK. The handshake protocol maintains a rolling
transcript, on which both parties must agree. This transcript takes
the form of a hash value of all of the handshake messages. Post-
handshake messages, however, are not included in this transcript
resulting in different security properties for the post-handshake
mechanisms.

We analyse all of the TLS 1.3 key exchange modes, handshake
variants, and post-handshake mechanisms simultaneously, consid-
ering all possible interactions between them. We provide a brief
description of these components as well as associated message flow
diagrams.

2.1.1 Diffie–Hellman exchange (DHE). The defaultmode of TLS 1.3
allows for ephemeral Diffie–Hellman (DH) keys to be established
either over a finite field or using elliptic curves.

In an initial (EC)DHE handshake, as depicted in Figure 1, the
client sends a ClientHello message containing a random nonce,
i.e. a freshly generated random value, and a list of symmetric al-
gorithms. The client also sends a set of DH key shares and the
associated groups, KeyShare, and potentially some other exten-
sions.

Upon receipt of a ClientHello message, the server selects ap-
propriate cryptographic parameters for the connection and re-
sponds with a ServerHello message. This message contains a
server-generated random nonce, an indication of the selected pa-
rameters and potentially some other extensions. The server also
sends a KeyShare message, along with an EncryptedExtensions
message and optionally a CertificateRequest message.

The KeyShare contains the server’s choice of group and its
ephemeral DH key share. The client and server key shares are
used to compute handshake and application traffic keys.
The EncryptedExtensions message contains material that is not
necessary for determining cryptographic parameters. For instance,
the draft specification lists the server name and the maximum TLS
fragment length as possible values to be sent in this message. The

Client Server

ClientHello
KeyShare

ServerHello
KeyShare

EncryptedExtensions
CertificateRequest*

Certificate
CertificateVerify

Finished

Certificate*
CertificateVerify*

Finished

[ApplicationData]

Figure 1: A full TLS 1.3 handshake (Section 2.1.1)

CertificateRequest message indicates that the server requests
client authentication in the mutual authentication case.

The server will also send a Certificatemessage, containing the
server’s certificate and a CertificateVerify message, which is a
digital signature over the current transcript. These two messages
allow the client to authenticate server. The server also sends a
Finishedmessage. This message is a Message Authentication Code
(MAC) over the entire handshake, providing key confirmation and
binding the server’s identity to the computed traffic keys.

The client respondswith Certificate and CertificateVerify
messages, if requested, and then sends its own Finished message.
These message flows are depicted in Figure 1.

2.1.2 Pre-shared key (PSK). In the event that a PSK has been
established, a client and a server can begin communicating without
a DH exchange. This is potentially attractive for low-power envi-
ronments, however, without a DHE the connection loses perfect
forward secrecy (PFS). In a PSK handshake, the server authenticates
via a PSK.

2.1.3 PSK with DHE. By combining a PSK with DHE this mode
maintains PFS whilst limiting the number of expensive public key
operations that the server needs to perform.

2.1.4 Group renegotiation. It can be the case that the groups sent
by a client are not acceptable to the server. In this case, the server
may respond with a HelloRetryRequest message. This indicates
to the client which groups the server will accept, and provides the
client with the opportunity to respond with an appropriate key
share before returning to the main handshake.

Client Server

ClientHello
KeyShare*

PSK

ServerHello
KeyShare*

PSK

EncryptedExtensions
Finished

Finished

[ApplicationData]

Figure 2: A PSK resumption handshake (Section 2.1.7)

2.1.5 New session ticket (NST). After a successful handshake,
the server can issue an NST at any time. These tickets create a
binding to a resumption-specific secret and can be used by the
client as PSKs in subsequent handshakes.

2.1.6 PSK binder. A PSK binder is a value that binds a PSK to the
handshake where the PSK is offered by a client in a ClientHello
message and, if the PSK was generated by a server in-band, to the
handshake where it was generated. A ClientHello can contain
multiple binders arranged in a list, where each binder is computed
over a hash of the ClientHello message (without the binder list
itself).

2.1.7 Session resumption and PSK. This handshake variant al-
lows a client to use a key established out-of-band (OOB) to start a
new session, or to use an NST established in a previous handshake
to resume the session. This avoids the use of expensive public-key
operations and in the case of a resumption, ties the security context
of the new connection to the original connection. Note that a server
may reject a resumption attempt made by a client, so the specifica-
tion recommends that the client supplies an additional (EC)DHE
key share with its PSK when trying to resume a session. Figure 2
depicts a PSK resumption handshake.

2.1.8 Zero round trip time (0-RTT). A client can use a PSK to
send application data in its first flight of messages, reducing the la-
tency of the connection. As noted in the TLS 1.3 draft specification,
this data is not protected against replay attacks. If the communicat-
ing entities wish to take advantage of the 0-RTT mechanism, they
should provide their own replay protection at the application layer.
A 0-RTT handshake is depicted in Figure 3.

2.1.9 Post-handshake client authentication. After a successful
handshake, the server can send a CertificateRequest message.
If the client responds with an acceptable certificate, then the server

Client Server

ClientHello
KeyShare*

PSK

(ApplicationData)

ServerHello
KeyShare*

PSK

EncryptedExtensions
Finished

[ApplicationData]

Finished

[ApplicationData]

Figure 3: A 0-RTT handshake (Section 2.1.8)

might authenticate the client. However, because the specification
allows certificates to be rejected ‘silently’, the client cannot be sure
of its authentication status in general. We discuss this in greater
detail in Section 5.2.

2.1.10 Key update. After a successful handshake, either party
can request an application data key update. Because the read and
write keys for application data are independent, either party can
immediately update their write key after requesting a key update.

2.1.11 Key derivation. A TLS 1.3 handshake will generate a set
of keys on which both the client and server agree. The specification
defines a key schedule which uses the repeated application of an
HMAC-based key derivation function (HKDF) [34] to combine the
secret inputs with fixed labels so as to generate a set of independent
keys.

The key schedule has two secret inputs, the (EC)DHE and the
PSK. Depending on the handshake mode, either one or both of these
will be used. The key schedule also includes the transcript hash in
the key derivation. Because the transcript includes nonces, even if
the secret inputs are repeated, the generated keys are guaranteed
to be independent.

2.2 Stated goals and security properties
The TLS 1.3 handshake protocol is intended to negotiate crypto-
graphic keys via the mechanism of authenticated key exchange
(AKE). These keys can then be used by the record layer to provide
critical security guarantees, including confidentiality and integrity
of messages. As stated in Section 2.1, TLS 1.3 makes use of inde-
pendent keys to protect handshake messages and application data

messages: protection of the handshake messages starts with the
server’s EncryptedExtensions message, and in the majority of
handshake modes, protection of application data messages occurs
after the transmission of the server and client Finished messages,
respectively. In the case of a 0-RTT handshake, application data is
protected with a PSK as part of the client’s first flight of messages.

The TLS specification[46, Appendix E.1] lists eight properties
that the handshake protocol is required to satisfy:
1. Establishing the same session keys. Upon completion of

the handshake, the client and the server should have estab-
lished a set of session keys on which they both agree.

2. Secrecy of the session keys. Upon completion of the hand-
shake, the client and server should have established a set of
session keys which are known to the client and the server
only.

3. Peer authentication. In the unilateral case, upon comple-
tion of the handshake, if a client C believes it is communicat-
ing with a server S, then it is indeed Swho is indeed executing
the server role. An analogous property for the server holds
in the bilateral (mutual) authentication case.

4. Uniqueness of sessionkeys. Each run of the protocol should
produce distinct, independent session keys.

5. Downgrade protection. An active attacker should not be
able to force the client and the server to employ weak cipher
suites, or older versions of the TLS protocol.

6. Perfect Forward Secrecy (PFS). In the case of compromise
of either party’s long-term key, sessions completed before
the compromise should remain secure. This property is not
claimed to hold in the PSK key exchange mode.

7. Key compromise impersonation (KCI) resistance. Should
an attacker compromise the long-term key of party A, the
attacker should not be able to use this key to impersonate an
uncompromised party in communication with A.

8. Protection of endpoint identities. The identity of the server
cannot be revealed by a passive attacker that observes the
handshake, and the identity of the client cannot be revealed
even by an active attacker that is capable of tampering with
the communication.

Wemodel six out of the eight required properties, omitting down-
grade protection and the protection of endpoint identities. Also, as
stated previously, 0-RTT mechanisms allow for replay of early data
across sessions. We discuss the reduced 0-RTT security properties
as well as the properties described above more fully in Section 4.

