
18-330 Cryptography Notes: Hashes and Authentication

Note: This is provided as a resource and is not meant to include all material from lectures or recitations.

The proofs shown, however, are good models for your homework and exams.

1 Hash Functions

Definition 1. A hash function is any deterministic function that maps arbitrary-length inputs to fixed-

length outputs.

Definition 2. A cryptographic hash function (CHF) must provide at least one of the following (in order

of strongest to weakest):

1. Random oracle

2. Collision resistance

3. Second pre-image resistance

4. Pre-image resistance (sometimes known as one-way)

Definition 3. Let h : {0, 1}∗ → {0, 1}L. A collision for h is a pair m0,m1 ∈ {0, 1}∗ such that h(m0) =

h(m1) and m0 6= m1.

1.1 Pre-Image Resistance

Definition 4. Let h : {0, 1}∗ → {0, 1}L. The pre-image resistance game is defined as follows:

1. The Challenger samples x from {0, 1}∗ uniformly at random.

2. The Challenger sends h(x) to the Adversary.

3. The Adversary runs some logic to output x′ ∈ {0, 1}∗.

Definition 5. Let h : {0, 1}∗ → {0, 1}L, and let A be an efficient adversary. The pre-image resistance

advantage is defined as:

AdvPre[A, h, q] := Pr[h(x) = h(x′)]

Definition 6. Let h : {0, 1}∗ → {0, 1}L. h is pre-image resistant if for all efficient adversaries A:

AdvPre[A, h, q] < ε

1

1.2 Second Pre-Image Resistance

Definition 7. Let h : {0, 1}∗ → {0, 1}L. The second pre-image resistance game is defined as follows:

1. The Challenger samples x from {0, 1}∗ uniformly at random.

2. The Challenger sends (x, h(x)) to the Adversary.

3. The Adversary runs some logic to output x′ ∈ {0, 1}∗.

Definition 8. Let h : {0, 1}∗ → {0, 1}L, and let A be an efficient adversary. The second pre-image

resistance advantage is defined as:

Adv2Pre[A, h, q] := Pr[h(x) = h(x′) ∧ x 6= x]

Definition 9. Let h : {0, 1}∗ → {0, 1}L. h is second pre-image resistant if for all efficient adversaries

A:

Adv2Pre[A, h, q] < ε

1.3 Collision Resistance

Definition 10. A function h is collision resistant if for all efficient algorithms A:

AdvCR[A, h] = Pr[A outputs collision for h] < ε

2 Merkle-Damgard Construction

Definition 11. Let h be a one-way compression function. The Merkle-Damgard hash construction H is

roughly as follows (some details are implementation-defined):

Algorithm 1: Merkle-Damgard construction H (for fixed IV, blockSize, and h)

1 state← IV

2 m← input to the algorithm

3 m′ ← pad(m), where |m′| = blockSize ∗ numBlocks
4 for i ∈ [0, numBlocks) do

5 state← h(state,m′[i])

6 end

7 return state

Typically, the padding consists of a 1 bit, followed by 0 bits, and then 8 bytes that encode the length of the

original message m.

If h is collision resistant, then so is H.

2

3 Password Salts

Enrollment: store salt||h(password||salt)
Verification: extract salt and h(password||salt) from stored file, check h(input||salt) == h(password||salt)

Salts are unique to each user/password. They prevent brute forcing with pre-computed hashes.

4 Message Authentication Codes

MACs are used for message integrity. Intuitively speaking, the corruption of messages should be detectable.

A Cyclic Redundancy Check (CRC) is only a sanity check for detecting random errors, not malicious

attacks.

Definition 12. A Message Authentication Code (MAC) MAC = (S, V) defined over (K,M, T) is a

pair of algorithms:

1. Sign: S(k,m) outputs t ∈ T

2. Verify: V (k,m, t) outputs ‘yes’ or ‘no’

Correctness: V (k,m, S(k,m)) = ‘yes’

4.1 Secure MAC Adversarial Game

Definition 13. Let I = (S, V) be a MAC defined over (K,M, T). The Secure MAC game is defined as

follows:

1. The Challenger generates a key k = KeyGen(l)

2. The Adversary selects m1, ..,mq ∈M and sends them to the Challenger.

3. The Challenger replies with S(k,m1), .., S(k,mq).

4. The Adversary runs some logic to select m and t, and then sends m, t to the Challenger.

5. The Challenger checks: If m ∈ {m1, ..,mq}, output ’no’.

6. The Challenger outputs V (k,m, t) ∈ {yes, no}.

4.2 Secure MAC Advantage

Let I = (S, V) be a MAC defined over (K,M, T), and let A be an adversary. We define A’s MAC advantage

as:

AdvMAC [A, I] = Pr[Challenger outputs ‘yes’]

3

4.3 Secure MAC

Let I = (S, V) be a MAC defined over (K,M, T). We say that I is a secure MAC if for all efficient adversaries

A:

AdvMAC [A, I] < ε

4.4 HMACs

Below is the HMAC algorithm. The differences from the Merkle-Damgard construction are highlighted.

Algorithm 2: HMAC H for a fixed IV , ipad, and opad

1 state← IV

2 m← input to the algorithm

3 m′ ← (k ⊕ ipad)|| pad(m), where |m′| = blockSize ∗ numBlocks
4 for i ∈ [0, numBlocks) do

5 state← h(state,m′[i])

6 end

7 padfinal ← h(IV, k ⊕ opad)

8 return h(padfinal, state)

S(k,m) = H((k ⊕ opad)||H((k ⊕ ipad)||m)

5 Authenticated Encryption

5.1 Adversarial Game for Ciphertext Integrity

Definition 14. Let I = (KeyGen,E,D) be a cipher. The ciphertext integrity game is defined as follows:

1. The experiment takes as input bit b ∈ {0, 1}, chosen uniformly at random.

2. The Challenger runs k ← KeyGen(λ) for security parameter λ.

3. The Adversary runs some logic and selects a message mi ∈M to send to the Challenger.

4. The Challenger responds with ci = E(k,mi).

5. Repeats steps 2 through 3 some polynomial q number of times.

6. The Adversary sends c to the Challenger.

7. The Challenger outputs b = 1 if D(k, c) 6= ⊥∧ c 6∈ {c1, .., cq}. Otherwise the Challenger outputs b = 0.

8. b is the outcome of the experiment.

5.2 Ciphertext Integrity Advantage

Let I = (KeyGen,E,D) be a cipher, and let A be an adversary. We define A’s ciphertext integrity

advantage as:

AdvCI [A, I] = Pr[Challenger outputs 1]

4

5.3 Ciphertext Integrity

Let I = (KeyGen,E,D) be a cipher. We say that I has ciphertext integrity iff for all efficient adversaries

A:

AdvCI [A, I] < ε

5.4 Authenticated Encryption

Definition 15. Let I = (KeyGen,E,D) be a cipher where:

1. E : K ×M×N → C (same as before)

2. D : K × C ×N →M∪ {⊥}

The decryption algorithm D would return ⊥ if the ciphertext is determined to be invalid. I is said to provide

authenticated encryption (AE) if it is:

1. IND-CPA secure

2. provides ciphertext integrity

6 IND-CCA Security

6.1 IND-CCA Adversarial Game

Definition 16. Let E = (KeyGen,E,D) defined over (K,M, C). The IND-CCA game is defined as

follows:

1. The experiment takes as input bit b ∈ {0, 1}.

2. The Challenger runs k ← KeyGen(λ).

3. The Adversary runs some logic and selects a (mi,0,mi,1) from M×M.

4. The Challenger replies with ci = E(k,mi,b).

5. The Adversary sends c to the Challenger, where c 6∈ {c1, ..., ci}

6. The Challenger replies with m← D(k, c)

7. Repeat steps 3 through 6 some polynomial q number of times.

8. The Adversary runs some logic and outputs b ∈ {0, 1}, which is the output of the experiment.

6.2 IND-CCA Advantage

Definition 17. Let E = (KeyGen,E,D), and let A be an adversary. We define A’s IND-CCA advantage

as:

AdvCCA[A, E] := Pr[Exp(1) = 1]− Pr[Exp(0) = 1]

5

6.3 IND-CCA Secure

Definition 18. Let E = (KeyGen,E,D). We say that E is IND-CCA secure if for all efficient adversaries

A:

AdvCCA[A, E] < ε

Claim: Authenticated encryption implies IND-CCA secure.

6

