
Abstract - This tutorial paper explores the mechanics of
protecting computer-stored information from unauthorized
use or modification. It concentrates on those architectural
structures--whether hardware or software--that are
necessary to support information protection. The paper
develops in three main sections. Section I describes
desired functions, design principles, and examples of
elementary protection and authentication mechanisms. Any
reader familiar with computers should find the first section
to be reasonably accessible. Section II requires some
familiarity with descriptor-based computer architecture. It
examines in depth the principles of modern protection
architectures and the relation between capability systems
and access control list systems, and ends with a brief
analysis of protected subsystems and protected objects.
The reader who is dismayed by either the prerequisites or
the level of detail in the second section may wish to skip to
Section III, which reviews the state of the art and current
research projects and provides suggestions for further
reading.

Glossary

The following glossary provides, for reference, brief definitions
for several terms as used in this paper in the context of protecting
information in computers.
Access

The ability to make use of information stored in a
computer system. Used frequently as a verb, to the
horror of grammarians.

Access control list
A list of principals that are authorized to have access to
some object.

Authenticate
To verify the identity of a person (or other agent
external to the protection system) making a request.

Authorize
To grant a principal access to certain information.

Capability
In a computer system, an unforgeable ticket, which
when presented can be taken as incontestable proof
that the presenter is authorized to have access to the
object named in the ticket.

Certify
To check the accuracy, correctness, and completeness
of a security or protection mechanism.

Complete isolation
A protection system that separates principals into
compartments between which no flow of information or
control is possible.

Confinement
Allowing a borrowed program to have access to data,
while ensuring that the program cannot release the
information.

Descriptor
A protected value which is (or leads to) the physical
address of some protected object.

Discretionary
(In contrast with nondiscretionary.) Controls on access
to an object that may be changed by the creator of the
object.

Domain
The set of objects that currently may be directly
accessed by a principal.

Encipherment
The (usually) reversible scrambling of data according
to a secret transformation key, so as to make it safe for
transmission or storage in a physically unprotected
environment.

Grant
To authorize (q. v.).

Hierarchical control
Referring to ability to change authorization, a scheme
in which the record of each authorization is controlled
by another authorization, resulting in a hierarchical
tree of authorizations.

List-oriented
Used to describe a protection system in which each
protected object has a list of authorized principals.

Password
A secret character string used to authenticate the
claimed identity of an individual.

Permission
A particular form of allowed access, e.g., permission to
READ as contrasted with permission to WRITE.

Prescript
A rule that must be followed before access to an object
is permitted, thereby introducing an opportunity for
human judgment about the need for access, so that
abuse of the access is discouraged.

Principal
The entity in a computer system to which authorizations
are granted; thus the unit of accountability in a
computer system.

Privacy
The ability of an individual (or organization) to decide
whether, when, and to whom personal (or
organizational) information is released.

Propagation

The Protection of Information in Computer Systems

JEROME H. SALTZER, SENIOR MEMBER, IEEE, AND
MICHAEL D. SCHROEDER, MEMBER, IEEE

Invited Paper

When a principal, having been authorized access to
some object, in turn authorizes access to another
principal.

Protected object
A data structure whose existence is known, but whose
internal organization is not accessible, except by
invoking the protected subsystem (q.v.) that manages it.

Protected subsystem
A collection of procedures and data objects that is
encapsulated in a domain of its own so that the internal
structure of a data object is accessible only to the
procedures of the protected subsystem and the
procedures may be called only at designated domain
entry points.

Protection
1) Security (q.v.).
2) Used more narrowly to denote mechanisms and
techniques that control the access of executing
programs to stored information.

Protection group
A principal that may be used by several different
individuals.

Revoke
To take away previously authorized access from some
principal.

Security
With respect to information processing systems, used to
denote mechanisms and techniques that control who
may use or modify the computer or the information
stored in it.

Self control
Referring to ability to change authorization, a scheme
in which each authorization contains within it the
specification of which principals may change it.

Ticket-oriented
Used to describe a protection system in which each
principal maintains a list of unforgeable bit patterns,
called tickets, one for each object the principal is
authorized to have access.

User
Used imprecisely to refer to the individual who is
accountable for some identifiable set of activities in a
computer system.

I. BASIC PRINCIPLES OF INFORMATION PROTECTION

A. Considerations Surrounding the Study of Protection

1) General Observations: As computers become better
understood and more economical, every day brings new
applications. Many of these new applications involve both storing
information and simultaneous use by several individuals. The key
concern in this paper is multiple use. For those applications in
which all users should not have identical authority, some scheme
is needed to ensure that the computer system implements the
desired authority structure.
For example, in an airline seat reservation system, a reservation
agent might have authority to make reservations and to cancel

reservations for people whose names he can supply. A flight
boarding agent might have the additional authority to print out
the list of all passengers who hold reservations on the flights for
which he is responsible. The airline might wish to withhold from
the reservation agent the authority to print out a list of
reservations, so as to be sure that a request for a passenger list
from a law enforcement agency is reviewed by the correct level
of management.
The airline example is one of protection of corporate information
for corporate self-protection (or public interest, depending on
one's view). A different kind of example is an online warehouse
inventory management system that generates reports about the
current status of the inventory. These reports not only represent
corporate information that must be protected from release outside
the company, but also may indicate the quality of the job being
done by the warehouse manager. In order to preserve his personal
privacy, it may be appropriate to restrict the access to such
reports, even within the company, to those who have a legitimate
reason to be judging the quality of the warehouse manager's
work.
Many other examples of systems requiring protection of
information are encountered every day: credit bureau data banks;
law enforcement information systems; time-sharing service
bureaus; on-line medical information systems; and government
social service data processing systems. These examples span a
wide range of needs for organizational and personal privacy. All
have in common controlled sharing of information among
multiple users. All, therefore, require some plan to ensure that the
computer system helps implement the correct authority structure.
Of course, in some applications no special provisions in the
computer system are necessary. It may be, for instance, that an
externally administered code of ethics or a lack of knowledge
about computers adequately protects the stored information.
Although there are situations in which the computer need provide
no aids to ensure protection of information, often it is appropriate
to have the computer enforce a desired authority structure.
The words "privacy," "security," and "protection" are frequently
used in connection with information-storing systems. Not all
authors use these terms in the same way. This paper uses
definitions commonly encountered in computer science literature.
The term "privacy" denotes a socially defined ability of an
individual (or organization) to determine whether, when, and to
whom personal (or organizational) information is to be released.
This paper will not be explicitly concerned with privacy, but
instead with the mechanisms used to help achieve it.1
The term "security" describes techniques that control who may
use or modify the computer or the information contained in it.2
Security specialists (e.g., Anderson [6]) have found it useful to
place potential security violations in three categories.
1) Unauthorized information release: an unauthorized person is
able to read and take advantage of information stored in the
computer. This category of concern sometimes extends to "traffic
analysis," in which the intruder observes only the patterns of
information use and from those patterns can infer some
information content. It also includes unauthorized use of a
proprietary program.
2) Unauthorized information modification: an unauthorized
person is able to make changes in stored information--a form of
sabotage. Note that this kind of violation does not require that the
intruder see the information he has changed.
3) Unauthorized denial of use: an intruder can prevent an
authorized user from referring to or modifying information, even

though the intruder may not be able to refer to or modify the
information. Causing a system "crash," disrupting a scheduling
algorithm, or firing a bullet into a computer are examples of
denial of use. This is another form of sabotage.
The term "unauthorized" in the three categories listed above
means that release, modification, or denial of use occurs contrary
to the desire of the person who controls the information, possibly
even contrary to the constraints supposedly enforced by the
system. The biggest complication in a general-purpose remote-
accessed computer system is that the "intruder" in these
definitions may be an otherwise legitimate user of the computer
system.
Examples of security techniques sometimes applied to computer
systems are the following:

1. labeling files with lists of authorized users,
2. verifying the identity of a prospective user by

demanding a password,
3. shielding the computer to prevent interception and

subsequent interpretation of electromagnetic radiation,
4. enciphering information sent over telephone lines,
5. locking the room containing the computer,
6. controlling who is allowed to make changes to the

computer system (both its hardware and software),
7. using redundant circuits or programmed cross-checks

that maintain security in the face of hardware or
software failures,

8. certifying that the hardware and software are actually
implemented as intended.