The draft specification refers to RFC 3552[47] for an informal
description of the TLS 1.3 threat model. This model assumes a Dolev-
Yao attacker[23]– an attacker that can perform man-in-the-middle
(MITM) attacks by being able to replay, insert, delete, and modify
messages at will. We consider a strictly more powerful attacker, as
we will explain in Section 4.1.

3 MODELLING THE PROTOCOL
3.1 The Tamarin prover
The Tamarin prover [48] is a symbolic modelling and analysis
tool for security protocols. Its specification language facilitates
the construction of highly detailed models of security protocols,

their security requirements and powerful Dolev-Yao-style attack-
ers. The verification algorithm of Tamarin is based on constraint
solving and multiset-rewriting techniques, which allows its users
to prove intricate security properties in complex protocols exhibit-
ing branches and loops. Moreover, it offers state-of-the-art sym-
bolic Diffie-Hellman support. Tamarin inherently supports non-
monotonic state and it includes an extensive graphical user inter-
face that enables the visualisation and interactive construction of
proofs.

These features make Tamarin a good fit for the modelling and
in-depth analysis of highly complex protocols such as TLS 1.3. In
particular, the support for branching allowed us to model the deci-
sions that the protocol participants can make during execution, the
loops were instrumental in covering repeated connections within a
single session, and the main security aspects of TLS 1.3 critically
depend on Diffie-Hellman key exchange. The non-monotonic state
support enabled us to model branching without having to resort
to custom-tailored hacks or having to rely on the considerable
over-approximation where all branches can be considered simul-
taneously. Lastly, the visualisations of attacks found by Tamarin
provided us with a way to quickly identify potential problems, with
either the protocol or our model– the graphical user interface was
a great asset in guiding our TLS 1.3 verification workflow.

We introduce the Tamarin specification language by considering
a toy example rule:

rule Example_Rule:
[!Key(x,y), Fr(n)]--[Send(x,n,y)]->[Out(senc{n}y)]

Tamarin rules consist of three respective parts: a left-hand side,
actions and a right-hand side. The rules are used to define a transition
system, whose global state is maintained as a multiset of so-called
facts. The initial state of the transition system is the empty multiset.
A rule can only be executed if all the facts on its left-hand side
are available in the current state. When a rule is executed, it will
consume the facts on the left, i.e. removing them from the global
state, and produce facts on the right, i.e. adding them to the global
state. Facts are either linear or persistent; each available linear fact
can only be consumed once, and persistent facts can be consumed
any number of times. Actions specify observable events in every
trace, and are used to express security properties. There are several
special facts, one of which is the Fr fact, which is implicitly available
in all states because of Tamarin’s built-in Fresh rule, and is used
to produce fresh (unique) values. In the above example, if an agent
x owns a symmetric key y, then it can send out a fresh value n that
is symmetrically encrypted with y. A basic property that states the
secrecy of n can be encoded as a simple lemma:

lemma Example_Property:
"All x y n #i. Send(x,n,y) @ i ==> not Ex #j. K(n) @ j"

A more realistic lemma needs to account for the attacker model.
For example, in the presence of an attacker who can compromise
symmetric keys, a formula resembling not Revealed(y) @ k needs
to be conjoined with the left-hand side of the above property or it
will be trivially false.

We defer the details of our Tamarin model to Section 4, and note
differences to other TLS 1.3 models in the next section.

3.2 A comprehensive model
Using Tamarin’s modelling framework we devised a comprehensive
symbolic model of TLS 1.3 that captures the specified protocol
behaviours, as well as unexpected behaviours that arise from a
complex interaction of an unbounded number of sessions. Our
model captures these behaviours in the presence of a powerful
attacker1.

Other TLS 1.3 analyses consider the constituent parts of TLS 1.3,
viewing these as separate protocols, and proceed to tie the indi-
vidual proofs together with a compositionality result. For instance,
[10] considers the resumption mechanism as a separate protocol
in which both the client and the server take as input a symmetric
value—the PSK. If the PSK remains unknown to the attacker in
every execution of the resumption protocol, a gap remains to be
filled before concluding that the full handshake always completes
without the attacker knowing the PSK. This gap is filled by a man-
ual compositionality proof. In our work, there is no need for such
manual proofs; composition is trivially satisfied by our comprehen-
sive model, as Tamarin considers all the possible interactions in
proving each property.

Although our model undoubtedly draws from the Tamarin mod-
els described in [30] and [22], we opted to model TLS 1.3 with a
significant increase in fidelity to the draft specification. Such an
approach resulted in an improved ability to capture the full func-
tionality of TLS, as well as a broader class of realistic attacks. This
class includes the coverage of complicated interaction attacks, such
as the post-handshake client authentication attack in [22]. Addi-
tionally, by closely matching our model to the specification and
allowing for an almost line-per-line comparison, we achieve full
transparency regarding which parts of the specification we abstract
away from, and which assumptions our modelling process relies on.
We discuss the relation between our model and the RFC in detail in
Section 6.

Not only is our model more comprehensive than the Tamarin
models that precede it, it also incorporates the many changes to
the TLS 1.3 specification that have materialised since the develop-
ment of these models. In the following sections, we describe our
modelling process, pointing out enhancements over the previous
models.

3.3 Closely modelling the specification
As with previous models [22], we employ the use of Tamarin rules
to model state transitions within the TLS 1.3 protocol. However,
our state transitions are far more fine-grained and modular in com-
parison to [22], modelling the effective change in state as a result
of transmission, receipt and processing of cryptographic parame-
ters. For instance, a basic, initial TLS 1.3 handshake invokes up to
21 different rules and the associated state transitions before post-
handshake operations can commence. These state transitions are
depicted in Figure 4, and correspond to message flights an crypto-
graphic processing as described in Section 2.1, Figure 1. The full
state diagram can be found in Appendix A.

Below we provide an example of one of our rules:
rule send:
[SendStream(~tid, $actor, $peer, auth_status, app_key_out),

1We defer discussion of our attacker capabilities to Section 4.1.

Fr(~data)
]
--[Send(~tid),

SendData(~tid, $actor, $peer, auth_status, ~data)
]->
[SendStream(~tid, $actor, $peer, auth_status, app_key_out),

Out(senc{data_record(~data)}app_key_out)
]

We also note the extensive use of macros in our model, which is
enabled by the m4 preprocessor and allowed us to cover most of the
specification, whilst syntactically keeping our model close to it. For
example, our ClientHello message is a macro that expands to:

handshake_record('1',
ProtocolVersion,
ClientRandom,
'0', // legacy_session_id
$cipher_suites,
'0', // legacy_compression_methods
ClientHelloExtensions)

which reflects almost exactly how it is written in our Tamarin files.
ClientRandom is itself another macro, defined to be the value of
the client nonce nc. In Tamarin’s syntax, constants are enclosed
by single quotes. Constructing the model in this fashion enables a
direct syntactic comparison to the specification. Previous Tamarin
models also employ macros, but the connection to the specification
is much less evident. For instance, in [22] ClientHello is defined
to be the pair of values nc,pc, representing the client’s nonce and
“parameters”, which serves as a placeholder for handshake values
that are abstracted away.

In our model we have tried to define cryptographic components
in a way that is reminiscent of imperative programming. As in
the specification, we compute the handshake secret by computing
the function HKDF-Extract(gxy,es), and the handshake keys are
computed by applying a Derive-Secret function to this value.
This is not strictly necessary due to the assumption of perfect
cryptography, but it makes it easier to connect our model to the
specification.

3.4 Advanced features
In our model we capture a number of complicated interactions and
logic flows inherent to the TLS 1.3 handshake, greatly improving on
preceding models, adding features to the model which we consider
to be ‘advanced’.

Group negotiation. We model the client and the server as having
a limited ability to negotiate the group used in the Diffie–Hellman
key exchange.

In Tamarin, any value can be used as a group generator. Typically,
the fixed (public) constant 'g' is used, which represents all parties
agreeing to use a single group ahead of time. On receiving a key
share and storing it in the variable gx, we simulate checking that
the element resides in this group by pattern matching the value as
'g'^x = gx. Intuitively, this corresponds to checking that ∃x . дx =
gx.

