
Abstract - This tutorial paper explores the mechanics of 
protecting computer-stored information from unauthorized 
use or modification. It concentrates on those architectural 
structures--whether hardware or software--that are 
necessary to support information protection. The paper 
develops in three main sections. Section I describes 
desired functions, design principles, and examples of 
elementary protection and authentication mechanisms. Any 
reader familiar with computers should find the first section 
to be reasonably accessible. Section II requires some 
familiarity with descriptor-based computer architecture. It 
examines in depth the principles of modern protection 
architectures and the relation between capability systems 
and access control list systems, and ends with a brief 
analysis of protected subsystems and protected objects. 
The reader who is dismayed by either the prerequisites or 
the level of detail in the second section may wish to skip to 
Section III, which reviews the state of the art and current 
research projects and provides suggestions for further 
reading.  

Glossary 

The following glossary provides, for reference, brief definitions 
for several terms as used in this paper in the context of protecting 
information in computers.  
Access  

The ability to make use of information stored in a 
computer system. Used frequently as a verb, to the 
horror of grammarians.  

Access control list  
A list of principals that are authorized to have access to 
some object.  

Authenticate  
To verify the identity of a person (or other agent 
external to the protection system) making a request.  

Authorize  
To grant a principal access to certain information.  

Capability  
In a computer system, an unforgeable ticket, which 
when presented can be taken as incontestable proof 
that the presenter is authorized to have access to the 
object named in the ticket.  

Certify  
To check the accuracy, correctness, and completeness 
of a security or protection mechanism.  

Complete isolation  
A protection system that separates principals into 
compartments between which no flow of information or 
control is possible.  

Confinement  
Allowing a borrowed program to have access to data, 
while ensuring that the program cannot release the 
information.  

Descriptor  
A protected value which is (or leads to) the physical 
address of some protected object.  

Discretionary  
(In contrast with nondiscretionary.) Controls on access 
to an object that may be changed by the creator of the 
object.  

Domain  
The set of objects that currently may be directly 
accessed by a principal.  

Encipherment  
The (usually) reversible scrambling of data according 
to a secret transformation key, so as to make it safe for 
transmission or storage in a physically unprotected 
environment.  

Grant  
To authorize (q. v.).  

Hierarchical control  
Referring to ability to change authorization, a scheme 
in which the record of each authorization is controlled 
by another authorization, resulting in a hierarchical 
tree of authorizations.  

List-oriented  
Used to describe a protection system in which each 
protected object has a list of authorized principals.  

Password  
A secret character string used to authenticate the 
claimed identity of an individual.  

Permission  
A particular form of allowed access, e.g., permission to 
READ as contrasted with permission to WRITE.  

Prescript  
A rule that must be followed before access to an object 
is permitted, thereby introducing an opportunity for 
human judgment about the need for access, so that 
abuse of the access is discouraged.  

Principal  
The entity in a computer system to which authorizations 
are granted; thus the unit of accountability in a 
computer system.  

Privacy  
The ability of an individual (or organization) to decide 
whether, when, and to whom personal (or 
organizational) information is released.  

Propagation  
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When a principal, having been authorized access to 
some object, in turn authorizes access to another 
principal.  

Protected object  
A data structure whose existence is known, but whose 
internal organization is not accessible, except by 
invoking the protected subsystem (q.v.) that manages it.  

Protected subsystem  
A collection of procedures and data objects that is 
encapsulated in a domain of its own so that the internal 
structure of a data object is accessible only to the 
procedures of the protected subsystem and the 
procedures may be called only at designated domain 
entry points.  

Protection  
1) Security (q.v.). 
2) Used more narrowly to denote mechanisms and 
techniques that control the access of executing 
programs to stored information.  

Protection group  
A principal that may be used by several different 
individuals.  

Revoke  
To take away previously authorized access from some 
principal.  

Security  
With respect to information processing systems, used to 
denote mechanisms and techniques that control who 
may use or modify the computer or the information 
stored in it.  

Self control  
Referring to ability to change authorization, a scheme 
in which each authorization contains within it the 
specification of which principals may change it.  

Ticket-oriented  
Used to describe a protection system in which each 
principal maintains a list of unforgeable bit patterns, 
called tickets, one for each object the principal is 
authorized to have access.  

User  
Used imprecisely to refer to the individual who is 
accountable for some identifiable set of activities in a 
computer system.  

 
 

I. BASIC PRINCIPLES OF INFORMATION PROTECTION 

A. Considerations Surrounding the Study of Protection 

1) General Observations: As computers become better 
understood and more economical, every day brings new 
applications. Many of these new applications involve both storing 
information and simultaneous use by several individuals. The key 
concern in this paper is multiple use. For those applications in 
which all users should not have identical authority, some scheme 
is needed to ensure that the computer system implements the 
desired authority structure.  
For example, in an airline seat reservation system, a reservation 
agent might have authority to make reservations and to cancel 

reservations for people whose names he can supply. A flight 
boarding agent might have the additional authority to print out 
the list of all passengers who hold reservations on the flights for 
which he is responsible. The airline might wish to withhold from 
the reservation agent the authority to print out a list of 
reservations, so as to be sure that a request for a passenger list 
from a law enforcement agency is reviewed by the correct level 
of management.  
The airline example is one of protection of corporate information 
for corporate self-protection (or public interest, depending on 
one's view). A different kind of example is an online warehouse 
inventory management system that generates reports about the 
current status of the inventory. These reports not only represent 
corporate information that must be protected from release outside 
the company, but also may indicate the quality of the job being 
done by the warehouse manager. In order to preserve his personal 
privacy, it may be appropriate to restrict the access to such 
reports, even within the company, to those who have a legitimate 
reason to be judging the quality of the warehouse manager's 
work.  
Many other examples of systems requiring protection of 
information are encountered every day: credit bureau data banks; 
law enforcement information systems; time-sharing service 
bureaus; on-line medical information systems; and government 
social service data processing systems. These examples span a 
wide range of needs for organizational and personal privacy. All 
have in common controlled sharing of information among 
multiple users. All, therefore, require some plan to ensure that the 
computer system helps implement the correct authority structure. 
Of course, in some applications no special provisions in the 
computer system are necessary. It may be, for instance, that an 
externally administered code of ethics or a lack of knowledge 
about computers adequately protects the stored information. 
Although there are situations in which the computer need provide 
no aids to ensure protection of information, often it is appropriate 
to have the computer enforce a desired authority structure.  
The words "privacy," "security," and "protection" are frequently 
used in connection with information-storing systems. Not all 
authors use these terms in the same way. This paper uses 
definitions commonly encountered in computer science literature.  
The term "privacy" denotes a socially defined ability of an 
individual (or organization) to determine whether, when, and to 
whom personal (or organizational) information is to be released.  
This paper will not be explicitly concerned with privacy, but 
instead with the mechanisms used to help achieve it.1  
The term "security" describes techniques that control who may 
use or modify the computer or the information contained in it.2  
Security specialists (e.g., Anderson [6] ) have found it useful to 
place potential security violations in three categories.  
1) Unauthorized information release: an unauthorized person is 
able to read and take advantage of information stored in the 
computer. This category of concern sometimes extends to "traffic 
analysis," in which the intruder observes only the patterns of 
information use and from those patterns can infer some 
information content. It also includes unauthorized use of a 
proprietary program.  
2) Unauthorized information modification: an unauthorized 
person is able to make changes in stored information--a form of 
sabotage. Note that this kind of violation does not require that the 
intruder see the information he has changed.  
3) Unauthorized denial of use: an intruder can prevent an 
authorized user from referring to or modifying information, even 



though the intruder may not be able to refer to or modify the 
information. Causing a system "crash," disrupting a scheduling 
algorithm, or firing a bullet into a computer are examples of 
denial of use. This is another form of sabotage.  
The term "unauthorized" in the three categories listed above 
means that release, modification, or denial of use occurs contrary 
to the desire of the person who controls the information, possibly 
even contrary to the constraints supposedly enforced by the 
system. The biggest complication in a general-purpose remote-
accessed computer system is that the "intruder" in these 
definitions may be an otherwise legitimate user of the computer 
system.  
Examples of security techniques sometimes applied to computer 
systems are the following:  

1. labeling files with lists of authorized users,  
2. verifying the identity of a prospective user by 

demanding a password,  
3. shielding the computer to prevent interception and 

subsequent interpretation of electromagnetic radiation,  
4. enciphering information sent over telephone lines,  
5. locking the room containing the computer,  
6. controlling who is allowed to make changes to the 

computer system (both its hardware and software),  
7. using redundant circuits or programmed cross-checks 

that maintain security in the face of hardware or 
software failures,  

8. certifying that the hardware and software are actually 
implemented as intended.  

It is apparent that a wide range of considerations are pertinent to 
the engineering of security of information. Historically, the 
literature of computer systems has more narrowly defined the 
term protection to be just those security techniques that control 
the access of executing programs to stored information.3 An 
example of a protection technique is labeling of computer-stored 
files with lists of authorized users. Similarly, the term 
authentication is used for those security techniques that verify the 
identity of a person (or other external agent) making a request of 
a computer system. An example of an authentication technique is 
demanding a password. This paper concentrates on protection 
and authentication mechanisms, with only occasional reference to 
the other equally necessary security mechanisms. One should 
recognize that concentration on protection and authentication 
mechanisms provides a narrow view of information security, and 
that a narrow view is dangerous. The objective of a secure system 
is to prevent all unauthorized use of information, a negative kind 
of requirement. It is hard to prove that this negative requirement 
has been achieved, for one must demonstrate that every possible 
threat has been anticipated. Thus an expansive view of the 
problem is most appropriate to help ensure that no gaps appear in 
the strategy. In contrast, a narrow concentration on protection 
mechanisms, especially those logically impossible to defeat, may 
lead to false confidence in the system as a whole.4  
2) Functional Levels of Information Protection: Many different 
designs have been proposed and mechanisms implemented for 
protecting information in computer systems. One reason for 
differences among protection schemes is their different functional 
properties--the kinds of access control that can be expressed 
naturally and enforced. It is convenient to divide protection 

schemes according to their functional properties. A rough 
categorization is the following.  
a) Unprotected systems: Some systems have no provision for 
preventing a determined user from having access to every piece 
of information stored in the system. Although these systems are 
not directly of interest here, they are worth mentioning since, as 
of 1975, many of the most widely used, commercially available 
batch data processing systems fall into this category--for 
example, the Disk Operating System for the IBM System 370 [9]. 
Our definition of protection, which excludes features usable only 
for mistake prevention, is important here since it is common for 
unprotected systems to contain a variety of mistake-prevention 
features. These may provide just enough control that any breach 
of control is likely to be the result of a deliberate act rather than 
an accident. Nevertheless, it would be a mistake to claim that 
such systems provide any security.5  
b) All-or-nothing systems: These are systems that provide 
isolation of users, sometimes moderated by total sharing of some 
pieces of information. If only isolation is provided, the user of 
such a system might just as well be using his own private 
computer, as far as protection and sharing of information are 
concerned. More commonly, such systems also have public 
libraries to which every user may have access. In some cases the 
public library mechanism may be extended to accept user 
contributions, but still on the basis that all users have equal 
access. Most of the first generation of commercial timesharing 
systems provide a protection scheme with this level of function. 
Examples include the Dartmouth Time-Sharing System (DTSS) 
[10] and IBM's VM/370 system [11]. There are innumerable 
others.  
c) Controlled sharing: Significantly more complex machinery is 
required to control explicitly who may access each data item 
stored in the system. For example, such a system might provide 
each file with a list of authorized users and allow an owner to 
distinguish several common patterns of use, such as reading, 
writing, or executing the contents of the file as a program. 
Although conceptually straightforward, actual implementation is 
surprisingly intricate, and only a few complete examples exist. 
These include M.l.T.'s Compatible Time-Sharing System (CTSS) 
[12], Digital Equipment Corporation's DECsystem/10 [13], 
System Development Corporation's Advanced Development 
Prototype (ADEPT) System [14], and Bolt, Beranek, and 
Newman's TENEX [15]6  
d) User-programmed sharing controls: A user may want to 
restrict access to a file in a way not provided in the standard 
facilities for controlling sharing. For example, he may wish to 
permit access only on weekdays between 9:00 A.M. and 4:00 
P.M. Possibly, he may wish to permit access to only the average 
value of the data in a file. Maybe he wishes to require that a 
file be modified only if two users agree. For such cases, and a 
myriad of others, a general escape is to provide for user-defined 
protected objects and subsystems. A protected subsystem is a 
collection of programs and data with the property that only the 
programs of the subsystem have direct access to the data (that is, 
the protected objects). Access to those programs is limited to 
calling specified entry points. Thus the programs of the 
subsystem completely control the operations performed on the 
data. By constructing a protected subsystem, a user can develop 
any programmable form of access control to the objects he 
creates. Only a few of the most advanced system designs have 
tried to permit user-specified protected subsystems. These 
include Honeywell's Multics [16], the University of California's 



CAL system [17], Bell Laboratories' UNIX system [18], the 
Berkeley Computer Corporation BCC-500 [19], and two systems 
currently under construction: the CAP system of Cambridge 
University [20], and the HYDRA system of Carnegie-Mellon 
University [21]. Exploring alternative mechanisms for 
implementing protected subsystems is a current research topic. A 
specialized use of protected subsystems is the implementation of 
protection controls based on data content. For example, in a file 
of salaries, one may wish to permit access to all salaries under 
$15 000. Another example is permitting access to certain 
statistical aggregations of data but not to any individual data 
item. This area of protection raises questions about the possibility 
of discerning information by statistical tests and by examining 
indexes, without ever having direct access to the data itself. 
Protection based on content is the subject of a variety of recent or 
current research projects [22]-[25] and will not be explored in 
this tutorial.  
e) Putting strings on information: The foregoing three levels have 
been concerned with establishing conditions for the release of 
information to an executing program. The fourth level of 
capability is to maintain some control over the user of the 
information even after it has been released. Such control is 
desired, for example, in releasing income information to a tax 
advisor; constraints should prevent him from passing the 
information on to a firm which prepares mailing lists. The printed 
labels on classified military information declaring a document to 
be "Top Secret" are another example of a constraint on 
information after its release to a person authorized to receive it. 
One may not (without risking severe penalties) release such 
information to others, and the label serves as a notice of the 
restriction. Computer systems that implement such strings on 
information are rare and the mechanisms are incomplete. For 
example, the ADEPT system [14] keeps track of the classification 
level of all input data used to create a file; all output data are 
automatically labeled with the highest classification encountered 
during execution.  
There is a consideration that cuts across all levels of functional 
capability: the dynamics of use. This term refers to how one 
establishes and changes the specification of who may access 
what. At any of the levels it is relatively easy to envision (and 
design) systems that statically express a particular protection 
intent. But the need to change access authorization dynamically 
and the need for such changes to be requested by executing 
programs introduces much complexity into protection systems. 
For a given functional level, most existing protection systems 
differ primarily in the way they handle protection dynamics. To 
gain some insight into the complexity introduced by program-
directed changes to access authorization, consider the question 
"Is there any way that O'Hara could access file X?" One should 
check to see not only if O'Hara has access to file X, but also 
whether or not O'Hara may change the specification of file X's 
accessibility. The next step is to see if O'Hara can change the 
specification of who may change the specification of file X's 
accessibility, etc. Another problem of dynamics arises when the 
owner revokes a user's access to a file while that file is being 
used. Letting the previously authorized user continue until he is 
"finished" with the information may not be acceptable, if the 
owner has suddenly realized that the file contains sensitive data. 
On the other hand, immediate withdrawal of authorization may 
severely disrupt the user. It should be apparent that provisions for 
the dynamics of use are at least as important as those for static 
specification of protection intent.  