It is apparent that a wide range of considerations are pertinent to
the engineering of security of information. Historically, the
literature of computer systems has more narrowly defined the
term protection to be just those security techniques that control
the access of executing programs to stored information.3 An
example of a protection technique is labeling of computer-stored
files with lists of authorized users. Similarly, the term
authentication is used for those security techniques that verify the
identity of a person (or other external agent) making a request of
a computer system. An example of an authentication technique is
demanding a password. This paper concentrates on protection
and authentication mechanisms, with only occasional reference to
the other equally necessary security mechanisms. One should
recognize that concentration on protection and authentication
mechanisms provides a narrow view of information security, and
that a narrow view is dangerous. The objective of a secure system
is to prevent all unauthorized use of information, a negative kind
of requirement. It is hard to prove that this negative requirement
has been achieved, for one must demonstrate that every possible
threat has been anticipated. Thus an expansive view of the
problem is most appropriate to help ensure that no gaps appear in
the strategy. In contrast, a narrow concentration on protection
mechanisms, especially those logically impossible to defeat, may
lead to false confidence in the system as a whole.4
2) Functional Levels of Information Protection: Many different
designs have been proposed and mechanisms implemented for
protecting information in computer systems. One reason for
differences among protection schemes is their different functional
properties--the kinds of access control that can be expressed
naturally and enforced. It is convenient to divide protection

schemes according to their functional properties. A rough
categorization is the following.
a) Unprotected systems: Some systems have no provision for
preventing a determined user from having access to every piece
of information stored in the system. Although these systems are
not directly of interest here, they are worth mentioning since, as
of 1975, many of the most widely used, commercially available
batch data processing systems fall into this category--for
example, the Disk Operating System for the IBM System 370 [9].
Our definition of protection, which excludes features usable only
for mistake prevention, is important here since it is common for
unprotected systems to contain a variety of mistake-prevention
features. These may provide just enough control that any breach
of control is likely to be the result of a deliberate act rather than
an accident. Nevertheless, it would be a mistake to claim that
such systems provide any security.5
b) All-or-nothing systems: These are systems that provide
isolation of users, sometimes moderated by total sharing of some
pieces of information. If only isolation is provided, the user of
such a system might just as well be using his own private
computer, as far as protection and sharing of information are
concerned. More commonly, such systems also have public
libraries to which every user may have access. In some cases the
public library mechanism may be extended to accept user
contributions, but still on the basis that all users have equal
access. Most of the first generation of commercial timesharing
systems provide a protection scheme with this level of function.
Examples include the Dartmouth Time-Sharing System (DTSS)
[10] and IBM's VM/370 system [11]. There are innumerable
others.
c) Controlled sharing: Significantly more complex machinery is
required to control explicitly who may access each data item
stored in the system. For example, such a system might provide
each file with a list of authorized users and allow an owner to
distinguish several common patterns of use, such as reading,
writing, or executing the contents of the file as a program.
Although conceptually straightforward, actual implementation is
surprisingly intricate, and only a few complete examples exist.
These include M.l.T.'s Compatible Time-Sharing System (CTSS)
[12], Digital Equipment Corporation's DECsystem/10 [13],
System Development Corporation's Advanced Development
Prototype (ADEPT) System [14], and Bolt, Beranek, and
Newman's TENEX [15]6
d) User-programmed sharing controls: A user may want to
restrict access to a file in a way not provided in the standard
facilities for controlling sharing. For example, he may wish to
permit access only on weekdays between 9:00 A.M. and 4:00
P.M. Possibly, he may wish to permit access to only the average
value of the data in a file. Maybe he wishes to require that a
file be modified only if two users agree. For such cases, and a
myriad of others, a general escape is to provide for user-defined
protected objects and subsystems. A protected subsystem is a
collection of programs and data with the property that only the
programs of the subsystem have direct access to the data (that is,
the protected objects). Access to those programs is limited to
calling specified entry points. Thus the programs of the
subsystem completely control the operations performed on the
data. By constructing a protected subsystem, a user can develop
any programmable form of access control to the objects he
creates. Only a few of the most advanced system designs have
tried to permit user-specified protected subsystems. These
include Honeywell's Multics [16], the University of California's

CAL system [17], Bell Laboratories' UNIX system [18], the
Berkeley Computer Corporation BCC-500 [19], and two systems
currently under construction: the CAP system of Cambridge
University [20], and the HYDRA system of Carnegie-Mellon
University [21]. Exploring alternative mechanisms for
implementing protected subsystems is a current research topic. A
specialized use of protected subsystems is the implementation of
protection controls based on data content. For example, in a file
of salaries, one may wish to permit access to all salaries under
$15 000. Another example is permitting access to certain
statistical aggregations of data but not to any individual data
item. This area of protection raises questions about the possibility
of discerning information by statistical tests and by examining
indexes, without ever having direct access to the data itself.
Protection based on content is the subject of a variety of recent or
current research projects [22]-[25] and will not be explored in
this tutorial.
e) Putting strings on information: The foregoing three levels have
been concerned with establishing conditions for the release of
information to an executing program. The fourth level of
capability is to maintain some control over the user of the
information even after it has been released. Such control is
desired, for example, in releasing income information to a tax
advisor; constraints should prevent him from passing the
information on to a firm which prepares mailing lists. The printed
labels on classified military information declaring a document to
be "Top Secret" are another example of a constraint on
information after its release to a person authorized to receive it.
One may not (without risking severe penalties) release such
information to others, and the label serves as a notice of the
restriction. Computer systems that implement such strings on
information are rare and the mechanisms are incomplete. For
example, the ADEPT system [14] keeps track of the classification
level of all input data used to create a file; all output data are
automatically labeled with the highest classification encountered
during execution.
There is a consideration that cuts across all levels of functional
capability: the dynamics of use. This term refers to how one
establishes and changes the specification of who may access
what. At any of the levels it is relatively easy to envision (and
design) systems that statically express a particular protection
intent. But the need to change access authorization dynamically
and the need for such changes to be requested by executing
programs introduces much complexity into protection systems.
For a given functional level, most existing protection systems
differ primarily in the way they handle protection dynamics. To
gain some insight into the complexity introduced by program-
directed changes to access authorization, consider the question
"Is there any way that O'Hara could access file X?" One should
check to see not only if O'Hara has access to file X, but also
whether or not O'Hara may change the specification of file X's
accessibility. The next step is to see if O'Hara can change the
specification of who may change the specification of file X's
accessibility, etc. Another problem of dynamics arises when the
owner revokes a user's access to a file while that file is being
used. Letting the previously authorized user continue until he is
"finished" with the information may not be acceptable, if the
owner has suddenly realized that the file contains sensitive data.
On the other hand, immediate withdrawal of authorization may
severely disrupt the user. It should be apparent that provisions for
the dynamics of use are at least as important as those for static
specification of protection intent.

