
18-330 Cryptography Notes: Symmetric Encryption

Note: This is provided as a resource and is not meant to include all material from lectures or recitations.

The proofs shown, however, are good models for your homework and exams.

1 IND-CPA Security (Semantic Security)

1.1 IND-CPA Adversarial Game

Definition 1. Let E = (KeyGen,E,D) be defined over (K,M, C). The IND-CPA game is defined as follows:

1. The experiment takes as input bit b ∈ {0, 1}, chosen uniformly at random.

2. The Challenger runs k ← KeyGen(λ) for security parameter λ.

3. The Adversary runs some logic to select any two messages m0,m1 ∈ M, where |m0| = |m1|. It then

sends (m0,m1) to the Challenger.

4. The Challenger replies to the Adversary with E(k,mb).

5. Repeat steps 3 through 4 some poly(log|K|) number of times.

6. The Adversary runs some logic to output b′, which is the output of the experiment.

Note that k and b remain fixed for the duration of the experiment, so the challenger always encrypts the

first message from the adversary (if b = 0) or always encrypts the second message (if b = 1).

1.2 Semantic Security Advantage

Definition 2. Let E be an encryption scheme, and let A be an adversary. We define A’s semantic security

advantage as:

AdvSS [A, E] := Pr[Exp(1) = 1]− Pr[Exp(0) = 1]

1.3 Semantic Security

In class, we define semantic security as follows:

Definition 3. An encryption algorithm E is semantically secure if for all efficient adversaries A:

AdvSS [A, E] < ε ≤ negl(log |K|)

Note that the textbook has different name for our notion of semantic security. The book calls it CPA security.

Intuitively, the encryption algorithm is semantically secure if the probability that any adversary wins the

IND-CPA game is no better than the probability of winning the game by simply guessing.

1

2 Stateful Counter Mode

Counter mode allows us to construct a variable-length IND-CPA secure encryption scheme from a secure

PRF F .

Definition 4. Let F be a secure PRF. Then we define counter mode:

• Encryption

Algorithm 1: Encryption Algorithm Ek(M)

1 M [1]...M [m]←M

2 C[0]← ctr

3 for i = 1, ...,m do

4 P [i]← FK(ctr + i)

5 C[i]← P [i]⊕M [i]

6 end

7 ctr ← ctr +m

8 return C

• Decryption

Algorithm 2: Decryption Algorithm Dk(M)

1 C[0]...C[m]← C

2 ctr ← C[0]

3 for i = 1, ...,m do

4 P [i]← FK(ctr + i)

5 M [i]← P [i]⊕ C[i]

6 end

7 return M

2.1 Proof of Semantic Security

We prove that counter mode encryption is semantically secure via a reduction.

Proof. Let E = (KeyGen,E,D) be counter-mode encryption defined over (K,M, C), based on the secure

PRF f . Suppose for the sake of contradiction that E is not semantically secure. Then there exists an efficient

adversary AIND−CPA that wins the IND-CPA (semantic) security game with non-negligible probability.

Using AIND, we can construct an adversary APRF that can win the PRF security game with non-negligible

probability:

2

Algorithm 3: Adversary APRF

1 Select d from {0,1}
2 Call AIND

3 while AIND queries (m0,m1) do

4 Query ChallengerPRF to obtain sufficient Fk(ctr + i)’s to calculate E(md).

5 Reply to AIND with E(md)

6 end

7 Receive d′ from AIND

8 if d′ = d then

9 return 0

10 else

11 return 1

12 end

We show that APRF is an efficient adversary with non-negligible advantage.

As a first step to calculating the advantage of APRF , we argue that APRF perfectly simulates the challenger

for AIND when the PRF challenger for APRF uses a PRF (i.e., when the PRF challenger’s bit is 0, meaning

that it uses the PRF F). In this case, AIND will send a message pair (m0,m1) ∈M×M to ChallengerIND

(which is APRF). APRF will respond with E(k,md). The exchange repeats a polynomial number of times.