In many cases, it is not necessary to meet the protection needs of 
the person responsible for the information stored in the computer 
entirely through computer-aided enforcement. External 
mechanisms such as contracts, ignorance, or barbed wire fences 
may provide some of the required functional capability. This 
discussion, however, is focused on the internal mechanisms.  
3) Design Principles: Whatever the level of functionality 
provided, the usefulness of a set of protection mechanisms 
depends upon the ability of a system to prevent security 
violations. In practice, producing a system at any level of 
functionality (except level one) that actually does prevent all such 
unauthorized acts has proved to be extremely difficult. 
Sophisticated users of most systems are aware of at least one way 
to crash the system, denying other users authorized access to 
stored information. Penetration exercises involving a large 
number of different general-purpose systems all have shown that 
users can construct programs that can obtain unauthorized access 
to information stored within. Even in systems designed and 
implemented with security as an important objective, design and 
implementation flaws provide paths that circumvent the intended 
access constraints. Design and construction techniques that 
systematically exclude flaws are the topic of much research 
activity, but no complete method applicable to the construction of 
large general-purpose systems exists yet. This difficulty is related 
to the negative quality of the requirement to prevent all 
unauthorized actions.  
In the absence of such methodical techniques, experience has 
provided some useful principles that can guide the design and 
contribute to an implementation without security flaws. Here are 
eight examples of design principles that apply particularly to 
protection mechanisms.7  
a) Economy of mechanism: Keep the design as simple and small 
as possible. This well-known principle applies to any aspect of a 
system, but it deserves emphasis for protection mechanisms for 
this reason: design and implementation errors that result in 
unwanted access paths will not be noticed during normal use 
(since normal use usually does not include attempts to exercise 
improper access paths). As a result, techniques such as line-by-
line inspection of software and physical examination of hardware 
that implements protection mechanisms are necessary. For such 
techniques to be successful, a small and simple design is 
essential.  
b) Fail-safe defaults: Base access decisions on permission rather 
than exclusion. This principle, suggested by E. Glaser in 1965,8 
means that the default situation is lack of access, and the 
protection scheme identifies conditions under which access is 
permitted. The alternative, in which mechanisms attempt to 
identify conditions under which access should be refused, 
presents the wrong psychological base for secure system design. 
A conservative design must be based on arguments why objects 
should be accessible, rather than why they should not. In a large 
system some objects will be inadequately considered, so a default 
of lack of permission is safer. A design or implementation 
mistake in a mechanism that gives explicit permission tends to 
fail by refusing permission, a safe situation, since it will be 
quickly detected. On the other hand, a design or implementation 
mistake in a mechanism that explicitly excludes access tends to 
fail by allowing access, a failure which may go unnoticed in 
normal use. This principle applies both to the outward appearance 
of the protection mechanism and to its underlying 
implementation.  



c) Complete mediation: Every access to every object must be 
checked for authority. This principle, when systematically 
applied, is the primary underpinning of the protection system. It 
forces a system-wide view of access control, which in addition to 
normal operation includes initialization, recovery, shutdown, and 
maintenance. It implies that a foolproof method of identifying the 
source of every request must be devised. It also requires that 
proposals to gain performance by remembering the result of an 
authority check be examined skeptically. If a change in authority 
occurs, such remembered results must be systematically updated.  
d) Open design: The design should not be secret [27]. The 
mechanisms should not depend on the ignorance of potential 
attackers, but rather on the possession of specific, more easily 
protected, keys or passwords. This decoupling of protection 
mechanisms from protection keys permits the mechanisms to be 
examined by many reviewers without concern that the review 
may itself compromise the safeguards. In addition, any skeptical 
user may be allowed to convince himself that the system he is 
about to use is adequate for his purpose.9 Finally, it is simply not 
realistic to attempt to maintain secrecy for any system which 
receives wide distribution.  
e) Separation of privilege: Where feasible, a protection 
mechanism that requires two keys to unlock it is more robust and 
flexible than one that allows access to the presenter of only a 
single key. The relevance of this observation to computer systems 
was pointed out by R. Needham in 1973. The reason is that, once 
the mechanism is locked, the two keys can be physically 
separated and distinct programs, organizations, or individuals 
made responsible for them. From then on, no single accident, 
deception, or breach of trust is sufficient to compromise the 
protected information. This principle is often used in bank safe-
deposit boxes. It is also at work in the defense system that fires a 
nuclear weapon only if two different people both give the correct 
command. In a computer system, separated keys apply to any 
situation in which two or more conditions must be met before 
access should be permitted. For example, systems providing user-
extendible protected data types usually depend on separation of 
privilege for their implementation.  
f) Least privilege: Every program and every user of the system 
should operate using the least set of privileges necessary to 
complete the job. Primarily, this principle limits the damage that 
can result from an accident or error. It also reduces the number of 
potential interactions among privileged programs to the minimum 
for correct operation, so that unintentional, unwanted, or 
improper uses of privilege are less likely to occur. Thus, if a 
question arises related to misuse of a privilege, the number of 
programs that must be audited is minimized. Put another way, if a 
mechanism can provide "firewalls," the principle of least 
privilege provides a rationale for where to install the firewalls. 
The military security rule of "need-to-know" is an example of 
this principle.  
g) Least common mechanism: Minimize the amount of 
mechanism common to more than one user and depended on by 
all users [28]. Every shared mechanism (especially one involving 
shared variables) represents a potential information path between 
users and must be designed with great care to be sure it does not 
unintentionally compromise security. Further, any mechanism 
serving all users must be certified to the satisfaction of every 
user, a job presumably harder than satisfying only one or a few 
users. For example, given the choice of implementing a new 
function as a supervisor procedure shared by all users or as a 
library procedure that can be handled as though it were the user's 

own, choose the latter course. Then, if one or a few users are not 
satisfied with the level of certification of the function, they can 
provide a substitute or not use it at all. Either way, they can avoid 
being harmed by a mistake in it.  
h) Psychological acceptability: It is essential that the human 
interface be designed for ease of use, so that users routinely and 
automatically apply the protection mechanisms correctly. Also, to 
the extent that the user's mental image of his protection goals 
matches the mechanisms he must use, mistakes will be 
minimized. If he must translate his image of his protection needs 
into a radically different specification language, he will make 
errors.  
Analysts of traditional physical security systems have suggested 
two further design principles which, unfortunately, apply only 
imperfectly to computer systems.  
a) Work factor: Compare the cost of circumventing the 
mechanism with the resources of a potential attacker. The cost of 
circumventing, commonly known as the "work factor," in some 
cases can be easily calculated. For example, the number of 
experiments needed to try all possible four letter alphabetic 
passwords is 264 = 456 976. If the potential attacker must enter 
each experimental password at a terminal, one might consider a 
four-letter password to be adequate. On the other hand, if the 
attacker could use a large computer capable of trying a million 
passwords per second, as might be the case where industrial 
espionage or military security is being considered, a four-letter 
password would be a minor barrier for a potential intruder. The 
trouble with the work factor principle is that many computer 
protection mechanisms are not susceptible to direct work factor 
calculation, since defeating them by systematic attack may be 
logically impossible. Defeat can be accomplished only by 
indirect strategies, such as waiting for an accidental hardware 
failure or searching for an error in implementation. Reliable 
estimates of the length of such a wait or search are very difficult 
to make.  
b) Compromise recording: It is sometimes suggested that 
mechanisms that reliably record that a compromise of 
information has occurred can be used in place of more elaborate 
mechanisms that completely prevent loss. For example, if a 
tactical plan is known to have been compromised, it may be 
possible to construct a different one, rendering the compromised 
version worthless. An unbreakable padlock on a flimsy file 
cabinet is an example of such a mechanism. Although the 
information stored inside may be easy to obtain, the cabinet will 
inevitably be damaged in the process and the next legitimate user 
will detect the loss. For another example, many computer 
systems record the date and time of the most recent use of each 
file. If this record is tamperproof and reported to the owner, it 
may help discover unauthorized use. In computer systems, this 
approach is used rarely, since it is difficult to guarantee discovery 
once security is broken. Physical damage usually is not involved, 
and logical damage (and internally stored records of tampering) 
can be undone by a clever attacker.10  
As is apparent, these principles do not represent absolute rules--
they serve best as warnings. If some part of a design violates a 
principle, the violation is a symptom of potential trouble, and the 
design should be carefully reviewed to be sure that the trouble 
has been accounted for or is unimportant.  
4) Summary of Considerations Surrounding Protection: Briefly, 
then, we may outline our discussion to this point. The application 
of computers to information handling problems produces a need 
for a variety of security mechanisms. We are focusing on one 



aspect, computer protection mechanisms--the mechanisms that 
control access to information by executing programs. At least 
four levels of functional goals for a protection system can be 
identified: all-or-nothing systems, controlled sharing, user-
programmed sharing controls, and putting strings on information. 
But at all levels, the provisions for dynamic changes to 
authorization for access are a severe complication.  
Since no one knows how to build a system without flaws, the 
alternative is to rely on eight design principles, which tend to 
reduce both the number and the seriousness of any flaws: 
Economy of mechanism, fail-safe defaults, complete mediation, 
open design, separation of privilege, least privilege, least 
common mechanism, and psychological acceptability.  
Finally, some protection designs can be evaluated by comparing 
the resources of a potential attacker with the work factor required 
to defeat the system, and compromise recording may be a useful 
strategy.  

B. Technical Underpinnings 

1) The Development Plan: At this point we begin a development 
of the technical basis of information protection in modern 
computer systems. There are two ways to approach the subject: 
from the top down, emphasizing the abstract concepts involved, 
or from the bottom up, identifying insights by, studying example 
systems. We shall follow the bottom-up approach, introducing a 
series of models of systems as they are, (or could be) built in real 
life.  
The reader should understand that on this point the authors' 
judgment differs from that of some of their colleagues. The top-
down approach can be very satisfactory when a subject is 
coherent and self-contained, but for a topic still containing ad hoc 
strategies and competing world views, the bottom-up approach 
seems safer.  
Our first model is of a multiuser system that completely isolates 
its users from one another. We shall then see how the logically 
perfect walls of that system can be lowered in a controlled way to 
allow limited sharing of information between users. Section II of 
this paper generalizes the mechanics of sharing using two 
different models: the capability system and the access control list 
system. It then extends these two models to handle the dynamic 
situation in which authorizations can change under control of the 
programs running inside the system. Further extensions to the 
models control the dynamics. The final model (only superficially 
explored) is of protected objects and protected subsystems, which 
allow arbitrary modes of sharing that are unanticipated by the 
system designer. These models are not intended so much to 
explain the particular systems as they are to explain the 
underlying concepts of information protection.  
Our emphasis throughout the development is on direct access to 
information (for example, using LOAD and STORE instructions) 
rather than acquiring information indirectly (as when calling a 
data base management system to request the average value of a 
set of numbers supposedly not directly accessible). Control of 
such access is the function of the protected subsystems developed 
near the end of the paper. Herein lies perhaps the chief defect of 
the bottom-up approach, since conceptually there seems to be no 
reason to distinguish direct and indirect access, yet the detailed 
mechanics are typically quite different. The beginnings of a top-
down approach based on a message model that avoids 

distinguishing between direct and indirect information access 
may be found in a paper by Lampson [30].  
2) The Essentials of Information Protection: For purposes of 
discussing protection, the information stored in a computer 
system is not a single object. When one is considering direct 
access, the information is divided into mutually exclusive 
partitions, as specified by its various creators. Each partition 
contains a collection of information, all of which is intended to be 
protected uniformly. The uniformity of protection is the same 
kind of uniformity that applies to all of the diamonds stored in the 
same vault: any person who has a copy of the combination can 
obtain any of the diamonds. Thus the collections of information 
in the partitions are the fundamental objects to be protected.  
Conceptually, then, it is necessary to build an impenetrable wall 
around each distinct object that warrants separate protection, 
construct a door in the wall through which access can be 
obtained, and post a guard at the door to control its use. Control 
of use, however, requires that the guard have some way of 
knowing which users are authorized to have access, and that each 
user have some reliable way of identifying himself to the guard. 
This authority check is usually implemented by having the guard 
demand a match between something he knows and something the 
prospective user possesses. Both protection and authentication 
mechanisms can be viewed in terms of this general model.  
Before extending this model, we pause to consider two concrete 
examples, the multiplexing of a single computer system among 
several users and the authentication of a user's claimed identity. 
These initial examples are complete isolation systems--no sharing 
of information can happen. Later we will extend our model of 
guards and walls in the discussion of shared information.  
3) An Isolated Virtual Machine: A typical computer consists of a 
processor, a linearly addressed memory system, and some 
collection of input/output devices associated with the processor. 
It is relatively easy to use a single computer to simulate several, 
each of which is completely unaware of the existence of the 
others, except that each runs more slowly than usual. Such a 
simulation is of interest, since during the intervals when one of 
the simulated (commonly called virtual) processors is waiting for 
an input or output operation to finish, another virtual processor 
may be able to progress at its normal rate. Thus a single 
processor may be able to take the place of several. Such a scheme 
is the essence of a multiprogramming system.  
To allow each virtual processor to be unaware of the existence of 
the others, it is essential that some isolation mechanism be 
provided. One such mechanism is a special hardware register 
called a descriptor register, as in Fig. 1. In this figure, all 
memory references by the processor are checked by an extra 
piece of hardware that is interposed in the path to the memory. 
The descriptor register controls exactly which part of memory is 
accessible. The descriptor register contains two components: a 
base value and a bound value. The base is the lowest numbered 
address the program may use, and the bound is the number of 
locations beyond the base that may be used.11 We will call the 
value in the descriptor register a descriptor, as it describes an 
object (in this case, one program) stored in memory. The program 
controlling the processor has full access to everything in the base-
bound range, by virtue of possession of its one descriptor. As we 
go on, we shall embellish the concept of a descriptor: it is central 
to most implementations of protection and of sharing of 
information.12  
So far, we have not provided for the dynamics of a complete 
protection scheme: we have not discussed who loads the 



descriptor register. If any running program could load it with any 
arbitrary value, there would be no protection. The instruction that 
loads the descriptor register with a new descriptor must have 
some special controls--either on the values it will load or on who 
may use it. It is easier to control who may use the descriptor, and 
a common scheme is to introduce an additional bit in the 
processor state. This bit is called the privileged state bit.13 All 
attempts to load the descriptor register are checked against the 
value of the privileged state bit; the privileged state bit must be 
ON for the register to be changed. One program (named the 
supervisor--program S in Fig. 1) runs with the privileged state bit 
ON, and controls the simulation of the virtual processors for the 
other programs. All that is needed to make the scheme complete 
is to ensure that the privileged state bit cannot be changed by the 
user programs except, perhaps, by an instruction that 
simultaneously transfers control to the supervisor program at a 
planned entry location. (In most implementations, the descriptor 
register is not used in the privileged state.)  
One might expect the supervisor program to maintain a table of 
values of descriptors, one for each virtual processor. When the 
privileged state bit is OFF, the index in this table of the program 
currently in control identifies exactly which program--and thus 
which virtual processor--is accountable for the activity of the real 
processor. For protection to be complete, a virtual processor must 
not be able to change arbitrarily the values in the table of 
descriptors. If we suppose the table to be stored inside the 
supervisor program, it will be inaccessible to the virtual 
processors. We have here an example of a common strategy and 
sometime cause of confusion: the protection mechanisms not 
only protect one user from another, they may also protect their 
own implementation. We shall encounter this strategy again.  

 
 
Fig. 1. Use of a descriptor register to simulate multiple 
virtual machines. Program C is in control of tho processor. 
The privileged state bit has value OFF, indicating that 
program C is a user program. When program S is running, 
the privileged state bit has value ON. In this (and later) 
figures, lower addresses are nearer the bottom of the figure. 
 