In Tamarin’s syntax, variables that are always instantiated with
public values are prefixed by $. In our model, the client starts with a
pair of public values $g1,$g2 that represent two supported groups,

C0Client

C1

C2a

C2b

C2c

C2d

C3

C4

S0Server

S1

S2a

S2b

S2c

S2d

S3

S4

client_hello

recv_server_hello

recv_server_auth

client_gen_keys

recv_encrypted_extensions

recv_cert_request OR
skip_recv_cert_request

cert_req_ctxt , ‘0’

client_auth OR
client_auth_cert

cert_req_ctxt = ‘0’

recv_client_hello

server_hello

server_auth

server_gen_keys

encrypted_extensions

cert_request OR
skip_cert_request

cert_req_ctxt , ‘0’

recv_client_auth OR
recv_client_auth_cert

cert_req_ctxt = ‘0’

ClientHello
+Extensions

ServerHello
+Extensions

EncryptedExtensions

CertRequest

Cert CertVerify
Finished

Cert CertVerify
Finished

Figure 4: Partial state diagram for full TLS 1.3 handshake. Tamarin rules are indicated in blue. The messages exchanged be-
tween entities are given in green. Our fullmodel containsmanymore transitions.We omit these here for the sake of simplicity.

and offers these to the server along with a corresponding key share
for $g1. Similarly, the server starts with a supported group $g. The
model allows the server to return a HelloRetryRequest to the
client, enforcing that $g is not equal to $g1, and expects the client
to return instead a key share that matches $g2.

This interaction enables a much greater coverage of DH key
exchange with respect to previous models, and opens up the possi-
bility of future extensions to this work. One such extension would
be to model a weak group by permitting the attacker to reveal the
corresponding DH exponents.

Handshake flows. One of the most complex elements inherent
to modelling TLS 1.3 is the vast number of possible state machine
transitions. After a session resumption, the server can choose be-
tween using the PSK only, or using the PSK along with a DH key
share. Alternatively, the server might reject the PSK entirely, and
fall back to a regular handshake, or request that the client use a
different group for the DH exchange. Additionally, there are several
complex messages that can be sent in the post-handshake state:
client authentication requests, new session tickets, and key update
requests.

Since all of the above interactions can happen asynchronously,
the resulting model becomes very complex and requires sophis-
ticated handling logic. A number of complicated protocol flows,
involving any number of sequential handshake modes and post-
handshake extensions can, and will, transpire and we deal with this
eventuality by modelling all possible handshake modes in a very
modular fashion. Other models are, by and large, not capable of
capturing complicated protocol flows.

4 ENCODING THE THREAT MODEL AND
THE SECURITY PROPERTIES

4.1 Threat Model
We consider an extension of the Dolev-Yao (DY) attacker [23] as our
threat model. The DY attacker has complete control of the network,
and can intercept, send, replay, and delete any message. To con-
struct a new message, the attacker can combine any information
previously learnt, e.g., decrypting messages for which it knows the
key, or creating its own encrypted messages. We assume perfect
cryptography, which implies that the attacker cannot encrypt, de-
crypt or sign messages without knowledge of the appropriate keys.

In order to consider different types of compromise, we additionally
allow the attacker to do the following:

• compromise the long-term keys of protocol participants,
• compromise their pre-shared keys, whether created OOB

or through a NST, and
• compromise their DH values.

Note that TLS 1.3 is not intended to be secure under the full
combination of all these types of compromise. For example, session
key secrecy can be broken by an attacker who eavesdrops on the
communication and compromises the DH values of a single protocol
participant.

A natural approach is to weaken the attacker model by adding
realistic constraints until either the claimed security goals of the pro-
tocol are achieved, or the corresponding attackers become weaker
than the ones we expect to face in practice. This workflow requires
us to express, with high granularity, exactly what needs to be pro-
tected and when each of the claimed TLS 1.3 properties can be
expected to hold.

We now give our formal definitions of the TLS 1.3 security prop-
ertiesmentioned in Section 2, notingwhere each property is covered
in our model.

4.2 Security properties
We encode the claimed security properties of TLS 1.3 as lemmas in
the specification language of Tamarin. Here we discuss the relation-
ship between the lemmas we prove in the model, and the desired
properties in the specification.We note that there is some overlap
between the material in the stated goals expressed in Section 2.2.
For example, the requirement for PFS is effectively a modifier to the
requirement for secret session keys. Where possible, we will prove
these properties via distinct lemmas to aid in the comprehension
of the model. However, it is also possible to combine many of the
properties into a single, more complex lemma.

4.2.1 Establishing the same session keys. The definition of this
first property is taken from [19], where it is referred to as a consis-
tency property. However, there is ambiguity in the circumstances
that are necessary and sufficient for two protocol participants to
establish the same keys. An answer to this question is typically
given through the well-established practice of defining session part-
nering [8, 19, 36]. One possible way to do so is to assign session
identifiers in terms of a value (or pair of values) on which the two
parties agree. We opted for the least restrictive session identifier,
namely the pair of nonces generated by the client and the server.
Therefore, if a partnered client and server complete the handshake,
then they must agree on session keys.

We consider this property with respect to an attacker that can
compromise all session keys except for those that are identical
to that of the test session, i.e. the session in which the attacker
attempts to obtain information about the key [19, 36]. This property
is captured by our lemma session_key_agreement.

4.2.2 Secrecy of the session keys. The secret_session_keys
lemma is used to prove property (2) in Section 2.2.

The secret_session_keys lemma we prove appears in full detail
in Figure 5. The intuition for this lemma is that if an actor believes
it has established a session key with an authenticated peer, then the

attacker does not know the key. However, given the capabilities of
the attacker, this will not hold without imposing some restrictions.
This is why the additional clauses are required.

The five conditions stated in the depicted lemma are generally
repeated across all lemmas, and encapsulate the basic assumption
we make about our attacker. We describe them in more detail here:
The first imposes the restriction that the long-term signing key
of the peer is not compromised2. This restriction can additionally
be understood to signify that the actor is communicating with an
honest peer, since the attacker can effectively simulate a party when
in possession of its long-term key. Furthermore, it should be noted
that the attacker is still allowed to compromise the peer’s long-term
key (LTK) after the session key is established. Hence we show that
the session keys achieve PFS with respect to the LTK.

The second and third clauses bar the attacker from revealing any
DH exponents generated by the client or the server from before the
session key was established. The attacker may reveal exponents
that are generated after the session key is established.

The last two clauses specify that the attacker cannot compromise
a PSK associated with either the actor or the peer. Note that the at-
tacker is restricted from revealing these PSKs even after the session
key has been established, which corresponds to the proviso in the
specification that the PSK-only exchange mode does not provide
PFS. We discuss this in more detail in Section 4.2.6.

4.2.3 Peer Authentication. The specification defines this prop-
erty somewhat informally, as a form of authentication whereby
both parties should agree on the identity of their peer. Looking
at this more formally through the lens of Lowe’s hierarchy of
authentication[39], this definition corresponds to weak agreement.
In particular, we note that this does not imply recentness—the re-
quirement that the peer is currently running the protocol—nor does
it specify whether any other values should be agreed upon.

We initiallymodel this property via our entity_authentication
lemma. Entity authentication is modelled in two parts so as to cap-
ture the distinction between the bilateral (mutual) and unilateral
authentication cases. Authentication in the unilateral case means
that if a client completes a TLS handshake, apparently with a server,
then the server previously ran a TLS handshake with the client, and
they both agree on certain data values of the handshake, including
the identity of the server and the nonces used. Note that this is
already a stronger property than is stipulated in the specification.
Here we prove non-injective agreement on the nonces, which addi-
tionally provides recentness since both parties contribute a fresh
nonce to the handshake. The unilateral entity authentication lemma
we prove appears in Figure 6.

The intuition for this lemma is that if a client believes it has
agreed on a pair of nonces with a server, then the server was,
at some point prior, running the protocol with those nonces. We
again find the necessary restrictions on the attacker to achieve this
property. The property can only hold if the attacker does not acquire
any of the secrets prior to the client agreeing on nonces. While one
might expect that only the legitimacy of the signing key is necessary
for authentication, if the attacker is able to obtain the PSK through

2We remind the reader that both the client and the server are equipped with long-
term signing keys, and the corresponding public key certificates, for the purposes of
authentication.