Then, AIND outputs a guess d′. So, this adheres to the IND-CPA game perfectly.

Based on this argument, we can calculate the first part of APRF ’s advantage, namely the probability that

APRF outputs 1 when the challenge game is run with bit 0; i.e., Pr[Exp(0) = 1] = 1.

Pr[Exp(0) = 1] = 1− Pr[AIND wins with CTR + PRF] (1)

= 1−
(

1

2
Pr[ExpAIND,E(1) = 1] +

1

2
Pr[ExpAIND,E(0) = 0]

)
(2)

= 1−
(

1

2
Pr[ExpAIND,E(1) = 1] +

1

2
(1− Pr[ExpAIND,E(0) = 1])

)
(3)

= 1−
(

1

2
(1 + Pr[ExpAIND,E(1) = 1]− Pr[ExpAIND,E(0) = 1])

)
(4)

= 1−
(

1

2
(1 +AdvIND[A, f])

)
(5)

=
1

2
− 1

2
AdvIND[A, f] (6)

Some brief justification: APRF outputs 1 (on line 11 of the algorithm) only when d′ 6= d (i.e., when AIND

guesses incorrectly about which message(s) were encrypted). The probability that this happens is simply

one minus the probability that AIND guesses correctly, which gives us line 1 above. Line 2 expands “guess

correctly” into the two possible conditions in which AIND can be correct: Either the game has bit 1 and

AIND says 1, or the game has bit 0 and AIND says 0. These two possible settings for the bit each occur

with 50% probability. Line 3 simply says that the probability that the game outputs 0 is one minus the

probability that it outputs 1 (since there are only two possible outputs). Line 4 just rearranges terms. Line

5 observes that the last two terms in Line 4 are the definition of AdvIND[A, f].

3

Next, we need to calculate the second part of APRF ’s advantage, namely the probability that APRF outputs

1 when the challenge game is run with bit 1; i.e., Pr[Exp(1) = 1] = 1:

Pr[Exp(1) = 1] = 1− Pr[AIND wins with CTR + Rand F] (7)

= 1− 1

2
(8)

=
1

2
(9)

Line 7 is justified in the same way as in the previous calculation. Line 8 is much more subtle and requires

reasoning about how CTR mode operates. In particular, note that by design CTR mode never invokes the

underlying function (whether it is a PRF or a random function) with the same input twice. Hence, when

we encrypt using a truly random function, this means that each call to encrypt chooses a uniformly random

element (call it p) from the range of F (this is the definition of a random function) and XORs it with the

message. That random element p is never used again (unless we happen to randomly select it), and hence,

we can view the scheme as exactly a one-time pad scheme (recall that a OTP randomly selects a key and

XORs it with the message). Because a OTP is perfectly secret, the output of AIND is perfectly random

with respect to the actual choice of bit d, and hence the probability that AIND wins is 1
2 .

Now we calculate the advantage of APRF and show that it is non-negligible.

AdvPRF [APRF , f] := |Pr[ExpAPRF ,f (0) = 1]− Pr[ExpAPRF ,f (1) = 1]| (10)

=

∣∣∣∣12 − 1

2
AdvIND[A, f]− 1

2

∣∣∣∣ (11)

=
1

2
AdvIND[A, f] (12)

Since AdvIND[A, f] is non-negligible, so is 1
2AdvIND[A, f]. Hence, APRF has non-negligible advantage.

Because APRF has non-negligible advantage, f cannot be a secure PRF. But this contradicts our initial

assumption that f is a secure PRF. So by contradiction, counter mode encryption, when based on a secure

PRF f , must be semantically secure.

3 PR-CPA Security

3.1 PR-CPA Adversarial Game

Definition 5. Let E = (KeyGen,E,D) defined over (K,M, C). The PR-CPA game is defined as follows:

1. The Challenger runs k ← KeyGen(λ) and samples m from M uniformly at random. Give E(k,m) to

the Adversary.