So far, this virtual processor implementation contains three 
protection mechanisms that we can associate with our 
abstractions. For the first, the information being protected is the 
distinct programs of Fig. 1. The guard is represented by the extra 
piece of hardware that enforces the descriptor restriction. The 

impenetrable wall with a door is the hardware that forces all 
references to memory through the descriptor mechanism. The 
authority check on a request to access memory is very simple. 
The requesting virtual processor is identified by the base and 
bound values in the descriptor register, and the guard checks that 
the memory location to which access is requested lies within the 
indicated area of memory.  
The second mechanism protects the contents of the descriptor 
register. The wall, door, and guard are implemented in hardware, 
as with the first mechanism. An executing program requesting to 
load the descriptor register is identified by the privileged state bit. 
If this bit is OFF, indicating that the requester is a user program, 
then the guard does not allow the register to be loaded. If this bit 
is ON, indicating that the requester is the supervisor program, 
then the guard does allow it.  
The third mechanism protects the privileged state bit. It allows an 
executing program identified by the privileged state bit being 
OFF (a user program) to perform the single operation "turn 
privileged state bit ON and transfer to the supervisor program." 
An executing program identified by the privileged state bit being 
ON is allowed to turn the bit OFF. This third mechanism is an 
embryonic form of the sophisticated protection mechanisms 
required to implement protected subsystems. The supervisor 
program is an example of a protected subsystem, of which more 
will be said later.  
The supervisor program is part of all three protection 
mechanisms, for it is responsible for maintaining the integrity of 
the identifications manifest in the descriptor register and the 
privileged state bit. If the supervisor does not do its job correctly, 
virtual processors could become labeled with the wrong base and 
bound values, or user programs could become labeled with a 
privileged state bit that is ON, The supervisor protects itself from 
the user programs with the same isolation hardware that separates 
users, an example of the "economy of mechanism" design 
principle.  
With an appropriately sophisticated and careful supervisor 
program, we now have an example of a system that completely 
isolates its users from one another. Similarly isolated permanent 
storage can be added to such a system by attaching some 
longterm storage device (e.g., magnetic disk) and developing a 
similar descriptor scheme for its use. Since long-term storage is 
accessed less frequently than primary memory, it is common to 
implement its descriptor scheme with the supervisor programs 
rather than hardware, but the principle is the same. Data streams 
to input or output devices can be controlled similarly. The 
combination of a virtual processor, a memory area, some data 
streams, and an isolated region of long-term storage is known as 
a virtual machine.14  
Long-term storage does, however, force us to face one further 
issue. Suppose that the virtual machine communicates with its 
user through a typewriter terminal. If a new user approaches a 
previously unused terminal and requests to use a virtual machine, 
which virtual machine (and, therefore, which set of long-term 
stored information) should he be allowed to use? We may solve 
this problem outside the system, by having the supervisor 
permanently associate a single virtual machine and its long-term 
storage area with a single terminal. Then, for example, padlocks 
can control access to the terminal. If, on the other hand, a more 
flexible system is desired, the supervisor program must be 
prepared to associate any terminal with any virtual machine and, 
as a result, must be able to verify the identity of the user at a 



terminal. Schemes for performing this authentication are the 
subject of our next example.  
4) Authentication Mechanisms: Our second example is of an 
authentication mechanism: a system that verifies a user's claimed 
identity. The mechanics of this authentication mechanism differ 
from those of the protection mechanisms for implementing 
virtual machines mainly because not all of the components of the 
system are under uniform physical control. In particular, the user 
himself and the communication system connecting his terminal to 
the computer are components to be viewed with suspicion. 
Conversely, the user needs to verify that he is in communication 
with the expected computer system and the intended virtual 
machine. Such systems follow our abstract model of a guard who 
demands a match between something he knows and something 
the requester possesses. The objects being protected by the 
authentication mechanism are the virtual machines. In this case, 
however, the requester is a computer system user rather than an 
executing program, and because of the lack of physical control 
over the user and the communication system, the security of the 
computer system must depend on either the secrecy or the 
unforgeability of the user's identification.  
In time-sharing systems, the most common scheme depends on 
secrecy. The user begins by typing the name of the person he 
claims to be, and then the system demands that the user type a 
password, presumably known only to that person.  
There are, of course, many possible elaborations and 
embellishments of this basic strategy. In cases where the typing 
of the password may be observed, passwords may be good for 
only one use, and the user carries a list of passwords, crossing 
each one off the list as he uses it. Passwords may have an 
expiration date, or usage count, to limit the length of usefulness 
of a compromised one.  
The list of acceptable passwords is a piece of information that 
must be carefully guarded by the system. In some systems, all 
passwords are passed through a hard-to-invert transformation15 
before being stored, an idea suggested by R. Needham [37, p. 
129]. When the user types his password, the system transforms it 
also and compares the transformed versions. Since the transform 
is supposed to be hard to invert (even if the transform itself is 
well known), if the stored version of a password is compromised, 
it may be very difficult to determine what original password is 
involved. It should be noted, however, that "hardness of 
inversion" is difficult to measure. The attacker of such a system 
does not need to discern the general inversion, only the particular 
one applying to some transformed password he has available.  
Passwords as a general technique have some notorious defects. 
The most often mentioned defect lies in choice of password--if a 
person chooses his own password, he may choose something 
easily guessed by someone else who knows his habits. In one 
recent study of some 300 self-chosen passwords on a typical 
time-sharing system, more than 50 percent were found to be short 
enough to guess by exhaustion, derived from the owner's name, 
or something closely associated with the owner, such as his 
telephone number or birth date. For this reason, some systems 
have programs that generate random sequences of letters for use 
as passwords. They may even require that all passwords be 
system-generated and changed frequently. On the other hand, 
frequently changed random sequences of letters are hard to 
memorize, so such systems tend to cause users to make written 
copies of their passwords, inviting compromise. One solution to 
this problem is to provide a generator of "pronounceable" random 

passwords based on digraph or higher order frequency statistics 
[26] to make memorization easier.  
A second significant defect is that the password must be exposed 
to be used. In systems where the terminal is distant from the 
computer, the password must be sent through some 
communication system, during which passage a wiretapper may 
be able to intercept it.  
An alternative approach to secrecy is unforgeability. The user is 
given a key, or magnetically striped plastic card, or some other 
unique and relatively difficult-to-fabricate object. The terminal 
has an input device that examines the object and transmits its 
unique identifying code to the computer system, which treats the 
code as a password that need not be kept secret. Proposals have 
been made for fingerprint readers and dynamic signature readers 
in order to increase the effort required for forgery.  
The primary weakness of such schemes is that the hard-to-
fabricate object, after being examined by the specialized input 
device, is reduced to a stream of bits to be transmitted to the 
computer. Unless the terminal, its object reader, and its 
communication lines to the computer are physically secured 
against tampering, it is relatively easy for an intruder to modify 
the terminal to transmit any sequence of bits he chooses. It may 
be necessary to make the acceptable bit sequences a secret after 
all. On the other hand, the scheme is convenient, resists casual 
misuse, and provides a conventional form of accountability 
through the physical objects used as keys.  
A problem common to both the password and the unforgeable 
object approach is that they are "one-way" authentication 
schemes. They authenticate the user to the computer system, but 
not vice versa. An easy way for an intruder to penetrate a 
password system, for example, is to intercept all communications 
to and from the terminal and direct them to another computer--
one that is under the interceptor's control. This computer can be 
programmed to "masquerade," that is, to act just like the system 
the caller intended to use, up to the point of requesting him to 
type his password. After receiving the password, the masquerader 
gracefully terminates the communication with some unsurprising 
error message, and the caller may be unaware that his password 
has been stolen. The same attack can be used on the unforgeable 
object system as well.  
A more powerful authentication technique is sometimes used to 
protect against masquerading. Suppose that a remote terminal is 
equipped with enciphering circuitry, such as the LUCIFER 
system [38], that scrambles all signals from that terminal. Such 
devices normally are designed so that the exact encipherment is 
determined by the value of a key, known as the encryption or 
transformation key. For example, the transformation key may 
consist of a sequence of 1000 binary digits read from a 
magnetically striped plastic card. In order that a recipient of such 
an enciphered signal may comprehend it, he must have a 
deciphering circuit primed with an exact copy of the 
transformation key, or else he must cryptanalyze the scrambled 
stream to try to discover the key. The strategy of 
encipherment/decipherment is usually invoked for the purpose of 
providing communications security on an otherwise unprotected 
communications system. However, it can simultaneously be used 
for authentication, using the following technique, first published 
in the unclassified literature by Feistel [39]. The user, at a 
terminal, begins bypassing the enciphering equipment. He types 
his name. This name passes, unenciphered, through the 
communication system to the computer. The computer looks up 
the name, just as with the password system. Associated with each 



name, instead of a secret password, is a secret transformation 
key. The computer loads this transformation key into its 
enciphering mechanism, turns it on, and attempts to communicate 
with the user. Meanwhile, the user has loaded his copy of the 
transformation key into his enciphering mechanism and turned it 
on. Now, if the keys are identical, exchange of some standard 
hand-shaking sequence will succeed. If they are not identical, the 
exchange will fail, and both the user and the computer system 
will encounter unintelligible streams of bits. If the exchange 
succeeds, the computer system is certain of the identity of the 
user, and the user is certain of the identity of the computer. The 
secret used for authentication--the transformation key--has not 
been transmitted through the communication system. If 
communication fails (because the user is unauthorized, the 
system has been replaced by a masquerader, or an error 
occurred), each party to the transaction has immediate warning of 
a problem.16  
Relatively complex elaborations of these various strategies have 
been implemented, differing both in economics and in 
assumptions about the psychology of the prospective user. For 
example, Branstad [40] explored in detail strategies of 
authentication in multinode computer networks. Such 
elaborations, though fascinating to study and analyze, are 
diversionary to our main topic of protection mechanisms.  
5) Shared Information: The virtual machines of the earlier 
section were totally independent, as far as information 
accessibility was concerned. Each user might just as well have 
his own private computer system. With the steadily declining 
costs of computer manufacture there are few technical reasons 
not to use a private computer. On the other hand, for many 
applications some sharing of information among users is useful, 
or even essential. For example, there may be a library of 
commonly used, reliable programs. Some users may create new 
programs that other users would like to use. Users may wish to be 
able to update a common data base, such as a file of airline seat 
reservations or a collection of programs that implement a 
biomedical statistics system. In all these cases, virtual machines 
are inadequate, because of the total isolation of their users from 
one another. Before extending the virtual machine example any 
further, let us return to our abstract discussion of guards and 
walls.  
Implementations of protection mechanisms that permit sharing 
fall into the two general categories described by Wilkes [37]  
a) "List-oriented" implementations, in which the guard holds a 
list of identifiers of authorized users, and the user carries a unique 
unforgeable identifier that must appear on the guard's list for 
access to be permitted. A store clerk checking a list of credit 
customers is an example of a list-oriented implementation in 
practice. The individual might use his driver's license as a unique 
unforgeable identifier.  
b) "Ticket-oriented" implementations, in which the guard holds 
the description of a single identifier, and each user has a 
collection of unforgeable identifiers, or tickets,17 corresponding 
to the objects to which he has been authorized access. A locked 
door that opens with a key is probably the most common example 
of a ticket-oriented mechanism; the guard is implemented as the 
hardware of the lock, and the matching key is the (presumably) 
unforgeable authorizing identifier.  
Authorization, defined as giving a user access to some object, is 
different in these two schemes. In a list-oriented system, a user is 
authorized to use an object by having his name placed on the 

guard's list for that object. In a ticket-oriented system, a user is 
authorized by giving him a ticket for the object.  
We can also note a crucial mechanical difference between the 
two kinds of implementations. The list-oriented mechanism 
requires that the guard examine his list at the time access is 
requested, which means that some kind of associative search 
must accompany the access. On the other hand, the ticket-
oriented mechanism places on the user the burden of choosing 
which ticket to present, a task he can combine with deciding 
which information to access. The guard only need compare the 
presented ticket with his own expectation before allowing the 
physical memory access. Because associative matching tends to 
be either slower or more costly than simple comparison, list-
oriented mechanisms are not often used in applications where 
traffic is high. On the other hand, ticket-oriented mechanisms 
typically require considerable technology to control forgery of 
tickets and to control passing tickets around from one user to 
another. As a rule, most real systems contain both kinds of 
sharing implementations--a list-oriented system at the human 
interface and a ticket-oriented system in the underlying hardware 
implementation. This kind of arrangement is accomplished by 
providing, at the higher level, a list-oriented guard18 whose only 
purpose is to hand out temporary tickets which the lower level 
(ticket-oriented) guards will honor. Some added complexity 
arises from the need to keep authorizations, as represented in the 
two systems, synchronized with each other. Computer protection 
systems differ mostly in the extent to which the architecture of 
the underlying ticket-oriented system is visible to the user.  
Finally, let us consider the degenerate cases of list- and ticket-
oriented systems. In a list-oriented system, if each guard's list of 
authorized users can contain only one entry, we have a "complete 
isolation" kind of protection system, in which no sharing of 
information among users can take place. Similarly, in a ticket-
oriented system, if there can be only one ticket for each object in 
the system, we again have a "complete isolation" kind of 
protection system. Thus the "complete isolation" protection 
system turns out to be a particular degenerate case of both the 
list-oriented and the ticket-oriented protection implementations. 
These observations are important in examining real systems, 
which usually consist of interacting protection mechanisms, some 
of which are list-oriented, some of which are ticket-oriented, and 
some of which provide complete isolation and therefore may 
happen to be implemented as degenerate examples of either of 
the other two, depending on local circumstances.  
We should understand the relationship of a user to these 
transactions. We are concerned with protection of information 
from programs that are executing. The user is the individual who 
assumes accountability for the actions of an executing program. 
Inside the computer system, a program is executed by a virtual 
processor, so one or more virtual processors can be identified 
with the activities directed by the user.19  
In a list-oriented system it is the guard's business to know whose 
virtual processor is attempting to make an access. The virtual 
processor has been marked with an unforgeable label identifying 
the user accountable for its actions, and the guard inspects this 
label when making access decisions. In a ticket-oriented system, 
however, the guard cares only that a virtual processor present the 
appropriate unforgeable ticket when attempting an access. The 
connection to an accountable user is more diffuse, since the guard 
does not know or care how the virtual processor acquired the 
tickets. In either case, we conclude that in addition to the 
information inside the impenetrable wall, there are two other 



things that must be protected: the guard's authorization 
information, and the association between a user and the 
unforgeable label or set of tickets associated with his virtual 
processors.  
Since an association with some user is essential for establishing 
accountability for the actions of a virtual processor, it is useful to 
introduce an abstraction for that accountability--the principal. A 
principal is, by definition, the entity accountable for the activities 
of a virtual processor.20 In the situations discussed so far, the 
principal corresponds to the user outside the system. However, 
there are situations in which a one-to-one correspondence of 
individuals with principals is not adequate. For example, a user 
may be accountable for some very valuable information and 
authorized to use it. On the other hand, on some occasion he may 
wish to use the computer for some purpose unrelated to the 
valuable information. To prevent accidents, he may wish to 
identify himself with a different principal, one that does not have 
access to the valuable information--following the principle of 
least privilege. In this case there is a need for two different 
principals corresponding to the same user.  
Similarly, one can envision a data base that is to be modified only 
if a committee agrees. Thus there might be an authorized 
principal that cannot be used by any single individual; all of the 
committee members must agree upon its use simultaneously.  
Because the principal represents accountability, we shall see later 
(in the section on dynamic authorization of sharing) that 
authorizing access is done in terms of principals. That is, if one 
wishes a friend to have access to some file, the authorization is 
done by naming a principal only that friend can use.  
For each principal we may identify all the objects in the system 
which the principal has been authorized to use. We will name that 
set of objects the domain of that principal.  
Summarizing, then, a principal is the unforgeable identifier 
attached to a virtual processor in a list-oriented system. When a 
user first approaches the computer system, that user must identify 
the principal to be used. Some authentication mechanism, such as 
a request for a secret password, establishes the user's right to use 
that principal. The authentication mechanism itself may be either 
list- or ticket-oriented or of the complete isolation type. Then a 
computation is begun in which all the virtual processors of the 
computation are labeled with the identifier of that principal, 
which is considered accountable for all further actions of these 
virtual processors. The authentication mechanism has allowed the 
virtual processor to enter the domain of that principal. That 
description makes apparent the importance of the authentication 
mechanism. Clearly, one must carefully control the conditions 
under which a virtual processor enters a domain.  
Finally, we should note that in a ticket-oriented system there is no 
mechanical need to associate an unforgeable identifier with a 
virtual processor, since the tickets themselves are presumed 
unforgeable. Nevertheless, a collection of tickets can be 
considered to be a domain, and therefore correspond to some 
principal, even though there may be no obvious identifier for that 
principal. Thus accountability in ticket-oriented systems can be 
difficult to pinpoint.  
Now we shall return to our example system and extend it to 
include sharing. Consider for a moment the problem of sharing a 
library program--say, a mathematical function subroutine. We 
could place a copy of the math routine in the long-term storage 
area of each virtual machine that had a use for it. This scheme, 
although workable, has several defects. Most obvious, the 
multiple copies require multiple storage spaces. More subtly, the 

scheme does not respond well to changes. If a newer, better math 
routine is written, upgrading the multiple copies requires effort 
proportional to the number of users. These two observations 
suggest that one would like to have some scheme to allow 
different users access to a single master copy of the program. The 
storage space will be smaller and the communication of updated 
versions will be easier.  