1 lemma secret_session_keys:
2 "All tid actor peer write_key read_key peer_auth_status #i.
3 SessionKey(tid, actor, peer, <peer_auth_status, 'auth'>, <write_key, read_key>)@i &
4 not (Ex #r. RevLtk(peer)@r & #r < #i) &
5 not (Ex tid3 x #r. RevDHExp(tid3, peer, x)@r & #r < #i) &
6 not (Ex tid4 y #r. RevDHExp(tid4, actor, y)@r & #r < #i) &
7 not (Ex resumption_master_secret #r. RevealPSK(actor, resumption_master_secret)@r) &
8 not (Ex resumption_master_secret #r. RevealPSK(peer, resumption_master_secret)@r)
9 ==> not Ex #j. K(read_key)@j"

Figure 5: secret_session_keys (Section 4.2.2)

1 lemma entity_authentication [use_induction, reuse]:
2 "All tid actor peer nonces client_auth_status #i.
3 CommitNonces(tid, actor, 'client', nonces)@i &
4 CommitIdentity(tid, actor, 'client', peer, <client_auth_status, 'auth'>)@i &
5 not (Ex #r. RevLtk(peer)@r & #r < #i) &
6 not (Ex tid3 x #r. RevDHExp(tid3, peer, x)@r & #r < #i) &
7 not (Ex tid4 y #r. RevDHExp(tid4, actor, y)@r & #r < #i) &
8 not (Ex resumption_master_secret #r. RevealPSK(actor, resumption_master_secret)@r & #r < #i) &
9 not (Ex resumption_master_secret #r. RevealPSK(peer, resumption_master_secret)@r & #r < #i)
10 ==> (Ex tid2 #j. RunningNonces(tid2, peer, 'server', nonces)@j & #j < #i)"

Figure 6: entity_authentication (Section 4.2.3)

compromising cryptographic material, or the PSK directly, then the
attacker is able to resume a session and impersonate the peer.

In addition to entity authentication, we consider a transcript
agreement property, where the value agreed upon is a hash of the
session transcript. This provides us with near-full agreement. How-
ever, there are a couple of notable omissions. Firstly, the protocol
technically continues after the initial handshake, although none
of these delayed handshake messages are included in the session
transcript. Secondly, we observed that the actors do not necessar-
ily agree on the current authentication status of the handshake, a
situation we cover in more detail in Section 5.2.

Finally, we also prove an injective variant of mutual transcript
agreement, which TLS naturally achieves by agreeing on fresh
nonces. Hence, we show that TLS achieves a relatively strong au-
thentication notion: mutual agreement on a significant portion of
the state with recentness.

4.2.4 Uniqueness of the session keys. We prove in the straight-
forward way that for any two session keys generated, if they match
then they must be from the same session. This holds without any
restriction on the attacker, since it is a straightforward consequence
of the actor generating a fresh nonce for each session. We do not
prove anything about whether two session keys are related, since
this trivially follows from the assumption of perfect cryptography.

4.2.5 Downgrade protection. The specification cites the work
by Bhargavan et al. [11] for downgrade protection. This defini-
tion is not directly equivalent to any of Lowe’s classical agreement
methods; it only requires that both parties negotiate the same con-
figuration parameters that they would do without the presence of
an attacker. Specifically, we observe that agreeing on the parame-
ters (in the sense of non-injective agreement) is sufficient to achieve
this, but not necessary. Therefore, within our model we prove that

TLS achieves downgrade protection through our authentication
lemmas.

However, we note that this does not accurately capture the spirit
of downgrade protection, due to the fact that we assume all cryp-
tographic primitives are perfect and we do not model previous
versions of TLS.

4.2.6 Forward secrecy with respect to long-term keys. The PFS
property was briefly mentioned in the context of the long-term sign-
ing keys and the secrecy of session keys. However, in those cases, we
did not cover the requirement for forward secrecy with regards to
the PSK.We have an additional lemma secret_session_keys_pfs
which captures that, in either a full DHE or PSK-DHE handshake,
the secrecy of the session keys does not depend on the PSK remain-
ing secret after the session is concluded.

To achieve this, we modify secret_session_keys as depicted
in Figure 5, by adding a condition for the key-exchange mode,
not psk_ke_mode = psk_ke, and loosening the restrictions on
the attacker such that the RevealPSK action is only forbidden for
any time point #r < #i. In proving this lemma, we show that the
session keys are forward secure after a DHE.

4.2.7 Key Compromise Impersonation (KCI) resistance. Obser-
vant readers will notice that the only restriction on compromising
long-term keys is that the peer’s LTK must not be compromised.
None of our security properties rely on the actor’s LTK being hid-
den from the attacker3. Applying this fact to the authentication
properties, therefore, additionally shows that the protocol, as given
in the draft specification, achieves KCI resistance.

3A minor exception to this is that the attacker cannot use the actor’s long-term key to
impersonate the actor to themselves since in this case, the actor is also the peer.

4.3 Parameter Negotiation
The security of a TLS session critically depends on the integrity
of the parameters negotiated during the corresponding TLS hand-
shakes, in the initial and subsequent connections in the session. In
TLS these parameters include the protocol version, the cipher suite,
and the signature algorithm. Depending on the negotiated protocol
version, additional values may or must be negotiated, such as the
handshake mode, the DH group, and/or the PSK to be used.

For DH group negotiation, we model the client sending a list
of two symbolic groups that the server can choose between. This
feature allows us to provide a limited coverage of the HelloRetryRe-
quest functionality of the protocol, which we address in more detail
in Section 3.4. We also provide support for PSKs but limit the num-
ber of PSKs offered to one per handshake.

By using Tamarin, we prove that the client and the server agree
on the transcript of the protocol, and thus on the values selected
during negotiation. This means that an attacker cannot force the
client or the server to accept a value that they did not initially offer.

There are two main classes of parameter negotiation attacks:
forcing the use of bad cipher suites [1, 16] or bad signature al-
gorithms [9], and forcing the use of older and insecure versions
of SSL/TLS [5, 44]. Because we model perfect cryptography and
cover TLS 1.3 only, we consider these attacks to be out of scope (cf.
Section 4.2.5).

5 ANALYSIS AND RESULTS
In this section we provide a detailed description of our analysis,
including a discussion of our results and an exploration of an au-
thentication anomaly uncovered by our work.

In general we find that TLS 1.3 meets the properties outlined in
the specification that our modelling process was able to capture. We
show that TLS 1.3 enables a client and a server to agree on secret
session keys and that these session keys are unique across, as well
as within, handshake instances. Our analysis shows that PFS of
session keys holds in the expected situations, i.e., in the (EC)DHE
and PSK+(EC)DHE handshake modes. We also show that TLS 1.3,
by and large, provides the desired authentication guarantees in
both the unilateral and mutual authentication cases. The situation
in which this is not the case is covered in the section to follow.

We remind the reader that our model does not truly cover down-
grade protection, or the protection of endpoint identities at this
time. A treatment of downgrade protection across TLS protocol
versions would require modelling the earlier versions of TLS in a
way that is consistent with the TLS 1.3 model as developed here. To
consider the downgrade protection of cipher suites, we would need
to relax our current assumption of perfect cryptography through
rules that, for instance, allow for an attacker to learn the payload of
a particular kind of encrypted messages without knowing the key.
In spite of the fact that these additional considerations would sub-
stantially complicate the model and the proof process, our model
is perfectly suited to their inclusion and could form the basis of
future work.

5.1 Positive results
We now present our results for TLS 1.3, commenting on our proof
methods and findings.

5.1.1 Proof strategies. For models as complex as TLS 1.3, prov-
ing lemmas in Tamarin is a multi-stage process, and proving com-
plex lemmas directly is often infeasible. For protocol models of this
size the proof trees can become very large. Tamarin provides a
number of features that allow complex proofs to be broken down
into more manageable sections. Writing sublemmas provides hints
to the Tamarin constraint solving algorithm, allowing it to solve
complex sections of a larger proof directly, making the overall proof
more manageable. For the TLS 1.3 model, we used several types
of lemmas. Helper lemmas can be used to quickly solve repetitive
sections of a larger proof without repeatedly unrolling the entire
subtree. Typing lemmas provide hints to the Tamarin engine about
the potential sources of messages, reducing the branching of a
proof tree. Inductive lemmas instruct Tamarin to prove the lem-
mas inductively, allowing us to break out of loops in the protocol,
which otherwise can produce infinite proof trees. Proving the main
properties of TLS 1.3 required many helper lemmas, of all of these
types.