In many cases, it is not necessary to meet the protection needs of
the person responsible for the information stored in the computer
entirely through computer-aided enforcement. External
mechanisms such as contracts, ignorance, or barbed wire fences
may provide some of the required functional capability. This
discussion, however, is focused on the internal mechanisms.
3) Design Principles: Whatever the level of functionality
provided, the usefulness of a set of protection mechanisms
depends upon the ability of a system to prevent security
violations. In practice, producing a system at any level of
functionality (except level one) that actually does prevent all such
unauthorized acts has proved to be extremely difficult.
Sophisticated users of most systems are aware of at least one way
to crash the system, denying other users authorized access to
stored information. Penetration exercises involving a large
number of different general-purpose systems all have shown that
users can construct programs that can obtain unauthorized access
to information stored within. Even in systems designed and
implemented with security as an important objective, design and
implementation flaws provide paths that circumvent the intended
access constraints. Design and construction techniques that
systematically exclude flaws are the topic of much research
activity, but no complete method applicable to the construction of
large general-purpose systems exists yet. This difficulty is related
to the negative quality of the requirement to prevent all
unauthorized actions.
In the absence of such methodical techniques, experience has
provided some useful principles that can guide the design and
contribute to an implementation without security flaws. Here are
eight examples of design principles that apply particularly to
protection mechanisms.7
a) Economy of mechanism: Keep the design as simple and small
as possible. This well-known principle applies to any aspect of a
system, but it deserves emphasis for protection mechanisms for
this reason: design and implementation errors that result in
unwanted access paths will not be noticed during normal use
(since normal use usually does not include attempts to exercise
improper access paths). As a result, techniques such as line-by-
line inspection of software and physical examination of hardware
that implements protection mechanisms are necessary. For such
techniques to be successful, a small and simple design is
essential.
b) Fail-safe defaults: Base access decisions on permission rather
than exclusion. This principle, suggested by E. Glaser in 1965,8
means that the default situation is lack of access, and the
protection scheme identifies conditions under which access is
permitted. The alternative, in which mechanisms attempt to
identify conditions under which access should be refused,
presents the wrong psychological base for secure system design.
A conservative design must be based on arguments why objects
should be accessible, rather than why they should not. In a large
system some objects will be inadequately considered, so a default
of lack of permission is safer. A design or implementation
mistake in a mechanism that gives explicit permission tends to
fail by refusing permission, a safe situation, since it will be
quickly detected. On the other hand, a design or implementation
mistake in a mechanism that explicitly excludes access tends to
fail by allowing access, a failure which may go unnoticed in
normal use. This principle applies both to the outward appearance
of the protection mechanism and to its underlying
implementation.

c) Complete mediation: Every access to every object must be
checked for authority. This principle, when systematically
applied, is the primary underpinning of the protection system. It
forces a system-wide view of access control, which in addition to
normal operation includes initialization, recovery, shutdown, and
maintenance. It implies that a foolproof method of identifying the
source of every request must be devised. It also requires that
proposals to gain performance by remembering the result of an
authority check be examined skeptically. If a change in authority
occurs, such remembered results must be systematically updated.
d) Open design: The design should not be secret [27]. The
mechanisms should not depend on the ignorance of potential
attackers, but rather on the possession of specific, more easily
protected, keys or passwords. This decoupling of protection
mechanisms from protection keys permits the mechanisms to be
examined by many reviewers without concern that the review
may itself compromise the safeguards. In addition, any skeptical
user may be allowed to convince himself that the system he is
about to use is adequate for his purpose.9 Finally, it is simply not
realistic to attempt to maintain secrecy for any system which
receives wide distribution.
e) Separation of privilege: Where feasible, a protection
mechanism that requires two keys to unlock it is more robust and
flexible than one that allows access to the presenter of only a
single key. The relevance of this observation to computer systems
was pointed out by R. Needham in 1973. The reason is that, once
the mechanism is locked, the two keys can be physically
separated and distinct programs, organizations, or individuals
made responsible for them. From then on, no single accident,
deception, or breach of trust is sufficient to compromise the
protected information. This principle is often used in bank safe-
deposit boxes. It is also at work in the defense system that fires a
nuclear weapon only if two different people both give the correct
command. In a computer system, separated keys apply to any
situation in which two or more conditions must be met before
access should be permitted. For example, systems providing user-
extendible protected data types usually depend on separation of
privilege for their implementation.
f) Least privilege: Every program and every user of the system
should operate using the least set of privileges necessary to
complete the job. Primarily, this principle limits the damage that
can result from an accident or error. It also reduces the number of
potential interactions among privileged programs to the minimum
for correct operation, so that unintentional, unwanted, or
improper uses of privilege are less likely to occur. Thus, if a
question arises related to misuse of a privilege, the number of
programs that must be audited is minimized. Put another way, if a
mechanism can provide "firewalls," the principle of least
privilege provides a rationale for where to install the firewalls.
The military security rule of "need-to-know" is an example of
this principle.
g) Least common mechanism: Minimize the amount of
mechanism common to more than one user and depended on by
all users [28]. Every shared mechanism (especially one involving
shared variables) represents a potential information path between
users and must be designed with great care to be sure it does not
unintentionally compromise security. Further, any mechanism
serving all users must be certified to the satisfaction of every
user, a job presumably harder than satisfying only one or a few
users. For example, given the choice of implementing a new
function as a supervisor procedure shared by all users or as a
library procedure that can be handled as though it were the user's

own, choose the latter course. Then, if one or a few users are not
satisfied with the level of certification of the function, they can
provide a substitute or not use it at all. Either way, they can avoid
being harmed by a mistake in it.
h) Psychological acceptability: It is essential that the human
interface be designed for ease of use, so that users routinely and
automatically apply the protection mechanisms correctly. Also, to
the extent that the user's mental image of his protection goals
matches the mechanisms he must use, mistakes will be
minimized. If he must translate his image of his protection needs
into a radically different specification language, he will make
errors.
Analysts of traditional physical security systems have suggested
two further design principles which, unfortunately, apply only
imperfectly to computer systems.
a) Work factor: Compare the cost of circumventing the
mechanism with the resources of a potential attacker. The cost of
circumventing, commonly known as the "work factor," in some
cases can be easily calculated. For example, the number of
experiments needed to try all possible four letter alphabetic
passwords is 264 = 456 976. If the potential attacker must enter
each experimental password at a terminal, one might consider a
four-letter password to be adequate. On the other hand, if the
attacker could use a large computer capable of trying a million
passwords per second, as might be the case where industrial
espionage or military security is being considered, a four-letter
password would be a minor barrier for a potential intruder. The
trouble with the work factor principle is that many computer
protection mechanisms are not susceptible to direct work factor
calculation, since defeating them by systematic attack may be
logically impossible. Defeat can be accomplished only by
indirect strategies, such as waiting for an accidental hardware
failure or searching for an error in implementation. Reliable
estimates of the length of such a wait or search are very difficult
to make.
b) Compromise recording: It is sometimes suggested that
mechanisms that reliably record that a compromise of
information has occurred can be used in place of more elaborate
mechanisms that completely prevent loss. For example, if a
tactical plan is known to have been compromised, it may be
possible to construct a different one, rendering the compromised
version worthless. An unbreakable padlock on a flimsy file
cabinet is an example of such a mechanism. Although the
information stored inside may be easy to obtain, the cabinet will
inevitably be damaged in the process and the next legitimate user
will detect the loss. For another example, many computer
systems record the date and time of the most recent use of each
file. If this record is tamperproof and reported to the owner, it
may help discover unauthorized use. In computer systems, this
approach is used rarely, since it is difficult to guarantee discovery
once security is broken. Physical damage usually is not involved,
and logical damage (and internally stored records of tampering)
can be undone by a clever attacker.10
As is apparent, these principles do not represent absolute rules--
they serve best as warnings. If some part of a design violates a
principle, the violation is a symptom of potential trouble, and the
design should be carefully reviewed to be sure that the trouble
has been accounted for or is unimportant.
4) Summary of Considerations Surrounding Protection: Briefly,
then, we may outline our discussion to this point. The application
of computers to information handling problems produces a need
for a variety of security mechanisms. We are focusing on one

aspect, computer protection mechanisms--the mechanisms that
control access to information by executing programs. At least
four levels of functional goals for a protection system can be
identified: all-or-nothing systems, controlled sharing, user-
programmed sharing controls, and putting strings on information.
But at all levels, the provisions for dynamic changes to
authorization for access are a severe complication.
Since no one knows how to build a system without flaws, the
alternative is to rely on eight design principles, which tend to
reduce both the number and the seriousness of any flaws:
Economy of mechanism, fail-safe defaults, complete mediation,
open design, separation of privilege, least privilege, least
common mechanism, and psychological acceptability.
Finally, some protection designs can be evaluated by comparing
the resources of a potential attacker with the work factor required
to defeat the system, and compromise recording may be a useful
strategy.

