18-330 Cryptography Notes: Hashes and Authentication

Note: This is provided as a resource and is not meant to include all material from lectures or recitations.

The proofs shown, however, are good models for your homework and exams.

1 Hash Functions

Definition 1. A hash function is any deterministic function that maps arbitrary-length inputs to fixed-

length outputs.

Definition 2. A cryptographic hash function (CHF) must provide at least one of the following (in order
of strongest to weakest):

1. Random oracle
2. Collision resistance
3. Second pre-image resistance
4. Pre-image resistance (sometimes known as one-way)
Definition 3. Let h: {0,1}* — {0,1}L. A collision for h is a pair mg,m; € {0,1}* such that h(mg) =
h(my) and mqg # my.
1.1 Pre-Image Resistance
Definition 4. Let h:{0,1}* — {0,1}*. The pre-image resistance game is defined as follows:
1. The Challenger samples x from {0,1}* uniformly at random.
2. The Challenger sends h(z) to the Adversary.
3. The Adversary runs some logic to output x' € {0,1}*.

Definition 5. Let h: {0,1}* — {0,1}%, and let A be an efficient adversary. The pre-image resistance
advantage is defined as:
AdvprelA, h, q| := Prh(z) = h(z'))]

Definition 6. Let h:{0,1}* — {0,1}*. h is pre-image resistant if for all efficient adversaries A:

AdUPTE[A7 h’a q] <€

1.2 Second Pre-Image Resistance

Definition 7. Let h:{0,1}* — {0,1}*. The second pre-image resistance game is defined as follows:
1. The Challenger samples x from {0,1}* uniformly at random.
2. The Challenger sends (z,h(z)) to the Adversary.
3. The Adversary runs some logic to output x' € {0,1}*.

Definition 8. Let h : {0,1}* — {0,1}%, and let A be an efficient adversary. The second pre-image

resistance advantage is defined as:
Advapre|A, h, q] := Pr[h(z) = h(z') A x # x]

Definition 9. Let h: {0,1}* — {0,1}F. h is second pre-image resistant if for all efficient adversaries
A:
Advapre [A7 h, q] <€

1.3 Collision Resistance

Definition 10. A function h is collision resistant if for all efficient algorithms A:

AdverlA, h] = Pr[A outputs collision for h] < e

2 Merkle-Damgard Construction

Definition 11. Let h be a one-way compression function. The Merkle-Damgard hash construction H is

roughly as follows (some details are implementation-defined):
Algorithm 1: Merkle-Damgard construction H (for fixed IV, blockSize, and h)
1 state < IV

2 m < input to the algorithm

m’ < pad(m), where |m’| = blockSize * numBlocks
for i € [0, numBlocks) do
‘ state < h(state, m'[1])

[

%41

6 end

7 return state

Typically, the padding consists of a 1 bit, followed by 0 bits, and then 8 bytes that encode the length of the
original message m.

If A is collision resistant, then so is H.

3 Password Salts

Enrollment: store salt||h(password||salt)

Verification: extract salt and h(password||salt) from stored file, check h(input||salt) == h(password||salt)

Salts are unique to each user/password. They prevent brute forcing with pre-computed hashes.

4 Message Authentication Codes

MACs are used for message integrity. Intuitively speaking, the corruption of messages should be detectable.
A Cyclic Redundancy Check (CRC) is only a sanity check for detecting random errors, not malicious
attacks.

Definition 12. A Message Authentication Code (MAC) MAC = (S,V) defined over (KK, M, T) is a

pair of algorithms:
1. Sign: S(k,m) outputs t € T
2. Verify: V(k,m,t) outputs ‘yes’ or ‘no’

Correctness: V(k,m,S(k,m)) = ‘yes’

4.1 Secure MAC Adversarial Game

Definition 13. Let I = (S, V) be a MAC defined over (I, M, T). The Secure MAC game is defined as

follows:
1. The Challenger generates a key k = KeyGen(l)
2. The Adversary selects my,..,mq € M and sends them to the Challenger.
3. The Challenger replies with S(k,m1), .., S(k,my).
4. The Adversary runs some logic to select m and t, and then sends m,t to the Challenger.
5. The Challenger checks: If m € {ma,..,my}, output no’.