The Tamarin engine can also use heuristics to auto-prove lemmas,
which proved invaluable in quickly re-proving large sections of
properties after making changes to the model. By investing time
in writing auto-provable sublemmas, we could flexibly incorporate
changes made to the specification without having to restart our
analysis from scratch.

The more complex lemmas used in our analysis of TLS 1.3, how-
ever, required manual proving in the Tamarin interactive prover.
We note that by manual proving in this context we mean manually
guiding the Tamarin prover through a proof by using the Tamarin
graphical user interface.

Using the m4 preprocessor to generate restricted subsets of the
model we were able to prototype lemmas in a simpler environment
without expending unnecessary effort. To give an indication of the
number of helper lemmas required, and the relationship between
all of our lemmas, we have constructed a ‘lemma map’, displayed in
Figure 7. The map also indicates which lemmas were auto-proved
by Tamarin, and which ones needed manual guidance for Tamarin
to prove them.

In total, the modelling effort represents approximately 3 months
worth of work. However, the vast majority of that is the process
of writing lemmas to break down the overall proving effort into
smaller, autoprovable chunks. With these lemmas in place, proving
the entire model takes about a week of work, and significant com-
puting resources. The model itself takes over 10GB RAM just to
load, and can easily consume 100GB RAM in the course of a proof.
In one instance, an automatically-computed proof was almost 1
million lines long. Once the proofs have been produced, they can
be verified in the space of about a day, although still requiring a
vast amount of RAM.

5.1.2 Findings. We summarise our results in Table 1. For each
property discussed in Sections 2 and 4, we indicate our findings. We
use ∗ to indicate that the property holds in most situations. Cases
in which the property does not hold to the expected degree, are
covered in sections to follow. We also list the applicable Tamarin
lemma(s).

uniqueness
one_s_per_tid

*s in {ALL STATES}

S1_vs_S1_PSK_DHE

S1_PSK_vs_S1_PSK_DHE

S1_PSK_vs_S1

C1_vs_C1_PSK_DHE

C1_PSK_vs_C1

C1_PSK_vs_C1_PSK_DHE

s_vs_s_cert

*s in {C3,S3}

s_vs_s_PSK

*s in {C2a,S2a,C2d,S2d}

DH_chal
dh_chal_dual

DH_injectivity
dh_exp_invariant(i)

one_dh_per_x

rev_dh_ordering(i)

rev_dh_before_hs

invariants
tid_invariant(i)

one_start_per_tid(i)

cert_req_origin(t)

nst_source(t)

secret_helpers
ku_extract(i)

ku_expand(i)

ku_hs

ku_ltk

ku_fresh_psk

hsms_derive

posths_rms_weak(i)

posths_rms(i)

matching_transcripts_posths

matching_rms_posths

matching_rms_actors

sig_origin

invariant_post_hs

matching_sessions(i)

auth_psk

matching_hsms

post_master_secret

invariant_post_hs(i)

handshake_secret(i)

handshake_secret_pfs(i)

auth_helpers
matching_nonces

consistent_nonces

invariant_nonces

matching_rms_nonces

Properties
secret_session_keys

secret_session_keys_pfs

unique_session_keys

session_key_agreement

entity_authentication(i)

transcript_agreement

mut_entity_authentication(i)

mut_transcript_agreement

injective_mut_entity_auth

Figure 7: LemmaMap. Bold lemma names with a purple background indicate wheremanual interaction via the Tamarin visual
interface was required. The remaining lemmas were automatically proven by Tamarin, without manual interaction. An arrow
from one category to another implies that the proof of the latter depends on the former. The Properties box contains themain
TLS 1.3 properties.

Property proven Lemma(s)
(1) Same session keys session_key_agreement

(2) Secret session keys secret_session_keys

(3) Peer authentication∗ entity_authentication
mutual_entity_authentication

(4) Unique session keys unique_session_keys

(6) Perfect forward secrecy secret_session_keys_pfs

(7) Key compromise
impersonation

entity_authentication
mutual_entity_authentication

Table 1: TLS 1.3 Tamarin results

5.2 Possible mismatch between client and
server view

During the development of our model, and in particular the analysis
of the post-handshake client authentication, we encountered a
possible behaviour that suggested that TLS 1.3 fails to meet certain
strong authentication guarantees.

While there are many definitions of authentication, the common
thread among strong authentication guarantees is that both parties

share a common view of the session, i.e. that they agree on ex-
changed data, keys, etc. During our analysis of the post-handshake
client authentication, it became apparent that the client does not
receive any explicit confirmation that the server has successfully
received the client’s response. Due to the asynchronous nature of
the post-handshake client authentication, the client may keep re-
ceiving data from the server, and will not be able to determine if the
server has received its authentication message. As a consequence,
the client cannot be sure whether the server sent the data under
the assumption that the client is authenticated.

We formally modelled this property by adding a variable to
the client and the server that records the current status of the
connection, and in particular, if the connection is unilaterally or
mutually authenticated. We discovered that even when the server
asks for a post-handshake client authentication, and the client
responds, the client cannot be sure that the server considers the
channel to be mutually authenticated.

In concurrent work by Bhargavan et al. [10], a similar issue was
uncovered for the 0.5-round trip time (RTT) case. A discussion with
the TLS 1.3 working group revealed that an equivalent problem also
exists within the main handshake. During the main handshake, the

server can request a client certificate, and may decide to reject the
certificate (for example because it violates certain domain-specific
policies), but still continue with the connection as if the certificate
were accepted. Therefore, the client cannot be sure (after what ap-
pears to be a main handshake with mutual authentication) that the
server considers the client to be authenticated. Thus, this phenom-
enon leaves the client in the dark about whether or not the server
considers it to be authenticated, even though the server asked for a
certificate and the client supplied it.

To see why this may become a problem at the application level,
consider the following application. Imagine a client and a server
that implement TLS 1.3, where the server has the following policy:
any data received over a mutually authenticated connection are
stored in a secure database; all data received over connectionswhere
the client is not authenticated are stored in an insecure log. The
client connects, the server requests a certificate, which the client
duly provides, but the server rejects and continues regardless. Since
the server rejected the certificate, it continues to store incoming
messages in the insecure log. However, the client may assume it has
been authenticated, and start sending sensitive data, which ends
up in the insecure log.

The TLS working group has decided not to fix this behaviour
for TLS 1.3, and has not introduced any mechanism that informs
the client of the server’s view of the client’s authentication status.
If a client wants to be sure that the server considers it to be au-
thenticated, this needs to be dealt with at the application layer. We
anticipate that some client applications will incorrectly assume that
sending a client certificate and obtaining further server messages
indeed guarantees that the server considers the connection to be
mutually authenticated. As we have shown, this is not the case in
general, and may lead to serious security issues despite there being
no direct violation of the specified TLS 1.3 security requirements.

6 THE RELATION BETWEEN OUR MODEL
AND THE TLS 1.3 SPECIFICATION

While there have been many academic analyses of various drafts
of TLS 1.3 [4, 10, 22, 24, 25, 28, 30, 33, 35, 38], they all (explicitly or
implicitly) consider only part of the specification. Most analyses,
even those that claim to be “complete” do not consider all possible
modes, and many manual cryptographic analyses consider modes
only in isolation (and not their interaction). This is caused by the
inherent complexity of analysing TLS 1.3 and is not a problem in
itself; rather, it justifies the need for multiple approaches.

However, we are of the opinion that readers, regardless of whether
or not they are experts in the field, should be able to easily deduce
the exact coverage of a given analysis. To ensure this, we provide
an unprecedented level of transparency concerning the relation-
ship between our model and the RFC (the draft specification) by
creating a website [21] that contains an annotated version of the
RFC. Consider the following excerpt:

In the above excerpt, the left-hand side is a direct copy from the
RFC, and the right-hand side contains our annotations. For example,
they show how the concrete data structures of TLS 1.3 are mapped
into abstract term structures. Additionally, we annotate the prose,
describing the possible behaviours so as to indicate which Tamarin

rules model them. The annotations also show exactly which details
we do not model (and often list the reasons why).

We used these annotations ourselves during the development
of our model to keep track of the parts of the specification that
we had already modelled, and how we modelled them, which also
simplified the task of keeping track of updates to the specification,
something which proved incredibly useful given the rapid pace at
which the draft specification would undergo changes.

Our annotated RFC has a number of desirable features:
• Readers can check which parts we abstracted, and how,

without having to reinvent themapping between the Tamarin
model and the RFC themselves. In other words, one can
read through our website to see what is covered, and how
it is covered, without having to understand Tamarin’s for-
malism.