 
Fig. 2. Sharing of a math routine by use of two descriptor 
registors. (a) Program A in control of processor. (b) 
Program B in control of processor. 
 
In terms of the virtual machine model of our earlier example, we 
can share a single copy of the math routine by adding to the real 
processor a second descriptor register, as in Fig. 2, placing the 
math routine somewhere in memory by itself and placing a 
descriptor for it in the second descriptor register. Following the 
previous strategy, we assume that the privileged state bit assures 
that the supervisor program is the only one permitted to load 
either descriptor register. In addition, some scheme must be 
provided in the architecture of the processor to permit a choice of 
which descriptor register is to be used for each address generated 
by the processor. A simple scheme would be to let the high-order 
address bit select the descriptor register. Thus, in Fig. 2, all 
addresses in the lower half of the address range would be 
interpreted relative to descriptor register 1, and addresses in the 
upper half of the address range would be relative to descriptor 



register 2. An alternate scheme, suggested by Dennis [42], is to 
add explicitly to the format of instruction words a field that 
selects the descriptor register intended to be used with the address 
in that instruction. The use of descriptors for sharing information 
is intimately related to the addressing architecture of the 
processor, a relation that can cause considerable confusion. The 
reason why descriptors are of interest for sharing becomes 
apparent by comparing parts a and b of Fig. 2. When program A 
is in control, it can have access only to itself and the math 
routine; similarly, when program B is in control, it can have 
access only to itself and the math routine. Since neither program 
has the power to change the descriptor register, sharing of the 
math routine has been accomplished while maintaining isolation 
of program A from program B.  
The effect of sharing is shown even more graphically in Fig. 3, 
which is Fig. 2 redrawn with two virtual processors, one 
executing program A and the other executing program B.  
Whether or not there are actually two processors is less important 
than the existence of the conceptually parallel access paths 
implied by Fig. 3.  

 
Fig. 3. Fig. 2 redrawn to show sharing of a math routine by 
two virtual processors simultaneously. 
 
Every virtual processor of the system may be viewed as having 
its own real processor, capable of access to the memory in 
parallel with that of every other virtual processor. There may be 
an underlying processor multiplexing facility that distributes a 
few real processors among the many virtual processors, but such 
a multiplexing facility is essentially unrelated to protection. 
Recall that a virtual processor is not permitted to load its own 
protection descriptor registers. Instead, it must call or trap to the 
supervisor program S which call or trap causes the privileged 
state bit to go ON and thereby permits the supervisor program to 
control the extent of sharing among virtual processors. The 
processor multiplexing facility must be prepared to switch the 
entire state of the real processor from one virtual processor to 
another, including the values of the protection descriptor 
registers.  
 
Although the basic mechanism to permit information sharing is 
now in place, a remarkable variety of implications that follow 
from its introduction require further mechanisms. These 
implications include the following.  

1) If virtual processor P1 can overwrite the shared math routine, 
then it could disrupt the work of virtual processor P2.  
2) The shared math routine must be careful about making 
modifications to itself and about where in memory it writes 
temporary results, since it is to be used by independent 
computations, perhaps simultaneously.  
3) The scheme needs to be expanded and generalized to cover the 
possibility that more than one program or data base is to be 
shared.  
4) The supervisor needs to be informed about which principals 
are authorized to use the shared math routine (unless it happens 
to be completely public with no restrictions).  
 

 
Fig. 4. A descriptor containing READ and WRITE 
permission bits. 
 
Let us consider these four implications in order. If the shared area 
of memory is a procedure, then to avoid the possibility that 
virtual processor P1 will maliciously overwrite it, we can restrict 
the methods of access. Virtual processor P1 needs to retrieve 
instructions from the area of the shared procedure, and may need 
to read out the values of constants embedded in the program, but 
it has no need to write into any part of the shared procedure. We 
may accomplish this restriction by extending the descriptor 
registers and the descriptors themselves to include accessing 
permission, an idea introduced for different reasons in the 
original Burroughs B5000 design [32] . For example, we may add 
two bits, one controlling permission to read and the other 
permission to write in the storage area defined by each descriptor, 
as in Fig. 4. In virtual processor P1 of Fig. 3, descriptor 1 would 
have both permissions granted, while descriptor 2 would permit 
only reading of data and execution of instructions.21 An 
alternative scheme would be to attach the permission bits directly 
to the storage areas containing the shared program or data. Such a 
scheme is less satisfactory because, unlike the descriptors so far 
outlined, permission bits attached to the data would provide 
identical access to all processors that had a descriptor. Although 
identical access for all users of the shared math routine of Figs. 1-
2-3 might be acceptable, a data base could not be set up with 
several users having permission to read but a few also having 
permission to write.  
The second implication of a shared procedure, mentioned before, 
is that the shared procedure must be careful about where it stores 
temporary results, since it may be used simultaneously by several 
virtual processors. In particular, it should avoid modifying itself. 
The enforcement of access permission by descriptor bits further 
constrains the situation. To prevent program A from writing into 
the shared math routine, we have also prohibited the shared math 
routine from writing into itself, since the descriptors do not 
change when, for example, program A transfers control to the 
math routine.22 The math routine will find that it can read but not 
write into itself, but that it can both read and write into the area of 
program A. Thus program A might allocate an area of its own 
address range for the math routine to use as temporary storage.23  
As for the third implication, the need for expansion, we could 
generalize our example to permit several distinct shared items 
merely by increasing the number of descriptor registers and 



informing the supervisor which shared objects should be 
addressable by each virtual processor. However, there are two 
substantially different forms of this generalization--capability 
systems and access control list systems. In terms of the earlier 
discussion, capability systems are ticket-oriented, while access 
control list systems are list-oriented. Most real systems use a 
combination of these two forms, the capability system for speed 
and an access control list system for the human interface. Before 
we can pursue these generalizations, and the fourth implication, 
authorization, more groundwork must be laid.  
In Section II, the development of protection continues with a 
series of successively more sophisticated models. The initial 
model, of a capability system, explores the use of encapsulated 
but copyable descriptors as tickets to provide a flexible 
authorization scheme. In this context we establish the general rule 
that communication external to the computer must precede 
dynamic authorization of sharing. The limitations of copyable 
descriptors--primarily lack of accountability for their use--lead to 
analysis of revocation and the observation that revocation 
requires indirection. That observation in turn leads to the model 
of access control lists embedded in indirect objects so as to 
provide detailed control of authorization.  
The use of access control lists leads to a discussion of controlling 
changes to authorizations, there being at least two models of 
control methods which differ in their susceptibility to abuse. 
Additional control of authorization changes is needed when 
releasing sensitive data to a borrowed program, and this 
additional control implies a nonintuitive constraint on where data 
may be written by the borrowed program. Finally, Section II 
explores the concept of implementing arbitrary abstractions, such 
as extended types of objects, as programs in separate domains.  

 

II. DESCRIPTOR-BASED PROTECTION SYSTEMS 

A. Separation of Addressing and Protection24 

As mentioned earlier, descriptors have been introduced here for the 
purpose of protecting information, although they are also used in some 
systems to organize addressing and storage allocation. For the present, 
it is useful to separate such organizational uses of descriptors from their 
protective use by requiring that all memory accesses go through two 
levels of descriptors. In many implementations, the two levels are 
actually merged into one, and the same descriptors serve both 
organizational and protection purposes.  
Conceptually, we may achieve this separation by enlarging the function 
of the memory system to provide uniquely identified (and thus distinctly 
addressed) storage areas, commonly known as segments. For each 
segment there must be a distinct addressing descriptor, and we will 
consider the set of addressing descriptors to be part of the memory 
system, as in Fig. 5. Every collection of data items worthy of a distinct 
name, distinct scope of existence, or distinct protection would be placed 
in a different segment, and the memory system itself would be 
addressed with two-component addresses: a unique segment identifier 
(to be used as a key by the memory system to look up the appropriate 
descriptor) and an offset address that indicates which part of the 
segment is to be read or written. All users of the memory system would 
use the same addressing descriptors, and these descriptors would have 
no permission bits--only a base and a bound value. This scheme is 
functionally similar to that used in the Burroughs B5700/ 6700 or 

Honeywell Multics systems in that it provides a structured addressing 
space with an opportunity for systematic and automatic storage 
allocation.  
 

�

Fig. 5. An organization separating addressing from 
protection descriptors, using a segmented memory. The 
address passed from the processor to the memory consists 
of two parts: a unique segment identifier and an offset. 
Program A is in control. (Compare with Fig. 2(a).) In later 
figures the map containing addressing descriptors will be 
omitted for clarity, but it is assumed to be present in the 
actual implementation of a segmented memory. 
 
The unique identifiers used to label segments are an essential 
cornerstone of this organization. They will be used by the protection 
system to identify segments, so they must never be reused. One way of 
implementing unique identifiers is to provide a hardware counter register 
that operates as a clock (counting, say, microseconds) and is large 
enough never to overflow in the lifetime of the memory system. The 
value of the clock register at the time a segment is created can be used 
as that segment's unique identifier.25 As long as the memory system 
remembers anything, the time base of the clock register must not be 
changed.  
The processor of Fig. 5 contains, as part of its state, protection 
descriptors similar to those of Figs. 1 and 2, with the addition of 
permissions, as in Fig. 4. All references by the processor are 
constrained to be to segments described by these protection descriptors. 
The protection descriptor itself no longer contains a base and bound; 
instead the descriptor contains the unique segment identifier that the 
memory system requires as the first part of its two-part address for 
accessing that segment. Thus, from the point of view of a program 
stored in one of the segments of memory, this system is 
indistinguishable from that of Fig. 2. Note in Fig. 5 that although 
addressing descriptors exist for the segments containing program B and 
program S (the supervisor), they are not accessible to the processor 
since it has no protection descriptors for those two segments. It is useful 
to distinguish between the system address space, consisting of all the 
segments in the memory system, and the processor address space, 
consisting of those segments for which protection descriptors exist. 



Since the addressing descriptors are part of the memory system, which 
is shared by all processors, the system address space is universal. Any 
single processor address space, on the other hand, is defined by the 
particular protection descriptors associated with the processor and 
therefore is local. If the supervisor switches control of a real processor 
from one virtual processor to another, it would first reload the protection 
descriptors; the processor address space thus is different for different 
users, while the system address space remains the same for all users.  
With the addressing function separated architecturally from the 
protection function, we may now examine the two generalized forms of 
protection systems: the capability system and the access control list 
system.  
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1) The Concept of Capabilities: The simplest generalization is the 
capability system suggested by Dennis and Van Horn [41], and 
first partially implemented on an M.l.T. PDP-1 computer [48].26 
There are many different detailed implementations for capability 
systems; we illustrate with a specific example. Recall that we 
introduced the privileged state bit to control who may load values 
into the protection descriptor registers. Another way to maintain 
the integrity of these registers would be to allow any program to 
load the protection descriptor registers, but only from locations in 
memory that previously have been certified to contain acceptable 
protection descriptor values.  
Suppose, for example, that every location in memory were tagged 
with an extra bit. If the bit is OFF, the word in that location is an 
ordinary data or instruction word. If the bit is ON, the word is 
taken to contain a value suitable for loading into a protection 
descriptor register. The instruction that loads the protection 
descriptor register will operate only if its operand address leads it 
to a location in memory that has the tag bit ON. To complete the 
scheme, we should provide an instruction that stores the contents 
of a protection descriptor register in memory and turns the 
corresponding tag bit ON, and we must arrange that all other 
store instructions set the tag bit OFF in any memory location they 
write into. This gives us two kinds of objects stored in the 
memory: protection descriptor values and ordinary data values. 
There are also two sets of instructions, separate registers for 
manipulating the two kinds of objects, and, effectively, a wall 
that prevents values that are subject to general computational 
manipulation from ever being used as protection descriptor 
values. This kind of scheme is a particular example of what is 
called a tagged architecture.27  
This particular tagged architecture is known as a capability 
system, one that lets the user place protection descriptor values in 
memory addresses that are convenient to him. A memory word 
that contains a protection descriptor value (in our simple tagged 
system, one that has its tag bit ON) is known as a capability.  
To see how capabilities can be used to generalize our basic 
sharing strategy, suppose that each processor has several (say, 
four) protection descriptor registers, and that program A is in 
control of a processor, as in Fig. 6. (For clarity, this and future 
figures omit the addressing descriptors of the segmented 
memory.) The first two protection descriptor registers have 
already been loaded with values permitting access to two 
segments, program A and a segment we have labeled "Catalog 
for Doe." In our example, this latter segment contains two 
locations with tags indicating that they are capabilities, Cl and 
C2. Program A may direct the processor to load the capability at 

location C2 into one of the protection descriptor registers, and 
then the processor may address the shared math routine. 
Similarly, either program A or the shared math routine may direct 
the loading of the capability at location Cl into a protection 
descriptor register, after which the processor may address the 
segment labeled "Private Data Base X." By a similar chain of 
reasoning, another processor starting with a capability for the 
segment labeled "Catalog for Smith" can address both the shared 
math routine and the segment "Private Data Base Y."  
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Fig. 6. A simple capability system. Program A is in control 
of the processor. Note that there is no way for the 
processor to address Smith's catalog or data base Y. On 
the other hand, data base X could be accessed by loading 
capabUity C~ into a protection descriptor register. 
CapabUity C' is loadable because it is stored in a segment 
that can be reached from a capabUity already loaded in 
protection descriptor register 2. Note also that the former 
function of the privUeged state bit has been accomplished 
by protecting the capabilities. The privileged state bit also 
has other uses and wUI be reintroduced later. 
 
We can now arrange for any desired static pattern of sharing of 
segments. For example, for each user, we can provide one 
segment for use as a catalog and place in that catalog a capability 
for every segment he is authorized to use. Each capability 
contains separate read and write permission bits, so that some 
users may receive capabilities that permit reading and writing 
some segment, while others receive capabilities permitting only 
reading from that same segment. The catalog segment actually 
might contain pairs: a character-string name for some segment 
and the associated capability that permits addressing that 
segment. A user would create a new segment by calling the 
supervisor. The supervisor by convention might set some 
protection descriptor to contain a capability for the new 
segment.28 The user could then file his new segment by storing 
this new capability in his catalog along with a name for the 
segment. Thus we have an example of a primitive but usable 
filing system to go with the basic protection structure.29  
To complete the picture, we should provide a tie to some 
authentication mechanism. Suppose that the system responds to 
an authentication request by creating a new virtual processor and 



starting it executing in a supervisor program that initially has a 
capability for a user identification table, as in Fig. 7. If a user 
identifies himself as "Doe" and supplies a password, the 
supervisor program can look up his identification in the user 
identification table. It can verify the password and load into a 
protection descriptor register the capability for the catalog 
associated with Doe's entry in the user identification table. Next, 
it would clear the remaining capability registers, destroying the 
capability for the user identification table, and start running some 
program in Doe's directory, say program A. Program A can 
extend its addressability to any segment for which a capability 
exists in Doe's catalog. Formally, after verifying the claimed 
identity of the user, the authentication system has allowed the 
virtual processor to enter Doe's domain, starting in procedure A.  
By providing for authentication we have actually tied together 
two protection systems: 1) an authentication system that controls 
access of users to named catalog capabilities, and 2) the general 
capability system that controls access of the holder of a catalog 
capability to other objects stored in the system.  
The authentication system associates the newly created virtual 
processor with the principal accountable for its future activities. 
Once the virtual processor is started, however, the character-
string identifier "Doe" is no longer used; the associated catalog 
capability is sufficient. The replacement of the character-string 
form of the principal identifier is possible because the full range 
of accessible objects for this user has already been opened up to 
him by virtue of his acquisition of his catalog capability. The 
catalog capability becomes, in effect, the principal identifier. On 
the other hand, some loss of accountability has occurred. It is no 
longer quite so easy, by examining the registers of a running 
virtual processor, to establish who is accountable for its activity. 
This lack of accountability will have to be repaired in order to 
allow the virtual processor to negotiate the acquisition of new 
capabilities.  