B. Technical Underpinnings

1) The Development Plan: At this point we begin a development
of the technical basis of information protection in modern
computer systems. There are two ways to approach the subject:
from the top down, emphasizing the abstract concepts involved,
or from the bottom up, identifying insights by, studying example
systems. We shall follow the bottom-up approach, introducing a
series of models of systems as they are, (or could be) built in real
life.
The reader should understand that on this point the authors'
judgment differs from that of some of their colleagues. The top-
down approach can be very satisfactory when a subject is
coherent and self-contained, but for a topic still containing ad hoc
strategies and competing world views, the bottom-up approach
seems safer.
Our first model is of a multiuser system that completely isolates
its users from one another. We shall then see how the logically
perfect walls of that system can be lowered in a controlled way to
allow limited sharing of information between users. Section II of
this paper generalizes the mechanics of sharing using two
different models: the capability system and the access control list
system. It then extends these two models to handle the dynamic
situation in which authorizations can change under control of the
programs running inside the system. Further extensions to the
models control the dynamics. The final model (only superficially
explored) is of protected objects and protected subsystems, which
allow arbitrary modes of sharing that are unanticipated by the
system designer. These models are not intended so much to
explain the particular systems as they are to explain the
underlying concepts of information protection.
Our emphasis throughout the development is on direct access to
information (for example, using LOAD and STORE instructions)
rather than acquiring information indirectly (as when calling a
data base management system to request the average value of a
set of numbers supposedly not directly accessible). Control of
such access is the function of the protected subsystems developed
near the end of the paper. Herein lies perhaps the chief defect of
the bottom-up approach, since conceptually there seems to be no
reason to distinguish direct and indirect access, yet the detailed
mechanics are typically quite different. The beginnings of a top-
down approach based on a message model that avoids

distinguishing between direct and indirect information access
may be found in a paper by Lampson [30].
2) The Essentials of Information Protection: For purposes of
discussing protection, the information stored in a computer
system is not a single object. When one is considering direct
access, the information is divided into mutually exclusive
partitions, as specified by its various creators. Each partition
contains a collection of information, all of which is intended to be
protected uniformly. The uniformity of protection is the same
kind of uniformity that applies to all of the diamonds stored in the
same vault: any person who has a copy of the combination can
obtain any of the diamonds. Thus the collections of information
in the partitions are the fundamental objects to be protected.
Conceptually, then, it is necessary to build an impenetrable wall
around each distinct object that warrants separate protection,
construct a door in the wall through which access can be
obtained, and post a guard at the door to control its use. Control
of use, however, requires that the guard have some way of
knowing which users are authorized to have access, and that each
user have some reliable way of identifying himself to the guard.
This authority check is usually implemented by having the guard
demand a match between something he knows and something the
prospective user possesses. Both protection and authentication
mechanisms can be viewed in terms of this general model.
Before extending this model, we pause to consider two concrete
examples, the multiplexing of a single computer system among
several users and the authentication of a user's claimed identity.
These initial examples are complete isolation systems--no sharing
of information can happen. Later we will extend our model of
guards and walls in the discussion of shared information.
3) An Isolated Virtual Machine: A typical computer consists of a
processor, a linearly addressed memory system, and some
collection of input/output devices associated with the processor.
It is relatively easy to use a single computer to simulate several,
each of which is completely unaware of the existence of the
others, except that each runs more slowly than usual. Such a
simulation is of interest, since during the intervals when one of
the simulated (commonly called virtual) processors is waiting for
an input or output operation to finish, another virtual processor
may be able to progress at its normal rate. Thus a single
processor may be able to take the place of several. Such a scheme
is the essence of a multiprogramming system.
To allow each virtual processor to be unaware of the existence of
the others, it is essential that some isolation mechanism be
provided. One such mechanism is a special hardware register
called a descriptor register, as in Fig. 1. In this figure, all
memory references by the processor are checked by an extra
piece of hardware that is interposed in the path to the memory.
The descriptor register controls exactly which part of memory is
accessible. The descriptor register contains two components: a
base value and a bound value. The base is the lowest numbered
address the program may use, and the bound is the number of
locations beyond the base that may be used.11 We will call the
value in the descriptor register a descriptor, as it describes an
object (in this case, one program) stored in memory. The program
controlling the processor has full access to everything in the base-
bound range, by virtue of possession of its one descriptor. As we
go on, we shall embellish the concept of a descriptor: it is central
to most implementations of protection and of sharing of
information.12
So far, we have not provided for the dynamics of a complete
protection scheme: we have not discussed who loads the

descriptor register. If any running program could load it with any
arbitrary value, there would be no protection. The instruction that
loads the descriptor register with a new descriptor must have
some special controls--either on the values it will load or on who
may use it. It is easier to control who may use the descriptor, and
a common scheme is to introduce an additional bit in the
processor state. This bit is called the privileged state bit.13 All
attempts to load the descriptor register are checked against the
value of the privileged state bit; the privileged state bit must be
ON for the register to be changed. One program (named the
supervisor--program S in Fig. 1) runs with the privileged state bit
ON, and controls the simulation of the virtual processors for the
other programs. All that is needed to make the scheme complete
is to ensure that the privileged state bit cannot be changed by the
user programs except, perhaps, by an instruction that
simultaneously transfers control to the supervisor program at a
planned entry location. (In most implementations, the descriptor
register is not used in the privileged state.)
One might expect the supervisor program to maintain a table of
values of descriptors, one for each virtual processor. When the
privileged state bit is OFF, the index in this table of the program
currently in control identifies exactly which program--and thus
which virtual processor--is accountable for the activity of the real
processor. For protection to be complete, a virtual processor must
not be able to change arbitrarily the values in the table of
descriptors. If we suppose the table to be stored inside the
supervisor program, it will be inaccessible to the virtual
processors. We have here an example of a common strategy and
sometime cause of confusion: the protection mechanisms not
only protect one user from another, they may also protect their
own implementation. We shall encounter this strategy again.

Fig. 1. Use of a descriptor register to simulate multiple
virtual machines. Program C is in control of tho processor.
The privileged state bit has value OFF, indicating that
program C is a user program. When program S is running,
the privileged state bit has value ON. In this (and later)
figures, lower addresses are nearer the bottom of the figure.

So far, this virtual processor implementation contains three
protection mechanisms that we can associate with our
abstractions. For the first, the information being protected is the
distinct programs of Fig. 1. The guard is represented by the extra
piece of hardware that enforces the descriptor restriction. The

impenetrable wall with a door is the hardware that forces all
references to memory through the descriptor mechanism. The
authority check on a request to access memory is very simple.
The requesting virtual processor is identified by the base and
bound values in the descriptor register, and the guard checks that
the memory location to which access is requested lies within the
indicated area of memory.
The second mechanism protects the contents of the descriptor
register. The wall, door, and guard are implemented in hardware,
as with the first mechanism. An executing program requesting to
load the descriptor register is identified by the privileged state bit.
If this bit is OFF, indicating that the requester is a user program,
then the guard does not allow the register to be loaded. If this bit
is ON, indicating that the requester is the supervisor program,
then the guard does allow it.
The third mechanism protects the privileged state bit. It allows an
executing program identified by the privileged state bit being
OFF (a user program) to perform the single operation "turn
privileged state bit ON and transfer to the supervisor program."
An executing program identified by the privileged state bit being
ON is allowed to turn the bit OFF. This third mechanism is an
embryonic form of the sophisticated protection mechanisms
required to implement protected subsystems. The supervisor
program is an example of a protected subsystem, of which more
will be said later.
The supervisor program is part of all three protection
mechanisms, for it is responsible for maintaining the integrity of
the identifications manifest in the descriptor register and the
privileged state bit. If the supervisor does not do its job correctly,
virtual processors could become labeled with the wrong base and
bound values, or user programs could become labeled with a
privileged state bit that is ON, The supervisor protects itself from
the user programs with the same isolation hardware that separates
users, an example of the "economy of mechanism" design
principle.
With an appropriately sophisticated and careful supervisor
program, we now have an example of a system that completely
isolates its users from one another. Similarly isolated permanent
storage can be added to such a system by attaching some
longterm storage device (e.g., magnetic disk) and developing a
similar descriptor scheme for its use. Since long-term storage is
accessed less frequently than primary memory, it is common to
implement its descriptor scheme with the supervisor programs
rather than hardware, but the principle is the same. Data streams
to input or output devices can be controlled similarly. The
combination of a virtual processor, a memory area, some data
streams, and an isolated region of long-term storage is known as
a virtual machine.14
Long-term storage does, however, force us to face one further
issue. Suppose that the virtual machine communicates with its
user through a typewriter terminal. If a new user approaches a
previously unused terminal and requests to use a virtual machine,
which virtual machine (and, therefore, which set of long-term
stored information) should he be allowed to use? We may solve
this problem outside the system, by having the supervisor
permanently associate a single virtual machine and its long-term
storage area with a single terminal. Then, for example, padlocks
can control access to the terminal. If, on the other hand, a more
flexible system is desired, the supervisor program must be
prepared to associate any terminal with any virtual machine and,
as a result, must be able to verify the identity of the user at a