• If the specification is updated or changed, we can immedi-
ately track where the model should be changed.

We encourage other analyses of TLS 1.3 to follow a similar trans-
parent approach, which would help the community to better un-
derstand which details from the specification might still need to
be covered. We envision this will enable a faster convergence of
confidence in all the details of the standard.

7 CONCLUSIONS
In this work we modelled the current draft of the TLS 1.3 specifica-
tion within the symbolic analysis framework of the Tamarin prover,
and used the tool to verify the majority of the security guarantees
that TLS 1.3 claims to offer its users.

We focus on ruling out complex interaction attacks by consid-
ering an unbounded number of concurrent connections, and all of
the TLS 1.3 handshake modes. We cover both unilateral and mutual
authentication, as well as session key secrecy in all of the TLS 1.3
handshake modes with respect to a Dolev-Yao attacker. We also
capture more advanced security properties such as perfect forward
secrecy and key compromise impersonation. Our Tamarin model
covers substantially more interactions than previous analyses due
to its modularity.

Besides verifying that draft 21 of the TLS 1.3 specification meets
the claimed security properties in most of the handshake modes and
variants, we also discover an unexpected authentication behaviour
which may have serious security implications for implementations
of TLS 1.3. This unexpected behaviour, at a high level, implies
that TLS 1.3 provides no direct means for a client to determine its
authentication status from the perspective of a given server. As a
server may treat authenticated data differently to unauthenticated
data, the client may end up in position in which its sensitive data
gets processed as non-sensitive data by the server.

During the course of our analysis we also developed a line-by-
line modelling aide that accurately captured which parts of the
specification we were able to model, and which parts were ab-
stracted. This artifact allows us to easily assess the faithfulness and
coverage of our model, and also makes our model highly amenable
to all kinds of extensions, especially with respect to the security
properties and threat model. We expect that this artifact may serve
as a comprehensive informational aide to academic researchers and
well as the TLS Working Group.

Certificate Verify

This message is used to provide explicit proof that an endpoint possesses the
private key corresponding to its certificate and also provides integrity for
the handshake up to this point. Servers MUST send this message when
authenticating via a certificate. Clients MUST send this message whenever
authenticating via a Certificate (i.e., when the Certificate message is
non-empty). When sent, this message MUST appear immediately after the
Certificate message and immediately prior to the Finished message.

Structure of this message:

%%% Authentication Messages

struct {
SignatureScheme algorithm;
opaque signature<0..2^16-1>;

} CertificateVerify;
The algorithm field specifies the signature algorithm used (see
Section 4.2.3 for the definition of this field). The signature is a
digital signature using that algorithm. The content that is covered
under the signature is the hash output as described in Section 4.4,
namely:

Transcript-Hash(Handshake Context, Certificate)
---snip---

We compute the (server) signature as:

messages = <messages, Certificate>
signature = compute_signature(~ltkS, server)
where compute_signature expands to:

sign{<'TLS13_server_CertificateVerify', h(messages)>}
Since messages contains the handshake transcript up until that point, this is
valid for Handshake Context. We do not attempt to add the padding prefix
specified in the specification since it would have no purpose given our
assumption of perfect crypto.

The CertificateVerify message is simply defined as:

define(<!CertificateVerify!>, <!handshake_record('15', $sig_alg, signature)!>)
We do not currently model using different signing algorithms or their effects
on security.

The peer validates the CertificateVerify message by recomputing the signature
input, and enforcing the action Eq(verify(signature, sig_messages, pk(~ltkS)),
true) which makes the trace invalid if the verification fails (implying the
peer terminates the connection if receiving an invalid signature).

Note that an alternative way to model this in Tamarin would be to provide the
peer with the long-term key ~ltkA and pattern match the signature as an
expected message. While this can (probably) be shown to be equivalent and is
potentially more efficient for Tamarin, we believe using explicit verification
is clearer.

Figure 8: An excerpt of our website, showing how we annotated the specification. The full version can be found at [21].

ACKNOWLEDGMENTS
This work was supported by the Engineering and Physical Sciences
Research Council, grant number EP/K035584/1, the European Re-
search Council, grant number 610150, and the Air Force Office of
Scientific Research, grant number FA9550-17-1-0206.

REFERENCES
[1] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry,

Matthew Green, J. Alex Halderman, Nadia Heninger, Drew Springall, Emmanuel
Thomé, Luke Valenta, Benjamin VanderSloot, Eric Wustrow, Santiago Zanella-
Béguelin, and Paul Zimmermann. 2015. Imperfect Forward Secrecy: How Diffie-
Hellman Fails in Practice. (2015), 13 pages. https://doi.org/10.1145/2810103.
2813707

[2] Nadhem J. AlFardan and Kenneth G. Paterson. 2012. Plaintext-Recovery Attacks
Against Datagram TLS. In 19th Annual Network and Distributed System Security
Symposium, NDSS 2012, San Diego, California, USA, February 5-8, 2012. http:
//www.internetsociety.org/plain-text-recovery-attacks-against-datagram-tls

[3] Nadhem J. AlFardan and Kenneth G. Paterson. 2013. Lucky Thirteen: Breaking
the TLS and DTLS Record Protocols. In 2013 IEEE Symposium on Security and
Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013. 526–540. http://dx.doi.org/
10.1109/SP.2013.42

[4] Kenichi Arai and Shin’ichiro Matsuo. 2016. Formal Verification of TLS 1.3 Full
Handshake Protocol Using ProVerif. TLS mailing list post. (February 2016).
https://www.ietf.org/mail-archive/web/tls/current/msg19339.html

[5] Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky, Nadia Heninger, Maik
Dankel, Jens Steube, Luke Valenta, David Adrian, J. Alex Halderman, Viktor
Dukhovni, Emilia Käsper, Shaanan Cohney, Susanne Engels, Christof Paar, and
Yuval Shavitt. 2016. DROWN: Breaking TLS with SSLv2. In 5th USENIX Security
Symposium. 689–706.

[6] Gregory V. Bard. 2004. The Vulnerability of SSL to Chosen Plaintext Attack.
IACR Cryptology ePrint Archive 2004 (2004), 111. http://eprint.iacr.org/2004/111

[7] Gregory V. Bard. 2006. A Challenging but Feasible Blockwise-Adaptive Chosen-
Plaintext Attack on SSL. In SECRYPT 2006, Proceedings of the International Confer-
ence on Security and Cryptography, Setúbal, Portugal, August 7-10, 2006, SECRYPT
is part of ICETE - The International Joint Conference on e-Business and Telecom-
munications. 99–109.

[8] Mihir Bellare and Phillip Rogaway. 1993. Entity authentication and key distribu-
tion. In Annual International Cryptology Conference. Springer, 232–249.

[9] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric
Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves Strub, and Jean Karim
Zinzindohoue. 2015. A Messy State of the Union: Taming the Composite State
Machines of TLS. In 2015 IEEE Symposium on Security and Privacy, SP 2015, San
Jose, CA, USA, May 17-21, 2015. 535–552. http://dx.doi.org/10.1109/SP.2015.39

[10] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. 2017. Verified Mod-
els and Reference Implementations for the TLS 1.3 Standard Candidate. Technical
Report. INRIA.

[11] Karthikeyan Bhargavan, Christina Brzuska, Cédric Fournet, Matthew Green,
Markulf Kohlweiss, and Santiago Zanella-Béguelin. 2016. Downgrade resilience
in key-exchange protocols. In Security and Privacy (SP), 2016 IEEE Symposium on.
IEEE, 506–525.

[12] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Markulf
Kohlweiss, Jianyang Pan, Jonathan Protzenko, Aseem Rastogi, Nikhil Swamy,
Santiago Zanella-Béguelin, and Jean Karim Zinzindohoué. 2016. Implementing
and Proving the TLS 1.3 Record Layer. Technical Report. INRIA. http://eprint.iacr.
org/2016/1178.

[13] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Alfredo
Pironti, and Pierre-Yves Strub. 2014. Triple Handshakes and Cookie Cut-
ters: Breaking and Fixing Authentication over TLS. In 2014 IEEE Symposium
on Security and Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014. 98–113.
http://dx.doi.org/10.1109/SP.2014.14

[14] K. Bhargavan, N. Kobeissi, and B. Blanchet. 2016. ProScript TLS: Building a TLS
1.3 Implementation with a Verifiable Protocol Model. (2016). Presented at TRON
1.0, San Diego, CA, USA, February 21.