6. The Challenger outputs V(k,m,t) € {yes,no}.

4.2 Secure MAC Advantage
Let I = (S,V) be a MAC defined over (KC, M, T), and let A be an adversary. We define A’s MAC advantage

as:

AdvpraclA, Il = Pr[Challenger outputs ‘yes’]

4.3 Secure MAC

Let I = (S,V) be a MAC defined over (K, M, 7). We say that I is a secure MAC if for all efficient adversaries

A:

AdUMAc[A, I] <€

4.4 HMACs

Below is the HMAC algorithm. The differences from the Merkle-Damgard construction are highlighted.

Algorithm 2: HMAC H for a fixed IV, ipad, and opad

1

2

3

state < IV
m < input to the algorithm

m’ < (k @ ipad)|| pad(m), where |m/| = blockSize * numBlocks

for i € [0,numBlocks) do

‘ state < h(state, m'[1])

end

padfinal — h([‘/, ko opad)

return h(padyfina, state)

S(k,m) = H((k ® opad)||H((k & ipad)||m)

5 Authenticated Encryption

5.1 Adversarial Game for Ciphertext Integrity

Definition 14. Let 7 = (KeyGen, E, D) be a cipher. The ciphertext integrity game is defined as follows:

1.

2.

7.

The experiment takes as input bit b € {0,1}, chosen uniformly at random.

The Challenger runs k < KeyGen(X) for security parameter X.

The Adversary runs some logic and selects a message m; € M to send to the Challenger.
The Challenger responds with ¢; = E(k,m;).

Repeats steps 2 through 3 some polynomial ¢ number of times.

The Adversary sends ¢ to the Challenger.

The Challenger outputs b=1 if D(k,c) # L Ac & {c1,..,cq}. Otherwise the Challenger outputs b = 0.

8. b is the outcome of the experiment.

5.2 Ciphertext Integrity Advantage

Let T = (KeyGen, E,D) be a cipher, and let A be an adversary. We define A’s ciphertext integrity
advantage as:

Advcr[A, I| = Pr[Challenger outputs 1]

5.3 Ciphertext Integrity

Let Z = (KeyGen, E, D) be a cipher. We say that I has ciphertext integrity iff for all efficient adversaries
A:
Ad’Uc][A,I] <€

5.4 Authenticated Encryption

Definition 15. Let I = (KeyGen, E, D) be a cipher where:
1. E:Kx M xN = C (same as before)
2.D:KxCxN—-MuU{l}

The decryption algorithm D would return L if the ciphertext is determined to be invalid. I is said to provide

authenticated encryption (AE) if it is:
1. IND-CPA secure

2. provides ciphertext integrity

6 IND-CCA Security

6.1 IND-CCA Adversarial Game

Definition 16. Let £ = (KeyGen, E, D) defined over (K, M,C). The IND-CCA game is defined as

follows:
1. The experiment takes as input bit b € {0,1}.
2. The Challenger runs k <+ KeyGen(\).
3. The Adversary runs some logic and selects a (m; o, m; 1) from M x M.
4. The Challenger replies with ¢; = E(k,m;).
5. The Adversary sends ¢ to the Challenger, where ¢ & {c1,...,¢; }
6. The Challenger replies with m < D(k, c)
7. Repeat steps 3 through 6 some polynomial g number of times.

8. The Adversary runs some logic and outputs b € {0,1}, which is the output of the experiment.

6.2 IND-CCA Advantage

Definition 17. Let £ = (KeyGen, E, D), and let A be an adversary. We define A’s IND-CCA advantage
as:
AdvccalA, €] == Pr|Exp(1) = 1] — Pr[Exp(0) = 1]

6.3 IND-CCA Secure

Definition 18. Let £ = (KeyGen, E, D). We say that £ is IND-CCA secure if for all efficient adversaries
A:
Ad’UccA[A,g] <€

Claim: Authenticated encryption implies IND-CCA secure.