terminal. Schemes for performing this authentication are the
subject of our next example.
4) Authentication Mechanisms: Our second example is of an
authentication mechanism: a system that verifies a user's claimed
identity. The mechanics of this authentication mechanism differ
from those of the protection mechanisms for implementing
virtual machines mainly because not all of the components of the
system are under uniform physical control. In particular, the user
himself and the communication system connecting his terminal to
the computer are components to be viewed with suspicion.
Conversely, the user needs to verify that he is in communication
with the expected computer system and the intended virtual
machine. Such systems follow our abstract model of a guard who
demands a match between something he knows and something
the requester possesses. The objects being protected by the
authentication mechanism are the virtual machines. In this case,
however, the requester is a computer system user rather than an
executing program, and because of the lack of physical control
over the user and the communication system, the security of the
computer system must depend on either the secrecy or the
unforgeability of the user's identification.
In time-sharing systems, the most common scheme depends on
secrecy. The user begins by typing the name of the person he
claims to be, and then the system demands that the user type a
password, presumably known only to that person.
There are, of course, many possible elaborations and
embellishments of this basic strategy. In cases where the typing
of the password may be observed, passwords may be good for
only one use, and the user carries a list of passwords, crossing
each one off the list as he uses it. Passwords may have an
expiration date, or usage count, to limit the length of usefulness
of a compromised one.
The list of acceptable passwords is a piece of information that
must be carefully guarded by the system. In some systems, all
passwords are passed through a hard-to-invert transformation15
before being stored, an idea suggested by R. Needham [37, p.
129]. When the user types his password, the system transforms it
also and compares the transformed versions. Since the transform
is supposed to be hard to invert (even if the transform itself is
well known), if the stored version of a password is compromised,
it may be very difficult to determine what original password is
involved. It should be noted, however, that "hardness of
inversion" is difficult to measure. The attacker of such a system
does not need to discern the general inversion, only the particular
one applying to some transformed password he has available.
Passwords as a general technique have some notorious defects.
The most often mentioned defect lies in choice of password--if a
person chooses his own password, he may choose something
easily guessed by someone else who knows his habits. In one
recent study of some 300 self-chosen passwords on a typical
time-sharing system, more than 50 percent were found to be short
enough to guess by exhaustion, derived from the owner's name,
or something closely associated with the owner, such as his
telephone number or birth date. For this reason, some systems
have programs that generate random sequences of letters for use
as passwords. They may even require that all passwords be
system-generated and changed frequently. On the other hand,
frequently changed random sequences of letters are hard to
memorize, so such systems tend to cause users to make written
copies of their passwords, inviting compromise. One solution to
this problem is to provide a generator of "pronounceable" random

passwords based on digraph or higher order frequency statistics
[26] to make memorization easier.
A second significant defect is that the password must be exposed
to be used. In systems where the terminal is distant from the
computer, the password must be sent through some
communication system, during which passage a wiretapper may
be able to intercept it.
An alternative approach to secrecy is unforgeability. The user is
given a key, or magnetically striped plastic card, or some other
unique and relatively difficult-to-fabricate object. The terminal
has an input device that examines the object and transmits its
unique identifying code to the computer system, which treats the
code as a password that need not be kept secret. Proposals have
been made for fingerprint readers and dynamic signature readers
in order to increase the effort required for forgery.
The primary weakness of such schemes is that the hard-to-
fabricate object, after being examined by the specialized input
device, is reduced to a stream of bits to be transmitted to the
computer. Unless the terminal, its object reader, and its
communication lines to the computer are physically secured
against tampering, it is relatively easy for an intruder to modify
the terminal to transmit any sequence of bits he chooses. It may
be necessary to make the acceptable bit sequences a secret after
all. On the other hand, the scheme is convenient, resists casual
misuse, and provides a conventional form of accountability
through the physical objects used as keys.
A problem common to both the password and the unforgeable
object approach is that they are "one-way" authentication
schemes. They authenticate the user to the computer system, but
not vice versa. An easy way for an intruder to penetrate a
password system, for example, is to intercept all communications
to and from the terminal and direct them to another computer--
one that is under the interceptor's control. This computer can be
programmed to "masquerade," that is, to act just like the system
the caller intended to use, up to the point of requesting him to
type his password. After receiving the password, the masquerader
gracefully terminates the communication with some unsurprising
error message, and the caller may be unaware that his password
has been stolen. The same attack can be used on the unforgeable
object system as well.
A more powerful authentication technique is sometimes used to
protect against masquerading. Suppose that a remote terminal is
equipped with enciphering circuitry, such as the LUCIFER
system [38], that scrambles all signals from that terminal. Such
devices normally are designed so that the exact encipherment is
determined by the value of a key, known as the encryption or
transformation key. For example, the transformation key may
consist of a sequence of 1000 binary digits read from a
magnetically striped plastic card. In order that a recipient of such
an enciphered signal may comprehend it, he must have a
deciphering circuit primed with an exact copy of the
transformation key, or else he must cryptanalyze the scrambled
stream to try to discover the key. The strategy of
encipherment/decipherment is usually invoked for the purpose of
providing communications security on an otherwise unprotected
communications system. However, it can simultaneously be used
for authentication, using the following technique, first published
in the unclassified literature by Feistel [39]. The user, at a
terminal, begins bypassing the enciphering equipment. He types
his name. This name passes, unenciphered, through the
communication system to the computer. The computer looks up
the name, just as with the password system. Associated with each