 
 
Fig. 7. A capability system with provision for authentication. 
 
With this example of a capability system, a catalog is not a 
special object. It is merely any segment in which any program 
chooses to store capabilities that are, by virtue of their tags, 
protected unforgeable objects. If in Fig. 7, program A, running 
under Doe's control, creates a new object, it may choose to place 
the new capability in segment X in a position where it can easily 
be found later. In such a case, segment X has become, in effect, 
another catalog. To establish the full range of objects that Doe 
may address, it is necessary to examine not only the initial 
catalog segment, whose capability is contained in the user 

identification table, but also all segments it contains capabilities 
for, and all segments they contain capabilities for, etc.  
The scheme described so far admits any desired static 
arrangement of accessing authorization. It could be used in an 
application for which a simple, rarely changed, authorization 
pattern is useful. For example, a company data base management 
system might have a relatively static authorization pattern, which 
changes only when major revisions are made to the style of 
maintaining the data base. We have not yet provided, however, 
for the possibility that Doe, upon creating a new segment, might 
wish to authorize access to it for Smith. Such a need would 
probably arise if the computer system is used for the creation and 
editing of interoffice memoranda and letters or for constructing 
programs. We shall call this operation dynamic authorization. 
The dynamic authorization of sharing is a topic that must be 
examined quite carefully, since it exposes several subtle issues 
that are fundamental to sharing and protection.  
2) The Dynamic Authorization of Sharing: One might propose to 
handle dynamic authorization very simply by arranging that Doe 
have a capability to write into Smith's catalog. Then Doe could 
store a copy of the capability for the new segment in Smith's 
catalog. But this approach has a defect. Allowing Doe to have a 
capability to write into Smith's catalog would enable Doe to 
overwrite and destroy all of Smith's capabilities. The inverse 
strategy of giving Smith a capability to read Doe's catalog would 
give Smith access to all of Doe's segments. A more "secure" 
approach to the problem is needed. To develop this approach, we 
will consider a clumsy strategy with square-law growth, and then 
refine it.  
If the possibility of sharing had been anticipated, both Doe and 
Smith might initially have had a capability allowing reading and 
writing a communication segment used only to pass messages 
and capabilities between Doe and Smith. Doe's program deposits 
the capability for his newly created object in the communication 
segment for Smith, and Smith's program can pick it up and use it 
or catalog it at Smith's convenience. But that description 
oversimplifies one step. Both Doe's and Smith's programs 
somehow have to locate the capability for the common 
communication segment. How do they know what to look for? 
Consider the case of the sender, Doe's program, first. Presumably 
it looks in some trusted catalog for the name "Smith" and finds 
the capability for the communication segment next to Smith's 
name. But how does Doe's program know to look for the name 
"Smith"? The character-string name may be embedded in the 
program by Doe or he may type it into his program as it runs, but 
either way one thing is crucial--that there be a secure path from 
Doe, who is authorizing the passing of the capability, to the 
program, which is carrying it out. Next, we should ask, where 
does Doe find out the character-string name "Smith" so that he 
could type it in or embed it in his program? Presumably, he 
learns Smith's name via some path outside the computer. Perhaps 
Smith shouts it down the hall to him.30 The method of 
communication is not important, but the fact of the 
communication is. For dynamic authorization of sharing within a 
computer, there must be some previous communication from the 
recipient to the sender, external to the computer system. Further, 
this reverse external communication path must be sufficiently 
secure that the sender is certain of the system-cataloged name of 
the intended recipient. That name is, by definition, the identifier 
of the recipient's principal within the computer system. Thus the 
sender can be sure that only programs run under the 
accountability of that principal will have access to his new object.  



An analogous chain of reasoning applies to Smith's program as 
the recipient of the capability for the new object. Smith must 
learn from Doe some piece of information sufficient that he can 
instruct his program to look in the correct communication 
segment for the capability which Doe is sending. Again, Doe's 
principal identifier should be the name used in Smith's catalog of 
communication segments, so Smith can be certain that only some 
program run under Doe's accountability could possibly have sent 
the capability. In summary, here is a complete protocol for 
dynamically authorizing sharing of a new object.  
Sender's part:  

1. Sender learns receiver's principal identifier via a 
communication path outside the system.  

2. Sender transmits receiver's principal identifier to some 
program running inside the system under the 
accountability of the sender.  

3. Sender's program uses receiver's principal identifier to 
ensure that only virtual processors operating under the 
accountability of the receiver will be able to obtain the 
capability being transmitted.  

Receiver's part:  

1. Receiver learns sender's principal identifier, via a 
communication path outside the system.  

2. Receiver transmits sender's principal identifier to some 
program running inside the system under the 
accountability of the receiver.  

3. Receiver's program uses the sender's principal identifier 
to ensure that only a virtual processor operating under 
the accountability of the sender could have sent the 
capability being received.  

This protocol provides protection for the authorization changing 
mechanism (copying of a capability) by requiring an authority 
check (comparison of a principal identifier found inside the 
system with authorization information transmitted from outside). 
Although the analysis may seem somewhat strained, it is 
important because it always applies, even though parts of it may 
be implicit or hidden. We have described the protocol in terms of 
a capability system, but the same protocol also applies in access 
control list systems.  
Our analysis of the dynamics of authorizing sharing has been in 
terms of private communication segments between every pair of 
users, a strategy which would lead, with N users, to some N2 
communication segments. To avoid this square-law growth, one 
might prefer to use some scheme that dynamically constructs the 
communication paths also, such as having special hardware or a 
protected subsystem that implements a single "mailbox segment" 
for each user to receive messages and capabilities sent by all 
other users. Of course, the mechanism that implements the 
mailbox segments must be a protected, reliable mechanism, since 
it must infallibly determine the principal identifier of the sender 
of a message and label the message with that identifier, so the 
receiver can reliably carry out his step 3) of the protocol. 
Similarly, as the sender's agency, it must be able to associate the 
recipient's principal identifier with the recipient's mailbox, so that 
the sender's intent in his step 3) of the protocol is carried out 
correctly.  

3) Revocation and Control of Propagation: The capability system 
has as its chief virtues its inherent efficiency, simplicity, and 
flexibility. Efficiency comes from the ease of testing the validity 
of a proposed access: if the accessor can present a capability, the 
request is valid. The simplicity comes from the natural 
correspondence between the mechanical properties of capabilities 
and the semantic properties of addressing variables. The 
semantics for dynamically changing addressability that are part of 
such modern languages as PL/I and Algol 68 fit naturally into a 
capability-based framework by using capabilities as address 
(pointer) variables. Straightforward additions to the capability 
system allow it gracefully to implement languages with dynamic-
type extension [21] . Flexibility comes from the defining property 
of a capability system: the user may decide which of his 
addresses are to contain capabilities. The user can develop a data 
structure with an arbitrary pattern of access authorizations to his 
liking.  
On the other hand, there are several potential problems with the 
capability system as we have sketched it so far. If Doe has a 
change of heart--he suddenly realizes that there is confidential 
information in the segment he permitted Smith to read--there is 
no way that he can disable the copy of the capability that Smith 
now has stored away in some unknown location. Unless we 
provide additional control, his only recourse is to destroy the 
original segment, an action which may be disruptive to other 
users, still trusted, who also have copies of the capability. Thus 
revocation of access is a problem.  
A second, related property of a capability system is that Smith 
may now make copies of the capability and distribute them to 
other users, without the permission or even the knowledge of 
Doe. While in some cases, the ability of a recipient to pass access 
authorization along is exactly what the original grantor intended, 
in others it is not. We have not provided for any control of 
propagation.  
Finally, the only possible way in which Doe could make a list of 
all users who currently can reach his segment would be by 
searching every segment in the system for copies of the necessary 
capability. That search would be only the beginning, since there 
may be many paths by which users could reach those capability 
copies. Every such path must be found, a task that may involve a 
fair amount of computation and that also completely bypasses the 
protection mechanisms. Thus review of access is a problem.31  
To help counter these problems, constraints on the use of 
capabilities have been proposed or implemented in some systems. 
For example, a bit added to a capability (the copy bit) may be 
used to indicate whether or not the capability may be stored in a 
segment. If one user gives another user access to a capability with 
the copy bit OFF, then the second user could not make copies of 
the capability he has borrowed. Propagation would be prevented, 
at the price of lost flexibility.  
Alternatively, some segments (perhaps one per user) may be 
designated as capability-holding segments, and only those 
segments may be targets of the instructions that load and store 
descriptor registers. This scheme may reduce drastically the 
effort involved in auditing and make revocation possible, since 
only capability-holding segments need be examined. (The CAP 
system [20] and the Plessey 250 [53] are organized in 
approximately this way, and the Burroughs B5000 family 
restricts descriptor storage to the virtual processor stack and a 
single table of outbound references [47].) In systems that make a 
programmer-visible distinction between short-term processor-
addressable memory (addressed by LOAD and STORE 



instructions) and long-term storage (addressed by GET and PUT 
subroutines), it is possible to restrict capabilities so that they may 
be stored only in processor-addressable memory. This restriction 
not only reduces the effort required for auditing, but also limits 
the lifetime of a capability to that of a virtual processor. When 
the system shuts down, the only memory of the system is in long-
term storage and all capabilities vanish. Of course, the next time 
the system starts up, newly created virtual processors need some 
way (such as appeal to an access control list system, described in 
the next subsection) to acquire the capabilities they need.  
A third approach is to associate a depth counter with each 
protection descriptor register. The depth counter initially would 
have the value, say, of one, placed there by the supervisor. 
Whenever a program loads a descriptor register from a place in 
memory, that descriptor register receives a depth count that is one 
greater than the depth count of the descriptor register that 
contained the capability that permitted the loading. Any attempt 
to increase a depth count beyond, say, three, would constitute an 
error, and the processor would fault. In this way, the depth 
counters limit the length of the chain by which a capability may 
propagate. Again, this form of constraint reduces the effort of 
auditing, since one must trace chains back only a fixed number of 
steps to get a list of all potential accessors. (The M.I.T. CTSS 
used a software version of this scheme, with a depth limit of 
two.)  
To gain more precise control of revocation, Redell [54] has 
proposed that the basic capability mechanism be extended to 
include the possibility of forcing a capability to specify its target 
indirectly through a second location before reaching the actual 
object of interest. This second location would be an 
independently addressable recognizable object, and anyone with 
an appropriate capability for it could destroy the indirect object, 
revoking access to anyone else who had been given a capability 
for that indirect object. By constructing a separate indirect object 
for each different principal he shared an object with, the owner of 
the object could maintain the ability to revoke access 
independently for each principal. The indirect objects would be 
implemented within the memory-mapping hardware (e.g., the 
addressing descriptors of Fig. 5) both to allow high-speed 
bypassing if frequent multiple indirections occur and also to 
allow the user of a capability to be ignorant of the existence of 
the indirection.32 Redell's indirect objects are closely related to 
the access controllers of the access control list system, described 
in the next subsection. While providing a systematic revocation 
strategy (if their user develops a protocol for systematically using 
them), the indirect objects provide only slight help for the 
problems of propagation and auditing.  
The basic trouble being encountered is that an authorization--a 
kind of binding--takes place any time a capability is copied. 
Unless an indirect object is created for the copy, there is no 
provision for reversing this binding. The ability to make a further 
copy (and potentially a new authorization) is coupled to 
possession of a capability and is not independently controllable. 
Restrictions on the ability to copy, while helping to limit the 
number or kind of authorizations, also hamper the simplicity, 
flexibility, and uniformity of capabilities as addresses. In 
particular, capabilities are especially useful as a way of 
communicating exactly the necessary arguments from one 
procedure to another. In this way, they encourage wide use of 
procedures, a cornerstone of good programming practice. 
Restrictions on copyability, then, inhibit their usefulness in the 
context of procedure calls, and that runs counter to the goal of 

providing base-level facilities that encourage good programming 
practice. This dilemma seems to present an opportunity for 
research. At the present level of understanding, the most effective 
way of preserving some of the useful properties of capabilities is 
to limit their free copyability to the bottom most implementation 
layer of a computer system, where the lifetime and scope of the 
bindings can be controlled. The authorizations implemented by 
the capability system are then systematically maintained as an 
image of some higher level authorization description, usually 
some kind of an access control list system, which provides for 
direct and continuous control of all permission bindings.33  
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1) Access Controllers: The usual strategy for providing 
reversibility of bindings is to control when they occur--typically 
by delaying them until the last possible moment. The access 
control list system provides exactly such a delay by inserting an 
extra authorization check at the latest possible point. Where the 
capability system was basically a ticket-oriented strategy, the 
access control list system is a list-oriented strategy. Again, there 
are many possible mechanizations, and we must choose one for 
illustration. For ease of discussion, we will describe a mechanism 
implemented completely in hardware (perhaps by 
microprogramming), although, historically, access control list 
systems have been implemented partly with interpretive software. 
Our initial model will impose the extra authorization check on 
every memory reference, an approach that is unlikely in practice 
but simpler to describe. Later we will show how to couple an 
access control list system to a capability system, a more typical 
realization that reduces the number of extra checks.  

 
Fig. 8. Conceptual model of an access controller. When a 
virtual processor attempts to refer to the segment 
associated with the access controller, the memory system 
looks up the principal identifier in the access control list part. 
If found, the permissions associated with that entry of the 
access control list, together with the addressing descriptor, 
are used to complete the access.   
 
The system of Fig. 5 identified protection descriptors as a 
processor mechanism and addressing descriptors as a memory 
mechanism. Suppose that the memory mechanism is further 
augmented as follows.  
 



 
Fig. 9. A revision of Fig. 5, with the addition of an access 
controller as an indirect address to be used on all 
references by the processor to the memory. Since the 
access controller contains permission bits, they no longer 
need appear in the processor registers, which have been 
renamed "pointer" registers. Note that the privileged state 
bit of the processor has been replaced with a principal 
identifier register. 
 
Whenever a user requests that a segment be created, the memory 
system will actually allocate two linked storage areas. One of the 
storage areas will be used to store the data of the segment as 
usual, and the second will be treated as a special kind of object, 
which we will call an access controller. An access controller 
contains two pieces of information: an addressing descriptor for 
the associated segment and an access control list, as in Fig. 8. An 
addressing descriptor for the access controller itself is assigned a 
unique identifier and placed in the map used by the memory 
system to locate objects. The access controller is to be used as a 
kind of indirect address, as in Fig. 9. In order to access a 
segment, the processor must supply the unique identifier of that 
segment's access controller. Since the access controller is 
protected, however, there is no longer any need for these unique 
identifiers to be protected. The former protection descriptor 
registers can be replaced with unprotected pointer registers, 
which can be loaded from any addressable location with arbitrary 
bit patterns. (In terms of IBM System 370 and Honeywell 
Multics, the pointer registers contain segment numbers from a 
universal address space. The segment numbers lead to the 
segment addressing descriptors stored in the access controller.) 
Of course, only bit patterns corresponding to the unique identifier 
of some segment's access controller will work. A data reference 
by the processor proceeds in the following steps, keyed to Fig. 9.  

1. The program encounters an instruction that would write 
in the segment described by pointer register 3 at offset 
k.  

2. The processor uses the unique identifier found in 
pointer register 3 to address access controller AC1. The 

processor at the same time presents to the memory 
system the user's principal identifier, a request to write, 
and the offset k.  