2. The Adversary runs some logic and selects a message mi from M.

3. The Challenger replies with E(k,mi).

4. Repeat steps 2 through 3 for some poly(log|K|) number of times.

5. Finally, the Adversary runs some logic to output m′ ∈M, which is the output of the experiment.

4

3.2 PR-CPA Advantage

Definition 6. Let E = (KeyGen,E,D) be defined over (K,M, C), and let A be an poly-time adversary. The

PR-CPA advantage is defined as:

AdvPR−CPA[A, E] := Pr[m = m′]

where m′ is the output of the experiment.

3.3 PR-CPA Security

Definition 7. An encryption scheme E is PR-CPA secure if for all efficient A:

AdvPR−CPA[A, E] < ε

4 IND-CPA Secure implies PR-CPA Secure

Proof. We will show that if an encryption scheme is IND-CPA (semantically) secure, then it must also be

PR-CPA secure via a proof by reduction.

Let E = (KeyGen,E,D) be an IND-CPA secure encryption scheme defined over (K,M, C). Suppose for the

sake of contradiction that E is not PR-CPA secure. Then there exists an efficient adversary APR that can

recover the plaintext with non-negligible PR advantage. Given APR, we can construct an adversary AIND

that has a non-negligible semantic security advantage. AIND is as follows:

Algorithm 4: Adversary AIND

1 Choose m0 from M and m1 from M\ {m0}.
2 Send ChallengerIND (m0,m1) and receive c.

3 Execute APR

4 Send APR the ciphertext c.

5 while APR queries x ∈M do

6 Send ChallengerIND (x, x) and receive E(k, x) = c′.

7 Reply to APR with c′.

8 end

9 m′ = output of APR.

10 if m′ = m1 then

11 return 1.

12 else

13 return 0.

14 end

We show that AIND is an efficient adversary with a non-negligible advantage.

First, we argue that AIND perfectly simulates the challenger for APR. On line 4 of our definition of AIND,

we send APR a ciphertext. Then APR queries AIND for a message x. We use the ChallengerIND to generate

c = E(k, x) and reply to APR with c. We repeat this exchange a polynomial number of times, and then APR

5

finally outputs a guess m′. So, this matches the definition of the PR-CPA security game.

Now we calculate the advantage of AIND and show that its is noticeable (non-negligible). Here is our

definition of CPA/semantic security advantage:

AdvSS [AIND, E] := |Pr[ExpAIND,E(0) = 1]− Pr[ExpAIND,E(1) = 1]|

By construction of AIND, we have:

Pr[ExpAIND,E(0) = 1] ≤ 1

2|M |
= negl (13)

Pr[ExpAIND,E(1) = 1] = AdvPR[A, E] (14)

The first probability is based on the observation that when the challenger for AIND is given a 0 bit, it always

encrypts the first message it is sent, which means in step 2 of the algorithm above, we have c = E(k,m0).

This implies that APR has no information at all about m1. Hence, the only time that AIND will output 1

is when APR happens to randomly guess m1, which happens at most 1
2|M| of the time.

The second probability is based on the observation that when the challenger for AIND is given a 0 bit, then

we are perfectly playing the PR game with APR.

Plugging all of this into our equation that defines an adversary’s CPA advantage, we have:

AdvIND−CPA[AIND, E] := |Pr[ExpAIND,E(0) = 1]− Pr[ExpAIND,E(1) = 1]|

≥ AdvPR[A, E]− 1

2|M |

Because we assumed AdvPR[A, E] is non-negligible, the advantage of AIND is non-negligible, so E is not

IND-CPA (semantically) secure. But this contradicts our initial assumption that E is IND-CPA secure. So

by contradiction, E must be PR secure. Hence, IND-CPA security implies PR-CPA security.

6