name, instead of a secret password, is a secret transformation
key. The computer loads this transformation key into its
enciphering mechanism, turns it on, and attempts to communicate
with the user. Meanwhile, the user has loaded his copy of the
transformation key into his enciphering mechanism and turned it
on. Now, if the keys are identical, exchange of some standard
hand-shaking sequence will succeed. If they are not identical, the
exchange will fail, and both the user and the computer system
will encounter unintelligible streams of bits. If the exchange
succeeds, the computer system is certain of the identity of the
user, and the user is certain of the identity of the computer. The
secret used for authentication--the transformation key--has not
been transmitted through the communication system. If
communication fails (because the user is unauthorized, the
system has been replaced by a masquerader, or an error
occurred), each party to the transaction has immediate warning of
a problem.16
Relatively complex elaborations of these various strategies have
been implemented, differing both in economics and in
assumptions about the psychology of the prospective user. For
example, Branstad [40] explored in detail strategies of
authentication in multinode computer networks. Such
elaborations, though fascinating to study and analyze, are
diversionary to our main topic of protection mechanisms.
5) Shared Information: The virtual machines of the earlier
section were totally independent, as far as information
accessibility was concerned. Each user might just as well have
his own private computer system. With the steadily declining
costs of computer manufacture there are few technical reasons
not to use a private computer. On the other hand, for many
applications some sharing of information among users is useful,
or even essential. For example, there may be a library of
commonly used, reliable programs. Some users may create new
programs that other users would like to use. Users may wish to be
able to update a common data base, such as a file of airline seat
reservations or a collection of programs that implement a
biomedical statistics system. In all these cases, virtual machines
are inadequate, because of the total isolation of their users from
one another. Before extending the virtual machine example any
further, let us return to our abstract discussion of guards and
walls.
Implementations of protection mechanisms that permit sharing
fall into the two general categories described by Wilkes [37]
a) "List-oriented" implementations, in which the guard holds a
list of identifiers of authorized users, and the user carries a unique
unforgeable identifier that must appear on the guard's list for
access to be permitted. A store clerk checking a list of credit
customers is an example of a list-oriented implementation in
practice. The individual might use his driver's license as a unique
unforgeable identifier.
b) "Ticket-oriented" implementations, in which the guard holds
the description of a single identifier, and each user has a
collection of unforgeable identifiers, or tickets,17 corresponding
to the objects to which he has been authorized access. A locked
door that opens with a key is probably the most common example
of a ticket-oriented mechanism; the guard is implemented as the
hardware of the lock, and the matching key is the (presumably)
unforgeable authorizing identifier.
Authorization, defined as giving a user access to some object, is
different in these two schemes. In a list-oriented system, a user is
authorized to use an object by having his name placed on the

guard's list for that object. In a ticket-oriented system, a user is
authorized by giving him a ticket for the object.
We can also note a crucial mechanical difference between the
two kinds of implementations. The list-oriented mechanism
requires that the guard examine his list at the time access is
requested, which means that some kind of associative search
must accompany the access. On the other hand, the ticket-
oriented mechanism places on the user the burden of choosing
which ticket to present, a task he can combine with deciding
which information to access. The guard only need compare the
presented ticket with his own expectation before allowing the
physical memory access. Because associative matching tends to
be either slower or more costly than simple comparison, list-
oriented mechanisms are not often used in applications where
traffic is high. On the other hand, ticket-oriented mechanisms
typically require considerable technology to control forgery of
tickets and to control passing tickets around from one user to
another. As a rule, most real systems contain both kinds of
sharing implementations--a list-oriented system at the human
interface and a ticket-oriented system in the underlying hardware
implementation. This kind of arrangement is accomplished by
providing, at the higher level, a list-oriented guard18 whose only
purpose is to hand out temporary tickets which the lower level
(ticket-oriented) guards will honor. Some added complexity
arises from the need to keep authorizations, as represented in the
two systems, synchronized with each other. Computer protection
systems differ mostly in the extent to which the architecture of
the underlying ticket-oriented system is visible to the user.
Finally, let us consider the degenerate cases of list- and ticket-
oriented systems. In a list-oriented system, if each guard's list of
authorized users can contain only one entry, we have a "complete
isolation" kind of protection system, in which no sharing of
information among users can take place. Similarly, in a ticket-
oriented system, if there can be only one ticket for each object in
the system, we again have a "complete isolation" kind of
protection system. Thus the "complete isolation" protection
system turns out to be a particular degenerate case of both the
list-oriented and the ticket-oriented protection implementations.
These observations are important in examining real systems,
which usually consist of interacting protection mechanisms, some
of which are list-oriented, some of which are ticket-oriented, and
some of which provide complete isolation and therefore may
happen to be implemented as degenerate examples of either of
the other two, depending on local circumstances.
We should understand the relationship of a user to these
transactions. We are concerned with protection of information
from programs that are executing. The user is the individual who
assumes accountability for the actions of an executing program.
Inside the computer system, a program is executed by a virtual
processor, so one or more virtual processors can be identified
with the activities directed by the user.19
In a list-oriented system it is the guard's business to know whose
virtual processor is attempting to make an access. The virtual
processor has been marked with an unforgeable label identifying
the user accountable for its actions, and the guard inspects this
label when making access decisions. In a ticket-oriented system,
however, the guard cares only that a virtual processor present the
appropriate unforgeable ticket when attempting an access. The
connection to an accountable user is more diffuse, since the guard
does not know or care how the virtual processor acquired the
tickets. In either case, we conclude that in addition to the
information inside the impenetrable wall, there are two other

things that must be protected: the guard's authorization
information, and the association between a user and the
unforgeable label or set of tickets associated with his virtual
processors.
Since an association with some user is essential for establishing
accountability for the actions of a virtual processor, it is useful to
introduce an abstraction for that accountability--the principal. A
principal is, by definition, the entity accountable for the activities
of a virtual processor.20 In the situations discussed so far, the
principal corresponds to the user outside the system. However,
there are situations in which a one-to-one correspondence of
individuals with principals is not adequate. For example, a user
may be accountable for some very valuable information and
authorized to use it. On the other hand, on some occasion he may
wish to use the computer for some purpose unrelated to the
valuable information. To prevent accidents, he may wish to
identify himself with a different principal, one that does not have
access to the valuable information--following the principle of
least privilege. In this case there is a need for two different
principals corresponding to the same user.
Similarly, one can envision a data base that is to be modified only
if a committee agrees. Thus there might be an authorized
principal that cannot be used by any single individual; all of the
committee members must agree upon its use simultaneously.
Because the principal represents accountability, we shall see later
(in the section on dynamic authorization of sharing) that
authorizing access is done in terms of principals. That is, if one
wishes a friend to have access to some file, the authorization is
done by naming a principal only that friend can use.
For each principal we may identify all the objects in the system
which the principal has been authorized to use. We will name that
set of objects the domain of that principal.
Summarizing, then, a principal is the unforgeable identifier
attached to a virtual processor in a list-oriented system. When a
user first approaches the computer system, that user must identify
the principal to be used. Some authentication mechanism, such as
a request for a secret password, establishes the user's right to use
that principal. The authentication mechanism itself may be either
list- or ticket-oriented or of the complete isolation type. Then a
computation is begun in which all the virtual processors of the
computation are labeled with the identifier of that principal,
which is considered accountable for all further actions of these
virtual processors. The authentication mechanism has allowed the
virtual processor to enter the domain of that principal. That
description makes apparent the importance of the authentication
mechanism. Clearly, one must carefully control the conditions
under which a virtual processor enters a domain.
Finally, we should note that in a ticket-oriented system there is no
mechanical need to associate an unforgeable identifier with a
virtual processor, since the tickets themselves are presumed
unforgeable. Nevertheless, a collection of tickets can be
considered to be a domain, and therefore correspond to some
principal, even though there may be no obvious identifier for that
principal. Thus accountability in ticket-oriented systems can be
difficult to pinpoint.
Now we shall return to our example system and extend it to
include sharing. Consider for a moment the problem of sharing a
library program--say, a mathematical function subroutine. We
could place a copy of the math routine in the long-term storage
area of each virtual machine that had a use for it. This scheme,
although workable, has several defects. Most obvious, the
multiple copies require multiple storage spaces. More subtly, the

scheme does not respond well to changes. If a newer, better math
routine is written, upgrading the multiple copies requires effort
proportional to the number of users. These two observations
suggest that one would like to have some scheme to allow
different users access to a single master copy of the program. The
storage space will be smaller and the communication of updated
versions will be easier.

Fig. 2. Sharing of a math routine by use of two descriptor
registors. (a) Program A in control of processor. (b)
Program B in control of processor.