[15] Karthikeyan Bhargavan and Gaëtan Leurent. 2016. On the Practical (In-)Security
of 64-bit Block Ciphers: Collision Attacks on HTTP over TLS and OpenVPN. In
Proceedings of the 2016 ACM SIGSACConference on Computer and Communications
Security (CCS ’16). ACM, New York, NY, USA, 456–467. https://doi.org/10.1145/
2976749.2978423

[16] Karthikeyan Bhargavan and Gaëtan Leurent. 2016. Transcript collision attacks:
Breaking authentication in TLS, IKE, and SSH. In Network and Distributed System
Security Symposium–NDSS 2016.

[17] Bruno Blanchet, Ben Smyth, Vincent Cheval, and Marc Sylvestre. 2016. Proverif
1.96: Automatic Cryptographic Protocol Verifier, User Manual and Tutorial List
of Figures. (2016). http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
manual.pdf

[18] Daniel Bleichenbacher. 1998. Chosen Ciphertext Attacks Against Protocols Based
on the RSA Encryption Standard PKCS #1. In Advances in Cryptology - CRYPTO
’98, 18th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 23-27, 1998, Proceedings. 1–12. http://dx.doi.org/10.1007/BFb0055716

[19] Ran Canetti and Hugo Krawczyk. 2001. Analysis of Key-Exchange Protocols and
Their Use for Building Secure Channels. In Advances in Cryptology - EUROCRYPT
2001, International Conference on the Theory and Application of Cryptographic
Techniques, Innsbruck, Austria, May 6-10, 2001, Proceeding. 453–474. http://dx.doi.
org/10.1007/3-540-44987-6_28

[20] Brice Canvel, Alain P. Hiltgen, Serge Vaudenay, andMartin Vuagnoux. 2003. Pass-
word Interception in a SSL/TLS Channel. In Advances in Cryptology - CRYPTO
2003, 23rd Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 17-21, 2003, Proceedings. 583–599. http://dx.doi.org/10.1007/
978-3-540-45146-4_34

[21] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla van der
Merwe. 2017. Source files and annotated RFC for TLS 1.3 analysis. (2017).
https://tls13tamarin.github.io/TLS13Tamarin/.

[22] Cas Cremers, Marko Horvat, Sam Scott, and Thyla van der Merwe. 2016. Au-
tomated analysis and verification of TLS 1.3: 0-RTT, resumption and delayed
authentication. In Security and Privacy (SP), 2016 IEEE Symposium on. IEEE,

https://doi.org/10.1145/2810103.2813707
https://doi.org/10.1145/2810103.2813707
http://www.internetsociety.org/plain-text-recovery-attacks-against-datagram-tls
http://www.internetsociety.org/plain-text-recovery-attacks-against-datagram-tls
http://dx.doi.org/10.1109/SP.2013.42
http://dx.doi.org/10.1109/SP.2013.42
https://www.ietf.org/mail-archive/web/tls/current/msg19339.html
http://eprint.iacr.org/2004/111
http://dx.doi.org/10.1109/SP.2015.39
http://eprint.iacr.org/2016/1178
http://eprint.iacr.org/2016/1178
http://dx.doi.org/10.1109/SP.2014.14
https://doi.org/10.1145/2976749.2978423
https://doi.org/10.1145/2976749.2978423
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf
http://dx.doi.org/10.1007/BFb0055716
http://dx.doi.org/10.1007/3-540-44987-6_28
http://dx.doi.org/10.1007/3-540-44987-6_28
http://dx.doi.org/10.1007/978-3-540-45146-4_34
http://dx.doi.org/10.1007/978-3-540-45146-4_34
https://tls13tamarin.github.io/TLS13Tamarin/

470–485.
[23] Danny Dolev and Andrew Yao. 1983. On the security of public key protocols.

IEEE Transactions on information theory 29, 2 (1983), 198–208.
[24] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. 2015.

A Cryptographic Analysis of the TLS 1.3 Handshake Protocol Candidates.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Com-
munications Security, Denver, CO, USA, October 12-6, 2015. 1197–1210. http:
//doi.acm.org/10.1145/2810103.2813653

[25] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. 2016.
A Cryptographic Analysis of the TLS 1.3 draft-10 Full and Pre-shared Key
Handshake Protocol. Cryptology ePrint Archive, Report 2016/081. (2016).
http://eprint.iacr.org/.

[26] Thai Duong and Juliano Rizzo. 2011. Here Come the ⊕ Ninjas. Unpublished
manuscript. (May 2011).

[27] Thai Duong and Juliano Rizzo. 2012. The CRIME Attack. Ekoparty Security
Conference presentation. (2012).

[28] Marc Fischlin, Felix Günther, Benedikt Schmidt, and Bogdan Warinschi. 2016.
Key Confirmation in Key Exchange: A Formal Treatment and Implications for
TLS 1.3. In 2016 IEEE Symposium on Security and Privacy, SP 2016, San Jose, CA,
USA, May 23-25, 2016.

[29] Christina Garman, Kenneth G Paterson, and Thyla Van der Merwe. 2015. Attacks
Only Get Better: Password Recovery Attacks Against RC4 in TLS.. In USENIX
Security. 113–128.

[30] Marko Horvat. 2016. Formal Analysis of Modern Security Protocols in Current
Standards. Ph.D. Dissertation. University of Oxford.

[31] Tibor Jager, Jörg Schwenk, and Juraj Somorovsky. 2015. On the Security of TLS
1.3 and QUIC Against Weaknesses in PKCS#1 v1.5 Encryption. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security,
Denver, CO, USA, October 12-6, 2015. 1185–1196. http://doi.acm.org/10.1145/
2810103.2813657

[32] Vlastimil Klíma, Ondrej Pokorný, and Tomás Rosa. 2003. Attacking RSA-Based
Sessions in SSL/TLS. In Cryptographic Hardware and Embedded Systems - CHES
2003, 5th International Workshop, Cologne, Germany, September 8-10, 2003, Pro-
ceedings. 426–440. http://dx.doi.org/10.1007/978-3-540-45238-6_33

[33] Markulf Kohlweiss, Ueli Maurer, Cristina Onete, Björn Tackmann, and Daniele
Venturi. 2014. (De-)Constructing TLS. IACR Cryptology ePrint Archive 2014
(2014), 20. http://eprint.iacr.org/2014/020

[34] Hugo Krawczyk. 2010. Cryptographic Extraction and Key Derivation: The HKDF
Scheme. In Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings. 631–648.
http://dx.doi.org/10.1007/978-3-642-14623-7_34

[35] Hugo Krawczyk and Hoeteck Wee. 2015. The OPTLS Protocol and TLS 1.3. IACR
Cryptology ePrint Archive 2015 (2015), 978. http://eprint.iacr.org/2015/978

[36] Brian A. LaMacchia, Kristin E. Lauter, and Anton Mityagin. 2007. Stronger
Security of Authenticated Key Exchange. In Provable Security, First International
Conference, ProvSec 2007, Wollongong, Australia, November 1-2, 2007, Proceedings.
1–16. http://dx.doi.org/10.1007/978-3-540-75670-5_1

[37] A. Langley and W. Chang. 2013. QUIC Crypto. (June 2013). Avail-
able at https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_
L2f5LTaDUDwvZ5L6g/.

[38] Yong Li, Sven Schäge, Zheng Yang, Florian Kohlar, and Jörg Schwenk. 2014. On
the Security of the Pre-shared Key Ciphersuites of TLS. In Public-Key Cryp-
tography - PKC 2014 - 17th International Conference on Practice and Theory in
Public-Key Cryptography, Buenos Aires, Argentina, March 26-28, 2014. Proceedings.
669–684. http://dx.doi.org/10.1007/978-3-642-54631-0_38

[39] Gavin Lowe. 1997. A Hierarchy of Authentication Specifications. In Proceedings
of the 10th IEEE Workshop on Computer Security Foundations (CSFW ’97). IEEE
Computer Society, Washington, DC, USA, 31–. http://dl.acm.org/citation.cfm?
id=794197.795075

[40] ColmMacCárthaigh. 2017. Security review of TLS1.3 0-RTT. TLSmailing list post.
(May 2017). https://www.ietf.org/mail-archive/web/tls/current/msg23051.html
Available at https://www.ietf.org/mail-archive/web/tls/current/msg23051.html.

