
18-330 Cryptography Notes: Pseudorandomness

Note: This is provided as a resource and is not meant to include all material from lectures or recitations.

The proofs shown, however, are good models for your homework and exams.

1 PRF Security

Let function F : K ×X → Y be a function that satisfies these conditions:

• F is deterministic

• ∀k ∈ K,∀x ∈ X , F (k, x) can be computed in polynomial time (in log |K|).

To evaluate whether F is a secure PRF, we must first define what security means. We do so via the following

game (or experiment) ExpA,F , which is parameterized by the adversary A and the (alleged) PRF F .

1. The experiment takes as input bit b ∈ {0, 1}, chosen uniformly at random.

2. If b is 0, then the Challenger samples k from K uniformly at random and sets f(x) := F (k, x). Note

that f remains the same for the rest of the experiment.

3. If b is 1, then the Challenger samples f , uniformly at random, from the space of all functions from X
to Y. Note that f remains the same for the rest of the experiment.

4. The Adversary runs some logic in order to select x ∈ X .

5. The Adversary sends the chosen x to the Challenger.

6. The Challenger replies with f(x) as defined above (i.e., either the result of applying the PRF with the

chosen k, or the result of applying the randomly selected function).

7. Repeat steps 4 through 6 up to some poly(log|K|) number of times.

8. Finally, the Adversary runs some logic in order to choose b′ ∈ {0, 1}, which is the output of the

experiment.

Definition 1. The PRF advantage AdvPRF [A,F, q] is defined as:

AdvPRF [A,F] := |Pr[ExpA,F (0) = 1]− Pr[ExpA,F (1) = 1]|

where A makes at most q queries.

Definition 2. We say that F is a secure PRF if, for all efficient A, AdvPRF [A,F, q] < ε, for some small

(negligible) ε.

1

1.1 PRF Proof of Security

Let F : K × X → {0, 1}128 be a secure PRF. We show that G(k, x) = (F (k, x) + 42) mod 2128 is also a

secure PRF.

Proof. Suppose for sake of contradiction that G is not a secure PRF. Then there must exist an efficient

adversary AG that breaks G. We can then construct an adversary AF that breaks F . We define AF as

follows:

Algorithm 1: Adversary AF

1 Execute AG

2 while Receive query for q ∈ X from AG do

3 Query ChallengerF with q and receive response r.

4 Return (r + 42) mod 2128 to AG.

5 end

6 When AG outputs a guess b′, output b′ as the guess for AF .

We prove that AF is an efficient adversary that breaks F (i.e., wins the PRF security game with F a

non-negligible amount of the time).

First, we argue that our adversary AF perfectly simulates the challenger for AG. If AF is playing in

experiment 0 (i.e., AF is interacting with the PRF), then AF ’s response to each of AG’s queries is exactly

the definition of G. If AF is playing in experiment 1 (i.e., AF is interacting with a truly random function),

then the response r it receives is randomly selected. A random value offset by 42 (mod 2128) is still random,

so AF returns a randomly selected value to AG. Therefore, we have correctly simulated the PRF game in

AF ’s interactions with AG.

Now, we calculate the advantage of AF .

AdvPRF [A,F] == |Pr[ExpA,F (0) = 1]− Pr[ExpA,F (1) = 1]| (1)

AdvPRF [A,F] == |Pr[ExpA,G(0) = 1]− Pr[ExpA,G(1) = 1]| (2)

AdvPRF [A,F] == AdvPRF [A,G] (3)

Where the first step is justified by the reasoning above; namely, the probability that AF outputs 1 when

running in Experiment 0 is exactly that of AG, and similarly for Experiment 1. The second step is just

applying the definition of AdvPRF to G.

Since we assumed G is not a secure PRF, it must be the case that AdvPRF [A,G] is large, which means that

AdvPRF [A,F] is large (by Equation 3 above). But that means F is not a secure PRF, and yet we know F

is a secure PRF (because that was given in the problem statement), so we have arrived at a contradiction.

This means our assumption that G is insecure must be false. Hence G is a secure PRF.

2 PRP Security

The definition of a secure PRP is nearly identical to that for PRF, except that everywhere we previously men-

tioned a function, we now work with a permutation. Changes relative to the PRF definition are highlighted

below.

2

Let function F : K ×X → X be a function that satisfies these conditions:

• F is deterministic

• ∀k ∈ K,∀x ∈ X , F (k, x) can be computed in polynomial time.

• ∀k ∈ K, F (k, x) is a permutation (i.e., it is bijective).

To evaluate whether F is a secure PRP , we must first define what security means. We do so via the following

game (or experiment) ExpA,F , which is parameterized by the adversary A and the (alleged) PRP F .

1. The experiment takes as input bit b ∈ {0, 1}, chosen uniformly at random.

2. If b is 0, then the Challenger samples k from K uniformly at random and sets f(x) := F (k, x). Note

that f remains the same for the rest of the experiment.

3. If b is 1, then the Challenger samples f , uniformly at random, from the space of all permutations

from X to X . Note that f remains the same for the rest of the experiment.

4. The Adversary runs some logic in order to select x ∈ X .

5. The Adversary sends the chosen x to the Challenger.

6. The Challenger replies with f(x) as defined above (i.e., either the result of applying the PRP with

the chosen k, or the result of applying the randomly selected function).

7. Repeat steps 4 through 6 up to some poly(log|K|) number of times.

8. Finally, the Adversary runs some logic in order to choose b′ ∈ {0, 1}, which is the output of the

experiment.

Definition 3. The PRP advantage AdvPRP [A,F, q] is defined as:

AdvPRP [A,F, q] := |Pr[ExpA,F (0) = 1]− Pr[ExpA,F (1) = 1]|

where A makes at most q queries.

Definition 4. We say that F is a secure PRP if, for all efficient A, AdvPRP [A,F, q] < ε.

3