In terms of the virtual machine model of our earlier example, we
can share a single copy of the math routine by adding to the real
processor a second descriptor register, as in Fig. 2, placing the
math routine somewhere in memory by itself and placing a
descriptor for it in the second descriptor register. Following the
previous strategy, we assume that the privileged state bit assures
that the supervisor program is the only one permitted to load
either descriptor register. In addition, some scheme must be
provided in the architecture of the processor to permit a choice of
which descriptor register is to be used for each address generated
by the processor. A simple scheme would be to let the high-order
address bit select the descriptor register. Thus, in Fig. 2, all
addresses in the lower half of the address range would be
interpreted relative to descriptor register 1, and addresses in the
upper half of the address range would be relative to descriptor

register 2. An alternate scheme, suggested by Dennis [42], is to
add explicitly to the format of instruction words a field that
selects the descriptor register intended to be used with the address
in that instruction. The use of descriptors for sharing information
is intimately related to the addressing architecture of the
processor, a relation that can cause considerable confusion. The
reason why descriptors are of interest for sharing becomes
apparent by comparing parts a and b of Fig. 2. When program A
is in control, it can have access only to itself and the math
routine; similarly, when program B is in control, it can have
access only to itself and the math routine. Since neither program
has the power to change the descriptor register, sharing of the
math routine has been accomplished while maintaining isolation
of program A from program B.
The effect of sharing is shown even more graphically in Fig. 3,
which is Fig. 2 redrawn with two virtual processors, one
executing program A and the other executing program B.
Whether or not there are actually two processors is less important
than the existence of the conceptually parallel access paths
implied by Fig. 3.

Fig. 3. Fig. 2 redrawn to show sharing of a math routine by
two virtual processors simultaneously.

Every virtual processor of the system may be viewed as having
its own real processor, capable of access to the memory in
parallel with that of every other virtual processor. There may be
an underlying processor multiplexing facility that distributes a
few real processors among the many virtual processors, but such
a multiplexing facility is essentially unrelated to protection.
Recall that a virtual processor is not permitted to load its own
protection descriptor registers. Instead, it must call or trap to the
supervisor program S which call or trap causes the privileged
state bit to go ON and thereby permits the supervisor program to
control the extent of sharing among virtual processors. The
processor multiplexing facility must be prepared to switch the
entire state of the real processor from one virtual processor to
another, including the values of the protection descriptor
registers.

Although the basic mechanism to permit information sharing is
now in place, a remarkable variety of implications that follow
from its introduction require further mechanisms. These
implications include the following.

1) If virtual processor P1 can overwrite the shared math routine,
then it could disrupt the work of virtual processor P2.
2) The shared math routine must be careful about making
modifications to itself and about where in memory it writes
temporary results, since it is to be used by independent
computations, perhaps simultaneously.
3) The scheme needs to be expanded and generalized to cover the
possibility that more than one program or data base is to be
shared.
4) The supervisor needs to be informed about which principals
are authorized to use the shared math routine (unless it happens
to be completely public with no restrictions).

Fig. 4. A descriptor containing READ and WRITE
permission bits.

Let us consider these four implications in order. If the shared area
of memory is a procedure, then to avoid the possibility that
virtual processor P1 will maliciously overwrite it, we can restrict
the methods of access. Virtual processor P1 needs to retrieve
instructions from the area of the shared procedure, and may need
to read out the values of constants embedded in the program, but
it has no need to write into any part of the shared procedure. We
may accomplish this restriction by extending the descriptor
registers and the descriptors themselves to include accessing
permission, an idea introduced for different reasons in the
original Burroughs B5000 design [32] . For example, we may add
two bits, one controlling permission to read and the other
permission to write in the storage area defined by each descriptor,
as in Fig. 4. In virtual processor P1 of Fig. 3, descriptor 1 would
have both permissions granted, while descriptor 2 would permit
only reading of data and execution of instructions.21 An
alternative scheme would be to attach the permission bits directly
to the storage areas containing the shared program or data. Such a
scheme is less satisfactory because, unlike the descriptors so far
outlined, permission bits attached to the data would provide
identical access to all processors that had a descriptor. Although
identical access for all users of the shared math routine of Figs. 1-
2-3 might be acceptable, a data base could not be set up with
several users having permission to read but a few also having
permission to write.
The second implication of a shared procedure, mentioned before,
is that the shared procedure must be careful about where it stores
temporary results, since it may be used simultaneously by several
virtual processors. In particular, it should avoid modifying itself.
The enforcement of access permission by descriptor bits further
constrains the situation. To prevent program A from writing into
the shared math routine, we have also prohibited the shared math
routine from writing into itself, since the descriptors do not
change when, for example, program A transfers control to the
math routine.22 The math routine will find that it can read but not
write into itself, but that it can both read and write into the area of
program A. Thus program A might allocate an area of its own
address range for the math routine to use as temporary storage.23
As for the third implication, the need for expansion, we could
generalize our example to permit several distinct shared items
merely by increasing the number of descriptor registers and

informing the supervisor which shared objects should be
addressable by each virtual processor. However, there are two
substantially different forms of this generalization--capability
systems and access control list systems. In terms of the earlier
discussion, capability systems are ticket-oriented, while access
control list systems are list-oriented. Most real systems use a
combination of these two forms, the capability system for speed
and an access control list system for the human interface. Before
we can pursue these generalizations, and the fourth implication,
authorization, more groundwork must be laid.
In Section II, the development of protection continues with a
series of successively more sophisticated models. The initial
model, of a capability system, explores the use of encapsulated
but copyable descriptors as tickets to provide a flexible
authorization scheme. In this context we establish the general rule
that communication external to the computer must precede
dynamic authorization of sharing. The limitations of copyable
descriptors--primarily lack of accountability for their use--lead to
analysis of revocation and the observation that revocation
requires indirection. That observation in turn leads to the model
of access control lists embedded in indirect objects so as to
provide detailed control of authorization.
The use of access control lists leads to a discussion of controlling
changes to authorizations, there being at least two models of
control methods which differ in their susceptibility to abuse.
Additional control of authorization changes is needed when
releasing sensitive data to a borrowed program, and this
additional control implies a nonintuitive constraint on where data
may be written by the borrowed program. Finally, Section II
explores the concept of implementing arbitrary abstractions, such
as extended types of objects, as programs in separate domains.

II. DESCRIPTOR-BASED PROTECTION SYSTEMS

A. Separation of Addressing and Protection24

As mentioned earlier, descriptors have been introduced here for the
purpose of protecting information, although they are also used in some
systems to organize addressing and storage allocation. For the present,
it is useful to separate such organizational uses of descriptors from their
protective use by requiring that all memory accesses go through two
levels of descriptors. In many implementations, the two levels are
actually merged into one, and the same descriptors serve both
organizational and protection purposes.
Conceptually, we may achieve this separation by enlarging the function
of the memory system to provide uniquely identified (and thus distinctly
addressed) storage areas, commonly known as segments. For each
segment there must be a distinct addressing descriptor, and we will
consider the set of addressing descriptors to be part of the memory
system, as in Fig. 5. Every collection of data items worthy of a distinct
name, distinct scope of existence, or distinct protection would be placed
in a different segment, and the memory system itself would be
addressed with two-component addresses: a unique segment identifier
(to be used as a key by the memory system to look up the appropriate
descriptor) and an offset address that indicates which part of the
segment is to be read or written. All users of the memory system would
use the same addressing descriptors, and these descriptors would have
no permission bits--only a base and a bound value. This scheme is
functionally similar to that used in the Burroughs B5700/ 6700 or

Honeywell Multics systems in that it provides a structured addressing
space with an opportunity for systematic and automatic storage
allocation.

�

Fig. 5. An organization separating addressing from
protection descriptors, using a segmented memory. The
address passed from the processor to the memory consists
of two parts: a unique segment identifier and an offset.
Program A is in control. (Compare with Fig. 2(a).) In later
figures the map containing addressing descriptors will be
omitted for clarity, but it is assumed to be present in the
actual implementation of a segmented memory.