[41] Itsik Mantin. 2015. Attacking SSL when using RC4. White Paper. (March 2015).
https://www.imperva.com/docs/HII_Attacking_SSL_when_using_RC4.pdf

[42] Nikos Mavrogiannopoulos, Frederik Vercauteren, Vesselin Velichkov, and Bart
Preneel. 2012. A cross-protocol attack on the TLS protocol. In the ACMConference
on Computer and Communications Security, CCS’12, Raleigh, NC, USA, October
16-18, 2012. 62–72. http://doi.acm.org/10.1145/2382196.2382206

[43] Bodo Moeller. 2004. Security of CBC Ciphersuites in SSL/TLS: Problems and
Countermeasures. Unpublished manuscript. (May 2004). http://www.openssl.
org/~bodo/tls-cbc.txt.

[44] Bodo Möller, Thai Duong, and Krzysztof Kotowicz. 2014. This POODLE bites:
Exploiting The SSL 3.0 Fallback. Security Advisory. (September 2014). https:
//www.openssl.org/~bodo/ssl-poodle.pdf

[45] Kenneth G. Paterson and Thyla van der Merwe. 2016. Reactive and Proactive
Standardisation of TLS. In Security Standardisation Research - Third International
Conference, SSR 2016, Gaithersburg, MD, USA, December 5-6, 2016, Proceedings.
160–186.

[46] E. Rescorla. 2015. The Transport Layer Security (TLS) Protocol Version 1.3 (draft,
revision 10). (October 2015). https://tools.ietf.org/html/draft-ietf-tls-tls13-10
Available at https://tools.ietf.org/html/draft-ietf-tls-tls13-10.

[47] Eric Rescorla and Brian Korver. 2003. Guidelines for writing RFC text on security
considerations. RFC 3552 (Informational). (July 2003). https://tools.ietf.org/html/
rfc3552

[48] Benedikt Schmidt, Simon Meier, Cas Cremers, and David Basin. 2012. Automated
Analysis of Diffie-Hellman Protocols and Advanced Security Properties. In 25th
IEEE Computer Security Foundations Symposium, CSF 2012, Cambridge, MA, USA,
June 25-27, 2012, Stephen Chong (Ed.). IEEE, 78–94.

[49] Serge Vaudenay. 2002. Security Flaws Induced by CBC Padding - Applica-
tions to SSL, IPSEC, WTLS In Advances in Cryptology - EUROCRYPT 2002,
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Amsterdam, The Netherlands, April 28 - May 2, 2002, Proceedings. 534–546.
http://dx.doi.org/10.1007/3-540-46035-7_35

http://doi.acm.org/10.1145/2810103.2813653
http://doi.acm.org/10.1145/2810103.2813653
http://eprint.iacr.org/
http://doi.acm.org/10.1145/2810103.2813657
http://doi.acm.org/10.1145/2810103.2813657
http://dx.doi.org/10.1007/978-3-540-45238-6_33
http://eprint.iacr.org/2014/020
http://dx.doi.org/10.1007/978-3-642-14623-7_34
http://eprint.iacr.org/2015/978
http://dx.doi.org/10.1007/978-3-540-75670-5_1
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/
http://dx.doi.org/10.1007/978-3-642-54631-0_38
http://dl.acm.org/citation.cfm?id=794197.795075
http://dl.acm.org/citation.cfm?id=794197.795075
https://www.ietf.org/mail-archive/web/tls/current/msg23051.html
https://www.ietf.org/mail-archive/web/tls/current/msg23051.html
https://www.imperva.com/docs/HII_Attacking_SSL_when_using_RC4.pdf
http://doi.acm.org/10.1145/2382196.2382206
http://www.openssl.org/~bodo/tls-cbc.txt
http://www.openssl.org/~bodo/tls-cbc.txt
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://tools.ietf.org/html/draft-ietf-tls-tls13-10
https://tools.ietf.org/html/draft-ietf-tls-tls13-10
https://tools.ietf.org/html/rfc3552
https://tools.ietf.org/html/rfc3552
http://dx.doi.org/10.1007/3-540-46035-7_35

C0start

C1

C2a

C2b

C2c

C2d

C3

C4

S0start

S1

S2a

S2b

S2c

S2d

S3

S4

ClientPSK ServerPSK

S4C4

C4 S4

C4 S4

S4C4

C4 S4

S4

recv hello retry request

client gen keys

recv encrypted extensions

recv certificate request OR

skip recv certificate request

client auth OR

client auth certcert req ctxt 6= ‘0’

cert req ctxt = ‘0’

hello retry request

server gen keys

encrypted extensions

certificate request OR

skip certificate request

cert req ctxt 6= ‘0’

recv client auth OR

recv client auth cert

cert req ctxt = ‘0’

ClientHello

+Extensions

ServerHello

+Extensions

EncryptedExtensions

CertificateRequest

Certificate
CertificateVerify

Finished

Certificate
CertificateVerify

Finished

Finished

recv new session ticket new session ticket
NewSessionTicket

client hello OR

client hello psk

recv client hello OR

recv client hello psk

server hello OR

server hello psk OR

server hello psk dhe

ke mode =

〈 ‘psk dhe ke’, ‘psk ke’ 〉
recv server hello OR

recv server hello psk OR

recv server hello psk dhe
ke mode =

〈 ‘psk dhe ke’, ‘psk ke’ 〉

recv server auth OR

recv server auth pskauth mode = ‘psk auth’

auth mode ∈
{‘psk sign auth’, ‘0’} server auth OR

server auth psk

auth mode = ‘psk auth’

Finished

certificate request postrecv certificate request post
CertificateRequest

client auth post recv client auth post

Certificate
CertificateVerify

Finished

update req serverupdate recv client
KeyUpdate

update fin server

KeyUpdate

Figure 9: Part 1 of the full state diagram for Tamarin model, showing all rules covered in the initial handshake (excluding
rules dealing with record layer).

C0start

C1

C2a

C2b

C2c

C2d

C3

C4

S0start

S1

S2a

S2b

S2c

S2d

S3

S4

ClientPSK ServerPSK

S4C4

C4 S4

C4 S4

S4C4

C4 S4

S4C4

C4 S4

S4C4

C4

recv hello retry request

client gen keys

recv encrypted extensions

recv certificate request OR

skip recv certificate request

client auth OR

client auth certcert req ctxt 6= ‘0’

cert req ctxt = ‘0’

hello retry request

server gen keys

encrypted extensions

certificate request OR

skip certificate request

cert req ctxt 6= ‘0’

recv client auth OR

recv client auth cert

cert req ctxt = ‘0’

ClientHello

+Extensions

ServerHello

+Extensions

EncryptedExtensions

CertificateRequest

Certificate
CertificateVerify

Finished

Certificate
CertificateVerify

Finished

Finished

recv new session ticket new session ticket
NewSessionTicket

client hello OR

client hello psk

recv client hello OR

recv client hello psk

server hello OR

server hello psk OR

server hello psk dhe

ke mode =

〈 ‘psk dhe ke’, ‘psk ke’ 〉
recv server hello OR

recv server hello psk OR

recv server hello psk dhe
ke mode =

〈 ‘psk dhe ke’, ‘psk ke’ 〉

recv server auth OR

recv server auth pskauth mode = ‘psk auth’

auth mode ∈
{‘psk sign auth’, ‘0’} server auth OR

server auth psk

auth mode = ‘psk auth’

Finished

certificate request postrecv certificate request post
CertificateRequest

client auth post recv client auth post

Certificate
CertificateVerify

Finished

update req serverupdate recv client
KeyUpdate

update fin server

KeyUpdate

update req client update recv server
KeyUpdate

update fin client

KeyUpdate

Figure 10: Part 2 of the full state diagram for Tamarin model, showing all post-handshake rules covered.

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Related work
	1.3 Paper organisation

	2 TLS 1.3
	2.1 New mechanisms
	2.2 Stated goals and security properties

	3 Modelling the protocol
	3.1 The Tamarin prover
	3.2 A comprehensive model
	3.3 Closely modelling the specification
	3.4 Advanced features

	4 Encoding the threat model and the security properties
	4.1 Threat Model
	4.2 Security properties
	4.3 Parameter Negotiation

	5 Analysis and Results
	5.1 Positive results
	5.2 Possible mismatch between client and server view

	6 The relation between our model and the TLS 1.3 specification
	7 Conclusions
	Acknowledgments
	References