3. The memory system searches the access control list in 
AC1 to see if this user's principal identifier is recorded 
there.  

4. If the principal identifier is found, the memory system 
examines the permission bits associated with that entry 
of the access control list to see if writing is permitted.  

5. If writing is permitted, the addressing descriptor of 
segment X, stored in AC1, and the original offset k are 
used to generate a write request inside the memory 
system.  

We need one more mechanism to make this system work. The set 
of processor registers must be augmented with a new protected 
register that can contain the identifier of the principal currently 
accountable for the activity of the virtual processor, as shown in 
Fig. 9. (Without that change, one could not implement the second 
and third steps.)  
For example, we may have an organization like that of Fig. 10, 
which implements essentially the same pattern of sharing as did 
the capability system of Fig. 6. The crucial difference between 
these two figures is that, in Fig. 10, all references to data are 
made indirectly via access controllers. Overall, the organization 
differs in several ways from the pure capability system described 
before.  

1. The decision to allow access to segment X has known, 
auditable consequences. Doe cannot make a copy of the 
addressing descriptor of segment X since he does not 
have direct access to it, eliminating propagation of 
direct access. The pointer to X's access controller itself 
may be freely copied and passed to anyone, but every 
use of the pointer must be via the access controller, 
which prevents access by unauthorized principals.34  

2. The access control list directly implements the sender's 
third step of the dynamic sharing protocol--verifying 
that the requester is authorized to use the object. In the 
capability system, verification was done once to decide 
if the first capability copy should be made; after that, 
further copying was unrestricted. The access control list, 
on the other hand, is consulted on every access.  

3. Revocation of access has become manageable. A 
change to an access control list removing a name 
immediately preludes all future attempts by that user to 
use that segment.  

4. The question of "who may access this segment?" 
apparently is answered directly by examining the 
access control list in the access controller for the 
segment. The qualifier "apparently" applies because we 
have not yet postulated any mechanism for controlling 
who may modify access control lists.  

5. All unnecessary association between data organization 
and authorization has been broken. For example, 
although a catalog may be considered to "belong" to a 
particular user, the segments appearing in that catalog 
can have different access control lists. It follows that 
the grouping of segments for naming, searching, and 
archiving purposes can be independent of any desired 



grouping for protection purposes. Thus, in Fig. 10, a 
library catalog has been introduced.  

 
Fig. 10. A protection system using access controllers 
containing access control lists. In this system, every 
segment has a single corresponding access controller with 
its own unique identifier for addressing purposes; pointer 
registers always contain the unique identifiers of accoss 
controllers. Program A is in control of the processor, and it 
has already acquired a pointer to the library catalog. Since 
the access control list in the access controller for the library 
catalog contains Doe's name, the processor can use the 
catalog to find the pointer for the shared math routine. 
Since his name also appears in the accoss control list of 
the math routine, the processor will then be able to use the 
shared math routine. 
 
 
It is also apparent that implementation, especially direct hardware 
implementation, of the access control list system could be quite 
an undertaking. We will later consider some strategies to simplify 
implementation with minimum compromise of functions, but first 
it will be helpful to introduce one more functional property-
protection groups.  
2) Protection Groups: Cases often arise where it would be 
inconvenient to list by name every individual who is to have 
access to a particular segment, either because the list would be 
awkwardly long or because the list would change frequently. To 
handle this situation, most access control list systems implement 
factoring into protection groups, which are principals that may be 
used by more than one user. If the name of a protection group 
appears in an access control list, all users who are members of 
that protection group are to be permitted access to that segment.  
Methods of implementation of protection groups vary widely. A 
simple way to add them to the model of Figs. 9 and 10 is to 
extend the "principal holding" register of the processor so that it 
can hold two (or more) principal identifiers at once, one for a 
personal principal identifier and one for each protection group of 
which the user is a member. Fig. 10 shows this extension in 
dashed lines. In addition, we upgrade the access control list 
checker so that it searches for a match between any of the 
principal identifiers and any entries of the access control list.35 
Finally, who is allowed to use those principals that represent 
protection group identifiers must also be controlled 
systematically.  
We might imagine that for each protection group there is a 
protection group list, that is, a list of the personal principal 
identifiers of all users authorized to use the protection group's 
principal identifier. (This list is an example of an access control 

list that is protecting an object--a principal identifier other than a 
segment.) When a user logs in, he can specify the set of principal 
identifiers he proposes to use. His right to use his personal 
principal identifier is authenticated, for example, by a password. 
His right to use the remaining principal identifiers can then be 
authenticated by looking up the now-authenticated personal 
identifier on each named protection group list. If everything 
checks, a virtual processor can safely be created and started with 
the specified list of principal identifiers.36  
3) Implementation Considerations: The model of a complete 
protection system as developed in Fig. 10 is one of many possible 
architectures, most of which have essentially identical functional 
properties; our choices among alternatives have been guided 
more by pedagogical considerations than by practical 
implementation issues. There are at least three key areas in which 
a direct implementation of Fig. 10 might encounter practical 
problems.  

1. As proposed, every reference to an object in memory 
requires several steps: reference to a pointer register; 
indirect reference through an access controller 
including search of an access control list; and finally, 
access to the object itself via addressing descriptors. 
Not only are these steps serial, but several memory 
references are required, so fast memory access would 
be needed.  

2. An access control list search with multiple principal 
identifiers is likely to require a complex mechanism, or 
be slow, or both. (This tradeoff between performance 
and complexity contrasts with the capability system, in 
which a single comparison is always sufficient.)  

3. Allocation of space for access control lists, which can 
change in length, can be a formidable implementation 
problem. (Compared to a capability system, the 
mechanics of changing authorization in an access 
control list system are inherently more cumbersome.) 

Fig. 11. Use of "shadow" capability registers to speed up an 
access control list system. When a pointer register 
containing a unique identifier is flrst wed, the shadow 
register is automatically loaded from the access controller 
to which the unique identifier refers. Later wes of that 
pointer register thw do not require reference to the access 
controller. Storing of a pointer register means storing of the 
unique identifier only; the shadow register is never stored. 



The first of these problems is attacked by recognizing that the 
purpose of the access control list is to establish authorization 
rather than to mediate every detailed access. Mediation of access 
would be handled more efficiently by a capability system. 
Suppose we provide for each pointer register a "shadow" 
capability register that is invisible to the virtual processor, as in 
Fig. 11. Whenever a pointer register containing the unique 
identifier of an access controller is first used, the shadow register 
is loaded with a capability consisting of a copy of the addressing 
descriptor for the segment protected by the access controller, 
together with a copy of the appropriate set of permission bits for 
this principal.37 Subsequent references via that pointer register 
can proceed directly using the shadow register rather than 
indirectly through the access controller. One implication is a 
minor change in the revocability properties of an access control 
list: changing an access control list does not affect the capabilities 
already loaded in shadow registers of running processors. (One 
could restore complete revocability by clearing all shadow 
registers of all processors and restarting any current access 
control list searches. The next attempted use of a cleared shadow 
register would automatically trigger its reloading and a new 
access contra list check.) The result is a highly constrained but 
very fast capabitity system beneath the access control list system. 
The detailed checking of access control falls on the capability 
mechanism, which on individual memory references exactly 
enforces the constraints specified by the access control list 
system.  
The second and third problems, allocation and search of access 
control lists, appear to require more compromise of functional 
properties. One might, for example, constrain all access control 
lists to contain, say, exactly five entries, to simplify the space 
allocation problem. One popular implementation allows only 
three entries on each access control list. The first is filled in with 
the personal principal identifier of the user who created the object 
being protected, the second with the principal identifier of the 
(single) protection group to which he belongs, and the third with 
the principal identifier of a universal protection group of which 
all users are members. The individual access permissions for 
these three entries are specified by the program creating the 
segment.38  
A completely different way to provide an access control list 
system is to implement it in interpretive software in the path to 
the secondary storage or file system. Primary memory protection 
can be accomplished with either base-and-bound registers, or 
more generally with a capability system in which the capabilities 
cannot be copied into the file system. This approach takes the 
access control list checking mechanisms out of the heavily used 
primary memory access path, and reduces the pressure to 
compromise its functional properties. Such a mixed strategy, 
while more complex, typically proves to be the most practical 
compromise. For example, the Multics system [55] uses 
software-interpreted access control lists together with hardware-
interpreted tables of descriptors. Similarly, the "guard file" of the 
Burroughs B6700 Master Control Program is an example of an 
access controller implemented interpretively [57].  
4) Authority to Change Access Control Lists: The access control 
list organization brings one issue into focus: control of who may 
modify the access control information. In the capability system, 
the corresponding consideration is diffuse. Any program having a 
capability may make a copy and put that copy in a place where 
other programs, running in other virtual processors, can make use 
(or further copies) of it. The access control list system was 

devised to provide more precise control of authority, so some 
mechanism of exerting that control is needed. The goal of any 
such mechanism is to provide within the computer an authority 
structure that models the authority structure of whatever 
organization uses the computer. Two different authority-
controlling policies, with subtly different modeling abilities, have 
been implemented or proposed. We name these two self control 
and hierarchical control.  
 

 
Flg. 12. The access controller extended for self contained 
control over modification of its access control list. In this 
example, user Smith has three permissions: to read and to 
write into the associated segment, and to make 
modfications to the access control list of this access 
controller. Jones cannot modify the access control list, 
even though he can read and write in the segment 
described by this access controller. Doe is even more 
constrained. 
 
The simplest scheme is self control. With this scheme, we extend 
our earlier concept of access permission bits to include not just 
permission to read and write, but also permission to modify the 
access control list that contains the permission bits. Thus, in Fig. 
12, we have a slightly more elaborate access controller, which by 
itself controls who may make modifications to it. Suppose that 
the creation of a new segment is accompanied by the creation of 
an access controller that contains one initial entry in its access 
control list-an entry giving all permissions to the principal 
identifier associated with the creating virtual processor. The 
creator receives a pointer for the access controller he has just 
created, and then can adjust its access control list to contain any 
desired list of principal identifiers and permissions.39  
Probably the chief objection is to the self-control approach is that 
it is so absolute: there is no provision for graceful changes of 
authority not anticipated by the creator of an access control list. 
For example, in a commercial time-sharing system, if a key 
member of a company's financial department is taken ill, there 
may be no way for his manager to authorize temporary access to 
a stored budget file for a co-worker unless the absent user had the 
foresight to set his access control lists just right. (Worse yet 
would be the possibility of accidentally producing an object for 
which its access controller permits access to no one--another 
version of the garbage collection problem.) To answer these 
objections, the hierarchical control scheme is sometimes used.  
To obtain a hierarchical control scheme, whenever a new object 
is created the creator must specify some previously existing 



access controller to regulate future changes to the access control 
list in the access controller for the new object. The representation 
of an access controller must also be expanded to contain some 
kind of pointer to the access controller that regulates it (for 
example, a unique identifier). In addition, the interpretation of the 
permission bit named "ACLmod" is changed to apply to those 
access controllers that hierarchically are immediately below the 
access controller containing the permission bit. Then, as in Fig. 
13, all of the access controllers of the system will be arranged in 
a hierarchy, or tree structure, branching from the first access 
controller in the system, whose creation must be handled as a 
special case, since there is no previously existing access 
controller to regulate it. The hierarchical arrangement is now the 
pattern of access control, since a user with permission to modify 
access control lists may add his own principal identifier, with 
permission to modify access, to lower level access controllers, 
giving himself ability to change access control lists still further 
down the hierarchy. Permission to modify access at any one node 
of the hierarchy permits the holder to grant himself access to 
anything in the entire subtree based on that node.40  
The hierarchical control scheme might be used in a timesharing 
system as follows. The first access controller created is given an 
access control list naming one user, a system administrator. The 
system administrator creates several access controllers (for 
example, one for each department in his company) and grants 
permission to modify access in each controller to the department 
administrator. The department administrator can create additional 
access controllers in a tree below the one for his department, 
perhaps for subdepartments or individual computer users in his 
department. These individual users can develop any pattern of 
sharing they wish, through the use of access control lists in access 
controllers, for the segments they create. In an emergency, 
however, the department administrator can intevene and modify 
any access control list in his department. Similarly, the system 
administrator can intervene in case a department administrator 
makes a mistake or is unavailable.41  
The hierarchical system in our example is subject to the objection 
that the system administrator and department administrators are 
too powerful; any hierarchical arrangement inevitably leads to 
concentration of authority at the higher levels of the hierarchy. A 
hierarchical arrangement of authority actually corresponds fairly 
well to the way many organizations operate, but the hierarchical 
control method of modeling the organization has one severe 
drawback: the use and possible abuse of higher level authority is 
completely unchecked. In most societal organizations, higher 
level authority exists, but there are also checks on it. For 
example, a savings bank manager may be able to authorize a 
withdrawal despite a lost passbook, but only after advertising its 
loss in the newspaper. A creditor may remove money from a 
debtor's bank account, but only with a court order. A manager 
may open an employee's locked file cabinet, but (in some 
organizations) only after temporarily obtaining the key from a 
security office, an action which leaves a record in the form of a 
logbook entry. A policeman may search your house, but the 
search is illegal unless he first obtained a warrant. In each case, 
the authority to perform the operation exists, but the use of the 
authority is coupled with checks and balances designed to 
prevent abuse of the authority. In brief, the hierarchical control 
scheme provides for exercise of authority but, as sketched so far, 
has no provision for preventing abuse of that authority.  
One strategy that has been suggested in various forms [58], [59] 
is to add a field to an access controller, which we may call the 

prescript field. Whenever an attempt is made to modify an access 
control list (either by a special store instruction or by a call to a 
supervisor entry, depending on the implementation), the access-
modifying permission of the higher level access controller 
regulating the access control list is checked as always. If the 
permission exists, the prescript field of the access control list that 
is about to be modified is examined, and some action, depending 
on the value found, is automatically triggered. The following list 
suggests some possible actions that might be triggered by the 
prescript value, and some external policies that can be modeled 
with the prescript scheme.  

1. No action.  
2. Identifier of principal making change is logged (the 

"audit trail").  
3. Change is delayed one day ("cooling-off" period).  
4. Change is delayed until some other principal attempts 

the same change ("buddy" system).  
5. Change is delayed until signal is received from some 

specific (system-designated) principal ("court order").  

The goal of all of the policies (and the prescript mechanism in 
general) is to ensure that some independent judgment moderates 
otherwise unfettered use of authority.  
The notion of a prescript, while apparently essential to a 
protection system intended to model typical real authority 
structures, has not been very well developed in existing or 
proposed computer systems. The particular prescript mechanism 
we have used for illustration of the concept can model easily only 
a small range of policies. One could, for example, arrange that a 
prescript be invoked on every access to some segment, rather 
than just on changes in the authority structure. One could 
implement more complex policies by use of protected 
subsystems, a general escape mechanism described briefly in a 
later section.  
5) Discretionary and Nondiscretionary Controls: Our discussion 
of authorization and authority structures has so far rested on an 
unstated assumption: the principal that creates a file or other 
object in a computer system has unquestioned authority to 
authorize access to it by other principals. In the description of the 
self-control scheme, for example, it was suggested that a newly 
created object begins its existence with one entry in its access 
control list, giving all permissions to its creator.  
We may characterize this control pattern as discretionary42 
implying that the individual user may, at his own discretion, 
determine who is authorized to access the objects he creates. In a 
variety of situations, discretionary control may not be acceptable 
and must be limited or prohibited. For example, the manager of a 
department developing a new product line may want to 
"compartmentalize" his department's use of the company 
computer system to ensure that only those employees with a need 
to know have access to information about the new product. The 
manager thus desires to apply the principle of least privilege. 
Similarly, the marketing manager may wish to compartmentalize 
all use of the company computer for calculating product prices, 
since pricing policy may be sensitive. Either manager may 
consider it not acceptable that any individual employee within his 
department can abridge the compartmentalization decision 
merely by changing an access control list on an object he creates. 
The manager has a need to limit the use of discretionary controls 
by his employees. Any limits he imposes on authorization are 



controls that are out of the hands of his employees, and are 
viewed by them as nondiscretionary. Similar constraints are 
imposed in military security applications, in which not only 
isolated compartments are required, but also nested sensitivity 
levels (e.g., top secret, secret, and confidential) that must be 
modeled in the authorization mechanics of the computer system. 
Nondiscretionary controls may need to be imposed in addition to 
or instead of discretionary controls. For example, the department 
manager may be prepared to allow his employees to adjust their 
access control lists any way they wish, within the constraint that 
no one outside the department is ever given access. In that case, 
both nondiscretionary and discretionary controls apply.  
The key reason for interest in nondiscretionary controls is not so 
much the threat of malicious insubordination as the need to safely 
use complex and sophisticated programs created by suppliers 
who are not under the manager's control. A contract software 
house may provide an APL interpreter or a fast file sorting 
program. If the supplied program is to be useful, it must be given 
access to the data it is to manipulate or interpret. But unless the 
borrowed program has been completely audited, there is no way 
to be sure that it does not misuse the data (for example, by 
making an illicit copy) or expose the data either accidentally or 
intentionally. One way to prevent this kind of security violation 
would be to forbid the use of borrowed programs, but for most 
organizations the requirement that all programs be locally written 
(or even thoroughly audited) would be an unbearable economic 
burden. The alternative is confinement of the borrowed program, 
a term introduced by Lampson [61]. That is, the borrowed 
program should run in a domain containing the necessary data, 
but should be constrained so that it cannot authorize sharing of 
anything found or created in that domain with other domains.  
Complete elimination of discretionary controls is easy to 
accomplish. For example, if self-controlling access controllers 
are being used, one could arrange that the initial value for the 
access control list of all newly created objects not give "ACL-
mod" permission to the creating principal (under which the 
borrowed program is running). Then the borrowed program could 
not release information by copying it into an object that it creates 
and then adjusting the access control list on that object. If, in 
addition, all previously existing objects in the domain of the 
borrowed program do not permit that principal to modify the 
access control list, the borrowed program would have no 
discretionary control at all and the borrower would have 
complete control. A similar modification to the hierarchical 
control system can also be designed.  
It is harder to arrange for the coexistence of discretionary and 
nondiscretionary controls. Nondiscretionary controls may be 
implemented, for example, with a second access control list 
system operating in parallel with the first discretionary control 
system, but using a different authority control pattern. Access to 
an object would be permitted only if both access control list 
systems agreed. Such an approach, using a fully general access 
control list for nondiscretionary controls, may be more elaborate 
than necessary. The few designs that have appeared so far have 
taken advantage of a perceived property of some applications of 
nondiscretionary controls: the desired patterns usually are 
relatively simple, such as "divide the activities of this system into 
six totally isolated compartments." It is then practical to provide a 
simplified access control list system to operate in parallel with 
the discretionary control machinery.  
An interesting requirement for a nondiscretionary control system 
that implements isolated compartments arises whenever a 

principal is authorized to access two or more compartments 
simultaneously, and some data objects may be labeled as being 
simultaneously in two or more compartments (e.g., pricing data 
for a new product may be labeled as requiring access to the 
"pricing policy" compartment as well as the "new product line" 
compartment). In such a case it would seem reasonable that, 
before permitting reading of data from an object, the control 
mechanics should require that the set of compartments of the 
object being referenced be a subset of the compartments to which 
the accessor is authorized.  

 
Fig. 13. Hierarchical control of authority to modify access 
control lists. Each access controller has an extra field in 
addition to those of Fig. 12; the extra field contains the 
unique identifier of some higher level access controller. 
Authority to access segments A, X, and Y is controlled by 
access controllers AC1, AC2, and AC3, respectively. 
Authority to modify AC1 and AC2: is in turn controlled by 
AC4, while authority to modify AC3 is controlled by AC5. 
Authority to modify AC4 and AC5, is controlled by AC6, 
which is the first access controller in the system. In this 
example, the authority to modify AC6 is similar to the self-
control scheme. Note that segments S4, S5, and S6 may 
be degenerate; AC4, AC5, and AC6 may exist solely to 
control the authority to modify other access controllers. The 
meaning of the backpointer, say, from AC1 to AC1, is that if 
a user attempts to modify the access control list of AC1, the 
backpointer is foUowed, leading to AC1. Only if the user's 
principal identifier h found in AC4 (with appropriate 
permission) is the modification to AC1 permitted. Segments 
A, X, and Y are arranged in an independent hierarchy of 
their own, with A superior to X and Y, by virtue of the 
pointer values P1 and P2 found in segment A. 
 
However, a more stringent interpretation is required for 
permission to write, if borrowed programs are to be confined. 
Confinement requires that the virtual processor be constrained to 
write only into objects that have a compartment set identical to 
that of the virtual processor itself. If such a restriction were not 
enforced, a malicious borrowed program could, upon reading 



data labeled for both the "pricing policy" and the "new product 
line" compartments, make a copy of part of it in a segment 
labeled only "pricing policy," thereby compromising the "new 
product line'' compartment boundary. A similar set of restrictions 
on writing can be expressed for sensitivity levels; a complete and 
systematic analysis in the military security context was developed 
by Weissman [14]. He suggested that the problem be solved by 
automatically labeling any written object with the compartment 
labels needed to permit writing, a strategy he named the "high 
water mark." As an alternative, the strategy suggested by Bell and 
LaPadula [62] declared that attempts to write into objects with 
too few compartment labels are errors that cause the program to 
stop.43 Both cases recognize that writing into objects that do not 
have the necessary compartment labels represents potential 
"declassification" of sensitive information. Declassification 
should occur only after human judgment has been interposed to 
establish that the particular information to be written is not 
sensitive. Developing a systematic way to interpose such human 
judgments is a research topic.  
Complete confinement of a program in a shared system is very 
difficult, or perhaps impossible, to accomplish, since the program 
may be able to signal to other users by strategies more subtle than 
writing into shared segments. For example, the program may 
intentionally vary its paging rate in a way users outside the 
compartment can observe, or it may simply stop, causing its user 
to go back to the original author for help, thereby revealing the 
fact that it stopped. D. Edwards characterized this problem with 
the phrase "banging on the walls." Lampson [61], Rotenberg 
[59], and Fenton [64] have explored this problem in some depth.  

D. Protecting Objects Other Than Segments 

So far, it has been useful to frame our discussion of protection in 
terms of protecting segments, which basically are arbitrary-sized 
units of memory with no internal structure. Capabilities and 
access control lists can protect other kinds of objects also. In Fig. 
9, access controllers themselves were treated as system-
implemented objects, and in Fig. 13 they were protected by other 
access controllers. It is appropriate to protect many other kinds of 
objects provided by the hardware and software of computer 
systems. To protect an object other than a segment, one must first 
establish what kinds of operations can be performed on the object, 
and then work out an appropriate set of permissions for those 
operations. For a data segment, the separately controllable 
operations we have used in our examples are those of reading and 
writing the contents.  
For an example of a different kind of system-implemented object, 
suppose that the processor is augmented with instructions that 
manipulate the contents of a segment as a first-in, first-out queue. 
These instructions might interpret the first few words of the 
segment as pointers or counters, and the remainder as a storage 
area for items placed in the queue. One might provide two special 
instructions, "enqueue" and "dequeue," which add to and remove 
from the queue. Typically, both of these operations would need to 
both read and write various parts of the segment being used as a 
queue.  
As described so far, the enqueue and dequeue instructions would 
indiscriminately treat any segment as a queue, given only that the 
program issuing the instruction had loaded a capability permitting 
reading and writing the segment. One could not set up a segment 
so that some users could only enqueue messages, and not be able 

to dequeue--or even directly read--messages left by others. Such 
a distinction between queues and other segments can be made by 
introducing the concept of type in the protection system.  
Consider, for example, the capability system in Fig. 6. Suppose 
we add to a capability an extra field, which we will name the type 
field. This field will have the value 1 if the object described by 
the capability is an ordinary segment, and the value 2 if the object 
is to be considered a queue. The protection descriptor registers 
are also expanded to contain a type field. We add to the processor 
the knowledge of which types are suitable as operands for each 
instruction. Thus the special instructions for manipulating queues 
require that the operand capability have type field 2, while all 
other instructions require an operand capability with type field 1. 
Further, the interpretation of the permission bits can be different 
for the queue type and the segment type. For the queue type, one 
might use the first permission bit to control use of the enqueue 
instruction and the second permission bit for the dequeue 
instruction. Finally, we should extend the "create" operation to 
permit specification of the type of object being created.  

 
Fig. 14. A protected subsystem to implement the grade-
keeping system described in the text. P1, which can be 
invoked by all students in the subjoct, is programmed to 
return the caller's grade for a particular assignment or the 
distribution of all grades for an assignment. P2 which can 
be invoked by the teaching assistants for the subject, is 
programmed to allow the addition of new grades to the 
record but to prevent changing a grade once it is entered. 
P3, which can be invoked only by the instructor, is 
programmed to read or write on request any data in the 
grade record. 
 
 
Clearly, one could extend the notion of type beyond segments 
and queues; any data structure could be similarly distinguished 
and protected from misuse. Further, input and output streams 
attached to interactive terminals, printers, and the like could be 
considered distinct types with their own repertoire of separately 
permitted operations. The concept of type extension is not 
restricted to capability systems; in an access control list system 



one could place the type field in the access controller and require 
that the processor present to the memory, along with each 
operand address, an indication of the type and permission bits 
required for the operation being performed. Table I lists some 
typical system-implemented objects and the kinds of operations 
one might selectively permit. This table could be extended to 
include other objects that are basically interpreted data structures, 
such as accounts or catalogs.  
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Typical System-Provided Protected Objects  

Object  
Typical Separately Permittable 
Operations  

Data segment  

READ data from the segment  
WRITE data into the segment  
Use any capability found in the 
segment  
Write a capability into the 
segment  

Access controller  

Read access control list  
Modify names appearing on an 
access control list  
Modify permissions in access 
control list entries  
Destroy objects protected by 
this access controller  

FIFO message queue  

Enqueue a message  
Dequeue a message  
Examine queue contents 
without dequeueing  

Input/Output  

READ data  
WRITE data  
Issue device-control 
commands  

Remove recording medium (e.g. 
magnetic tape reel)  

READ data  
WRITE over data  
WRITE data in new area  

Finally, one may wish to extend dynamically the range of objects 
protected. Such a goal might be reached by making the type field 
large enough to contain an additional unique identifier, and 
allowing for software interpretation of the access to typed 
objects. This observation brings us to the subject of user-
programmed controls on sharing and the implementation of 
protected objects and protected subsystems. We shall not attempt 
to examine this topic in depth, but rather only enough to learn 
what problems are encountered.  
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Both the capability system and the access control list system 
allow controlled sharing of the objects implemented by the 
system. Several common patterns of use can be independently 
controlled, such as reading, writing, or running as a program. 
While it is a great improvement over "all-or-nothing" sharing, 
this sort of controlled sharing has two important limitations.  

The first limitation is that only those access restrictions provided 
by the standard system facilities can be enforced. It is easy to 
imagine many cases where the standard controls are not 
sufficient. For example, an instructor who maintains his course 
grade records in a segment on an interactive system may wish to 
allow each student to read his own grades to verify correct 
recording of each assignment, but not the grades of other 
students, and to allow any student to examine the histogram of 
the class grades for each assignment. Implementing such controls 
within systems of the sort discussed in the last few sections 
would be awkward, requiring at least the creation of a separate 
segment for each student and for the distributions. If, in addition, 
the instructor wishes an assistant to enter new grades, but wants 
to guarantee that each grade entered cannot be changed later 
without the instructor's specific approval, we have a situation that 
is beyond the ability of the mechanisms so far described.  
The mechanisms described so far cannot handle this situation 
because the manipulations we wish to perform on a grade or a set 
of grades are not fundamental operations of the base-level 
system. In essence, we wish to dynamically define a new type, 
the grade record, and provide a set of programs that interpretively 
implement the operations appropriate for this new type.44  
The second limitation concerns users who borrow programs 
constructed by other users. Execution of a borrowed program in 
the borrower's domain can present a real danger to the borrower, 
for the borrowed program can exercise all the capabilities in the 
domain of the borrower. Thus a user must have a certain amount 
of faith in the provider of a program before he executes the 
program in his own domain.  
The key to removing these limitations is the notion of a protected 
subsystem. A protected subsystem is a collection of program and 
data segments that is "encapsulated" so that other executing 
programs cannot read or write the program and data segments 
and cannot disrupt the intended operation of the component 
programs, but can invoke the programs by calling designated 
entry points. The encapsulated data segments are the protected 
objects. Programs in a protected subsystem can act as caretakers 
for the protected objects and interpretively enforce arbitrarily 
complex controls on access to them. Programs outside the 
protected subsystem are allowed to manipulate the protected 
objects only by invoking the care taker programs. Algorithms in 
these caretaker programs may perform any appropriate operation, 
possibly depending on the circumstances of invocation, and may 
even record each access request in some way in some protected 
objects. For example, the protected subsystem shown in Fig. 14 
implements the grade keeping system discussed above. Clearly, 
any access constraints that can be specified in an algorithm can 
be implemented in this fashion. Giving users the ability to 
construct protected subsystems out of their own program and data 
segments allows users to provide arbitrary controls on sharing.  
If programs inside a protected subsystem can invoke programs in 
another protected subsystem without compromising the security 
of the first subsystem, then we can plug together multiple 
protected subsystems to perform a computation. We also find a 
way around the borrowed program problem. The normal domain 
of a user is one example of a protected subsystem. The user 
arranges for programs borrowed from other users to execute 
outside of this "home" protected subsystem. In this way, the 
borrowed programs can be invoked without giving them access to 
all the programs and data of the borrower. If the borrowed 
program is malicious or malfunctions, the damage it can do is 
limited. The lending user could also encapsulate the lent program 



complex in a protected subsystem of its own and thus insulate it 
from the programs of the borrower.45  
The notion of protected subsystems, then, provides mutual 
protection for multiple program complexes cooperating in the 
same computation and removes two limitations of facilities 
providing simple controlled sharing. It is clear from the 
description of protected subsystems that each must operate in its 
own domain. Implementing protected subsystems requires 
mechanisms that allow the association of more than one domain 
with a computation and also requires means for changing from 
one protection domain to another as control passes from one 
protected subsystem to another. The design must ensure that one 
protected subsystem cannot interfere in any way with the correct 
operation of another subsystem involved in the same 
computation.  
We note in passing that the supervisor in most computer systems 
is an example of a protected subsystem. If general facilities are 
provided for supporting user-constructed protected subsystems, 
then these mechanisms can be applied to protect the supervisor 
from user programs as well. Thus the protection mechanisms are 
protecting their own implementation. The resulting uniformity is 
consistent with the design principle of economy of mechanism.  
In order to implement protected subsystems, then, there must be a 
way of associating multiple domains with a single computation. 
One way would be to use a separate virtual processor, each with 
its own domain, for each protected subsystem, a notion proposed 
by Dennis and Van Horn [41] and discussed by Lampson [30]. A 
computation involving multiple protected subsystems would 
require multiple cooperating virtual processors. The invocation of 
one protected subsystem by another, and the communication of 
any response, would be done using the interprocessor 
communication facilities of the system [67]. An implementation 
using multiple virtual processors, though conceptually 
straightforward, tends to be awkward and inefficient in practice. 
Furthermore, it tends to obscure important features of the 
required mechanisms. Unless there is an inherent reason for the 
protected subsystems in a computation to be expressed as 
asynchronous activities, a single virtual processor 
implementation seems more natural. Such an implementation 
would require the association of multiple domains with a single 
virtual processor, a strategy proposed by LeClerc [68], [69] and 
explored in detail by Lampson [19], Schroeder [70],Needham 
[20],Sturgis [17], Jones [71], and Rotenberg [59] . In this case, 
communication among protected subsystems could be via 
interprocedure call and return operations.  
The essence of changing domains is, in access control list terms, 
to change principal identifiers; in capability terms it is to acquire 
the set of capabilities of the new domain. In both cases, it is also 
essential that the virtual processor begin execution at some 
agreed-to starting point in the new domain.  
Let us consider first an access control list implementation. 
Suppose we extend the possible permissions on a segment, as 
recorded in an access controller, to include ENTER permission, 
and add one more field to an access controller, the domain 
identifier, which is the principal identifier of the domain to be 
entered. The meaning of ENTER permission on a segment is that 
a virtual processor having only that permission may use (the first 
address in) that segment only as the target of a GO TO or CALL 
instruction. Further, upon executing a GO TO or CALL 
instruction, the processor will automatically pick up the domain 
identifier field in the access controller and use it as the principal 
identifier in transactions with the memory system.  

We now have a controlled domain entry facility. A user wishing 
to provide a protected subsystem can do so by setting the access 
control lists of all objects that are to be internal parts of the 
system to contain one of his own principal identifiers. He also 
adds to the access control list of the initial procedure of his 
subsystem ENTER permission for any other principals who are 
allowed to use his protected subsystem.  
In a capability system, a similar addition produces protected 
subsystems. The permission field of a capability is extended to 
include ENTER permission, and when a capability is used as the 
target of a GO TO or a CALL instruction, control is passed to the 
procedure in the segment pointed to by the capability. 
Simultaneous with passing control to the procedure, the processor 
switches on the READ permission bit of the capability, thereby 
making available to the virtual processor a new domain--all those 
objects that can be reached starting from capabilities found in the 
procedure.  
Two mechanisms introduced earlier can now be seen to be 
special cases of the general domain entry. In the initial discussion 
of the capability system, we noted that the authentication system 
starts a new user by allowing a virtual processor to enter that 
user's domain at a controlled starting point. We could use the 
domain entry mechanism to accomplish this result as follows. A 
system program is "listening" to all currently unused terminals or 
system ports. When a user walks up to a terminal and attempts to 
use it, the system program creates a new virtual processor and has 
that processor ENTER the domain named by the prospective 
user. The entry point would be to a program, perhaps supplied by 
the user himself, which authenticates his identity before doing 
any other computation. Because a protected subsystem has been 
used, the program that monitors the unused terminals does not 
have access to the data in the protected subsystem (in contrast 
with the system of Fig. 7), a situation in better accord with the 
principle of least privilege. Instead, it has an enter capability for 
every domain that is intended to be entered from a terminal, but 
that capability leads only to a program that demands 
authentication.  
We have sketched only the bare essentials of the mechanism 
required to provide domain switching. The full mechanics of a 
practical system that implements protected objects and 
subsystems are beyond the scope of this tutorial, but it is useful to 
sketch quickly the considerations those mechanisms must handle.  

1. The principle of "separation of privilege" is basic to the 
idea that the internal structure of some data objects is 
accessible to virtual processor A, but only when the 
virtual processor is executing in program B. If, for 
example, the protection system requires possession of 
two capabilities before it allows access to the internal 
contents of some objects, then the program responsible 
for maintenance of the objects can hold one of the 
capabilities while the user of the program can hold the 
other. Morris [72] has described an elegant semantics 
for separation of privilege in which the first capability 
is known as a seal. In terms of the earlier discussion of 
types, the type field of a protected object contains a 
seal that is unique to the protected subsystem; access to 
the internal structure of an object can be achieved only 
by presenting the original seal capability as well as the 
capability for the object itself. This idea apparently was 
suggested by H. Sturgis. The HYDRA and CAL 



systems illustrate two different implementations of this 
principle.  

2. The switching of protection domains by a virtual 
processor should be carefully coordinated with the 
mechanisms that provide for dynamic activation 
records and static (own) variable storage, since both the 
activation records and the static storage of one 
protection domain must be distinct from that of another. 
(Using a multiple virtual processor implementation 
provides a neat automatic solution to these problems.)  

3. The passing of arguments between domains must be 
carefully controlled to ensure that the called domain 
will be able to access its arguments without violating 
its own protection intentions. Calls by value represent 
no special problem, but other forms of argument 
reference that require access to the original argument 
are harder. One argument that must be especially 
controlled is the one that indicates how to return to the 
calling domain. Schroeder [70] explored argument 
passing in depth from the access control list point of 
view, while Jones [71] explored the same topic in the 
capability framework.  

The reader interested in learning about the mechanics of 
protected objects and subsystems in detail is referred to the 
literature mentioned above and in the Suggestions for Further 
Reading. This area is in a state of rapid development, and several 
ideas have been tried out experimentally, but there is not yet 
much agreement on which mechanisms are fundamental. For this 
reason, the subject is best explored by case study. 
 

III. THE STATE OF THE ART 

A. Implementations of Protection Mechanisms 

Until quite recently, the protection of computer-stored 
information has been given relatively low priority by both the 
major computer manufacturers and a majority of their customers. 
Although research time-sharing systems using base and bound 
registers appeared as early as 1960 and Burroughs marketed a 
descriptor-based system in 1961, those early features were 
directed more toward preventing accidents than toward providing 
absolute interuser protection. Thus in the design of the IBM 
System/360, which appeared in 1964 [73], the only protection 
mechanisms were a privileged state and a protection key scheme 
that prevented writing in those blocks of memory allocated to 
other users. Although the 360 appears to be the first system in 
which hardware protection was also applied to the I/O channels, 
the early IBM software used these mechanisms only to the 
minimum extent necessary to allow accident free 
multiprogramming. Not until 1970 did "fetch protect" (the ability 
to prevent one user from reading primary memory allocated to 
another user) become a standard feature of the IBM architecture 
[74]. Recently, descriptor-based architectures, which can be a 
basis for the more sophisticated protection mechanisms described 
in Section II, have become common in commercially marketed 
systems and in most manufacturers' plans for forthcoming 
product lines. Examples of commercially available descriptor-
based systems are the IBM System/370 models that support 

virtual memory, the Univac (formerly RCA) System 7, the 
Honeywell 6180, the Control Data Corporation Star-100, the 
Burroughs B5700/6700, the Hitachi 8800, the Digital Equipment 
Corporation PDP- 11/45, and the Plessey System 250. On the 
other hand, exploitation of such features for controlled sharing of 
information is still the exception rather than the rule. Users with a 
need for security find that they must improvise or use brute force 
techniques such as complete dedication of a system to a single 
task at a time [75]. The Department of Defense guide for 
safeguarding classified information stored in computers provides 
a good example of such brute force techniques [76].  
In the decade between 1964 and 1974, several protection 
architectures were implemented as research and development 
projects, usually starting with a computer that provided only a 
privileged mode, adding minor hardware features and interpreting 
with software the desired protection architecture. Among these 
were M.l.T.'s CTSS which, in 1961, implemented user 
authentication with all-or-nothing sharing and, in 1965, added 
shared files with permission lists [12]. In 1967, the ADEPT 
system of the System Development Corporation implemented in 
software on an IBM System/360 a model of the U.S. military 
security system, complete with clearance levels, compartments, 
need-to-know, and centralized authority control [14]. At about 
the same time, the IBM Cambridge Scientific Center released an 
operating system named CP/67, later marketed under the name 
VM/370, that used descriptor-based hardware to implement 
virtual System/360 computers using a single System/360 Model 
67 [11]. In 1969, the University of California (at Berkeley) CAL 
system implemented a software-interpreted capability system on 
a Control Data 6400 computer [17]. Also in 1969, the Multics 
system, a joint project of M.I.T. and Honeywell, implemented in 
software and hardware a complete descriptor-based access 
control list system with hierarchical control of authorization on a 
Honeywell 645 computer system [26], [77]. Based on the plans 
for Multics, the Hitachi Central Research Laboratory 
implemented a simplified descriptor-based system with 
hardware-implemented ordered domains (rings of protection) on 
the HITAC 5020E computer in 1968 [78]. In 1970, the Berkeley 
Computer Corporation also implemented rings of protection in 
the BCC 500 computer [19]. In 1973, a hardware version of the 
idea of rings of protection together with automatic argument 
address validation was implemented for Multics in the Honeywell 
6180 [63]. At about the same time, the Plessey Corporation 
announced a telephone switching computer system, the Plessey 
250 [53], based on a capability architecture.  
Current experimentation with new protection architectures is 
represented by the CAP system being built at Cambridge 
University [20] and the HYDRA system being built at Carnegie-
Mellon University [21] . Recent research reports by Schroeder 
[70], Rotenberg [59], Spier et al. [79], and Redell [54] propose 
new architectures that appear practical to implement.  
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Experimentation with different protection architectures has been 
receiving less attention recently. Instead, the trend has been to 
concentrate in the following five areas: 1) certification of the 
correctness of protection system designs and implementations, 2) 
invulnerability to single faults, 3) constraints on use of 
information after release, 4) encipherment of information with 



secret keys, and 5) improved authentication mechanisms. These 
five areas are discussed in turn below.  
A research problem attracting much attention today is how to 
certify the correctness of the design and implementation of 
hardware and software protection mechanisms. There are actually 
several sub-problems in this area.  
a) One must have a precise model of the protection goals of a 
system against which to measure the design and implementation. 
When the goal is complete isolation of independent users, the 
model is straightforward and the mechanisms of the virtual 
machine are relatively easy to match with it. When controlled 
sharing of information is desired, however, the model is much 
less clear and the attempt to clarify it generates many 
unsuspected questions of policy. Even attempts to model the 
well-documented military security system have led to 
surprisingly complex formulations and have exposed formidable 
implementation problems [14], [62] .  
b) Given a precise model of the protection goals of a system and 
a working implementation of that system, the next challenge is to 
verify somehow that the presented implementation actually does 
what it claims. Since protection functions are usually a kind of 
negative specification, testing by sample cases provides almost 
no information. One proposed approach uses proofs of 
correctness to establish formally that a system is implemented 
correctly. Most work in this area consists of attempts to extend 
methods of proving assertions about programs to cover the 
constructs typically encountered in operating systems [52] .  
c) Most current systems present the user with an intricate 
interface for specifying his protection needs. The result is that the 
user has trouble figuring out how to make the specification and 
verifying that he requested the right thing. User interfaces that 
more closely match the mental models people have of 
information protection are needed.  
d) In most operating systems, an unreasonably large quantity of 
"system" software runs without protection constraints. The 
reasons are many: fancied higher efficiency, historical accident, 
misunderstood design, and inadequate hardware support. The 
usual result is that the essential mechanisms that implement 
protection are thoroughly tangled with a much larger body of 
mechanisms, making certification impossibly complex. In any 
case, a minimum set of protected supervisor functions--a 
protected kernel--has not yet been established for a full-scale 
modern operating system. Groups at M.l.T. [80] and at Mitre 
[81], [82] are working in this area.  
Most modern operating systems are vulnerable in their reaction to 
hardware failures. Failures that cause the system to misbehave 
are usually easy to detect and, with experience, candidates for 
automatic recovery. Far more serious are failures that result in an 
undetected disabling of the protection mechanisms. Since routine 
use of the system may not include attempts to access things that 
should not be accessible, failures in access-checking circuitry 
may go unnoticed indefinitely. There is a challenging and 
probably solvable research problem involved in guaranteeing that 
protection mechanisms are invulnerable in the face of all single 
hardware failures. Molho [83] explored this topic in the IBM 
System 360/Model 50 computer and made several suggestions for 
its improvement. Fabry [84] has described an experimental 
"complete isolation" system in which all operating system 
decisions that could affect protection are duplicated by 
independent hardware and software.  
Another area of research concerns constraining the use to which 
information may be put after its release to an executing program. 

In Section 1, we described such constraints as a fifth level of 
desired function. For example, one might wish to "tag" a file with 
a notation that any program reading that file is to be restricted 
forever after from printing output on remote terminals located 
outside the headquarters building.  
For this restriction to be complete, it should propagate with all 
results created by the program and into other files it writes. 
Information use restrictions such as these are common in legal 
agreements (as in the agreement between a taxpayer and a tax 
return preparing service) and the problem is to identify 
corresponding mechanisms for computer systems that could help 
enforce (or detect violations of) such agreements. Rotenberg 
explored this topic in depth [59] and proposed a "privacy 
restriction processor" to aid enforcement.  
A potentially powerful technique for protecting information is to 
encipher it using a key known only to authorized accessors of the 
information. (Thus encipherment is basically a ticket-oriented 
system.) One research problem is how to communicate the keys 
to authorized users. If this communication is done inside the 
computer system, schemes for protecting the keys must be 
devised. Strategies for securing multinode computer 
communication networks using encipherment are a topic of 
current research; Branstad has summarized the state of the art 
[40] . Another research problem is development of encipherment 
techniques (sometimes called privacy transformations) for 
random access to data. Most well-understood enciphering 
techniques operate sequentially on long bit streams (as found in 
point-to-point communications, for example). Techniques for 
enciphering and deciphering small, randomly selected groups of 
bits such as a single word or byte of a file have been proposed, 
but finding simple and fast techniques that also require much 
effort to cryptanalyze (that is, with high work factors) is still a 
subject for research. A block enciphering system based on a 
scheme suggested by Feistel was developed at the IBM T. J. 
Watson Research Laboratory by Smith, Notz, and Osseck [38]. 
One special difficulty in this area is that research in encipherment 
encounters the practice of military classification. Since World 
War II, only three papers with significant contributions have 
appeared in the open literature [27], [39], [85]; other papers have 
only updated, reexamined, or rearranged concepts published 
many years earlier.  
Finally, spurred by the need for better credit and check cashing 
authentication, considerable research and development effort is 
going into better authentication mechanisms. Many of these 
strategies are based on attempts to measure some combination of 
personal attributes, such as the dynamics of a handwritten 
signature or the rhythm of keyboard typing. Others are directed 
toward developing machine-readable identification cards that are 
hard to duplicate.  
Work in progress is not well represented by published literature. 
The reader interested in further information on some of the 
current research projects mentioned may find useful the 
proceedings of two panel sessions at the 1974 National Computer 
Conference [86], [87], a recent workshop [88], and a survey 
paper [89].  
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In reviewing the extent to which protection mechanisms are 
systematically understood (which is not a large extent) and the 
current state of the art, one cannot help but draw a parallel 



between current protection inventions and the first mass produced 
computers of the 1950's. At that time, by virtue of experience and 
strongly developed intuition, designers had confidence that the 
architectures being designed were complete enough to be useful. 
And it turned out that they were. Even so, it was quickly 
established that matching a problem statement to the architecture-
-programming--was a major effort whose magnitude was quite 
sensitive to the exact architecture. In a parallel way, matching a 
set of protection goals to a particular protection architecture by 
setting the bits and locations of access control lists or capabilities 
or by devising protected subsystems is a matter of programming 
the architecture. Following the parallel, it is not surprising that 
users of the current first crop of protection mechanisms have 
found them relatively clumsy to program and not especially well 
matched to the users' image of the problem to be solved, even 
though the mechanisms may be sufficient. As in the case of all 
programming systems, it will be necessary for protection systems 
to be used and analyzed and for their users to propose different, 
better views of the necessary and sufficient semantics to support 
information protection.  
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SUGGESTIONS FOR FURTHER READING 

The following short bibliography has been selected from the 
reference list to direct the reader to the most useful, up-todate, 
and significant materials currently available. Many of these 
readings have been collected and reprinted by L. J. Hoffman in 
[90]. The five bibliographies and collections (item 8 below) 
provide access to a vast collection of related literature.  

1. Privacy and the impact of computers [1]-[3], [91], [92].  
2. Case studies of protection systems [14], [17], [20], [26], 

[63], [83], [84].  
3. Protected objects and protected subsystems [30], [45], 

[54], [59], [70]-[72].  
4. Protection with encipherment [38]-[40], [93], [94].  
5. Military security and nondiscretionary controls [82], 

[95], [96].  
6. Comprehensive discussions of all aspects of computer 

security [6] - [8].  
7. Surveys of work in progress [86]-[89] .  
8. Bibliographies and collections on protection and 

privacy [90], [97]-[100].  
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