The unique identifiers used to label segments are an essential
cornerstone of this organization. They will be used by the protection
system to identify segments, so they must never be reused. One way of
implementing unique identifiers is to provide a hardware counter register
that operates as a clock (counting, say, microseconds) and is large
enough never to overflow in the lifetime of the memory system. The
value of the clock register at the time a segment is created can be used
as that segment's unique identifier.25 As long as the memory system
remembers anything, the time base of the clock register must not be
changed.
The processor of Fig. 5 contains, as part of its state, protection
descriptors similar to those of Figs. 1 and 2, with the addition of
permissions, as in Fig. 4. All references by the processor are
constrained to be to segments described by these protection descriptors.
The protection descriptor itself no longer contains a base and bound;
instead the descriptor contains the unique segment identifier that the
memory system requires as the first part of its two-part address for
accessing that segment. Thus, from the point of view of a program
stored in one of the segments of memory, this system is
indistinguishable from that of Fig. 2. Note in Fig. 5 that although
addressing descriptors exist for the segments containing program B and
program S (the supervisor), they are not accessible to the processor
since it has no protection descriptors for those two segments. It is useful
to distinguish between the system address space, consisting of all the
segments in the memory system, and the processor address space,
consisting of those segments for which protection descriptors exist.

Since the addressing descriptors are part of the memory system, which
is shared by all processors, the system address space is universal. Any
single processor address space, on the other hand, is defined by the
particular protection descriptors associated with the processor and
therefore is local. If the supervisor switches control of a real processor
from one virtual processor to another, it would first reload the protection
descriptors; the processor address space thus is different for different
users, while the system address space remains the same for all users.
With the addressing function separated architecturally from the
protection function, we may now examine the two generalized forms of
protection systems: the capability system and the access control list
system.

���������	�
���
�����
�����������	�
���
�����
�����������	�
���
�����
�����������	�
���
�����
������

1) The Concept of Capabilities: The simplest generalization is the
capability system suggested by Dennis and Van Horn [41], and
first partially implemented on an M.l.T. PDP-1 computer [48].26
There are many different detailed implementations for capability
systems; we illustrate with a specific example. Recall that we
introduced the privileged state bit to control who may load values
into the protection descriptor registers. Another way to maintain
the integrity of these registers would be to allow any program to
load the protection descriptor registers, but only from locations in
memory that previously have been certified to contain acceptable
protection descriptor values.
Suppose, for example, that every location in memory were tagged
with an extra bit. If the bit is OFF, the word in that location is an
ordinary data or instruction word. If the bit is ON, the word is
taken to contain a value suitable for loading into a protection
descriptor register. The instruction that loads the protection
descriptor register will operate only if its operand address leads it
to a location in memory that has the tag bit ON. To complete the
scheme, we should provide an instruction that stores the contents
of a protection descriptor register in memory and turns the
corresponding tag bit ON, and we must arrange that all other
store instructions set the tag bit OFF in any memory location they
write into. This gives us two kinds of objects stored in the
memory: protection descriptor values and ordinary data values.
There are also two sets of instructions, separate registers for
manipulating the two kinds of objects, and, effectively, a wall
that prevents values that are subject to general computational
manipulation from ever being used as protection descriptor
values. This kind of scheme is a particular example of what is
called a tagged architecture.27
This particular tagged architecture is known as a capability
system, one that lets the user place protection descriptor values in
memory addresses that are convenient to him. A memory word
that contains a protection descriptor value (in our simple tagged
system, one that has its tag bit ON) is known as a capability.
To see how capabilities can be used to generalize our basic
sharing strategy, suppose that each processor has several (say,
four) protection descriptor registers, and that program A is in
control of a processor, as in Fig. 6. (For clarity, this and future
figures omit the addressing descriptors of the segmented
memory.) The first two protection descriptor registers have
already been loaded with values permitting access to two
segments, program A and a segment we have labeled "Catalog
for Doe." In our example, this latter segment contains two
locations with tags indicating that they are capabilities, Cl and
C2. Program A may direct the processor to load the capability at

location C2 into one of the protection descriptor registers, and
then the processor may address the shared math routine.
Similarly, either program A or the shared math routine may direct
the loading of the capability at location Cl into a protection
descriptor register, after which the processor may address the
segment labeled "Private Data Base X." By a similar chain of
reasoning, another processor starting with a capability for the
segment labeled "Catalog for Smith" can address both the shared
math routine and the segment "Private Data Base Y."

�

Fig. 6. A simple capability system. Program A is in control
of the processor. Note that there is no way for the
processor to address Smith's catalog or data base Y. On
the other hand, data base X could be accessed by loading
capabUity C~ into a protection descriptor register.
CapabUity C' is loadable because it is stored in a segment
that can be reached from a capabUity already loaded in
protection descriptor register 2. Note also that the former
function of the privUeged state bit has been accomplished
by protecting the capabilities. The privileged state bit also
has other uses and wUI be reintroduced later.

We can now arrange for any desired static pattern of sharing of
segments. For example, for each user, we can provide one
segment for use as a catalog and place in that catalog a capability
for every segment he is authorized to use. Each capability
contains separate read and write permission bits, so that some
users may receive capabilities that permit reading and writing
some segment, while others receive capabilities permitting only
reading from that same segment. The catalog segment actually
might contain pairs: a character-string name for some segment
and the associated capability that permits addressing that
segment. A user would create a new segment by calling the
supervisor. The supervisor by convention might set some
protection descriptor to contain a capability for the new
segment.28 The user could then file his new segment by storing
this new capability in his catalog along with a name for the
segment. Thus we have an example of a primitive but usable
filing system to go with the basic protection structure.29
To complete the picture, we should provide a tie to some
authentication mechanism. Suppose that the system responds to
an authentication request by creating a new virtual processor and

starting it executing in a supervisor program that initially has a
capability for a user identification table, as in Fig. 7. If a user
identifies himself as "Doe" and supplies a password, the
supervisor program can look up his identification in the user
identification table. It can verify the password and load into a
protection descriptor register the capability for the catalog
associated with Doe's entry in the user identification table. Next,
it would clear the remaining capability registers, destroying the
capability for the user identification table, and start running some
program in Doe's directory, say program A. Program A can
extend its addressability to any segment for which a capability
exists in Doe's catalog. Formally, after verifying the claimed
identity of the user, the authentication system has allowed the
virtual processor to enter Doe's domain, starting in procedure A.
By providing for authentication we have actually tied together
two protection systems: 1) an authentication system that controls
access of users to named catalog capabilities, and 2) the general
capability system that controls access of the holder of a catalog
capability to other objects stored in the system.
The authentication system associates the newly created virtual
processor with the principal accountable for its future activities.
Once the virtual processor is started, however, the character-
string identifier "Doe" is no longer used; the associated catalog
capability is sufficient. The replacement of the character-string
form of the principal identifier is possible because the full range
of accessible objects for this user has already been opened up to
him by virtue of his acquisition of his catalog capability. The
catalog capability becomes, in effect, the principal identifier. On
the other hand, some loss of accountability has occurred. It is no
longer quite so easy, by examining the registers of a running
virtual processor, to establish who is accountable for its activity.
This lack of accountability will have to be repaired in order to
allow the virtual processor to negotiate the acquisition of new
capabilities.

Fig. 7. A capability system with provision for authentication.

With this example of a capability system, a catalog is not a
special object. It is merely any segment in which any program
chooses to store capabilities that are, by virtue of their tags,
protected unforgeable objects. If in Fig. 7, program A, running
under Doe's control, creates a new object, it may choose to place
the new capability in segment X in a position where it can easily
be found later. In such a case, segment X has become, in effect,
another catalog. To establish the full range of objects that Doe
may address, it is necessary to examine not only the initial
catalog segment, whose capability is contained in the user

identification table, but also all segments it contains capabilities
for, and all segments they contain capabilities for, etc.
The scheme described so far admits any desired static
arrangement of accessing authorization. It could be used in an
application for which a simple, rarely changed, authorization
pattern is useful. For example, a company data base management
system might have a relatively static authorization pattern, which
changes only when major revisions are made to the style of
maintaining the data base. We have not yet provided, however,
for the possibility that Doe, upon creating a new segment, might
wish to authorize access to it for Smith. Such a need would
probably arise if the computer system is used for the creation and
editing of interoffice memoranda and letters or for constructing
programs. We shall call this operation dynamic authorization.
The dynamic authorization of sharing is a topic that must be
examined quite carefully, since it exposes several subtle issues
that are fundamental to sharing and protection.
2) The Dynamic Authorization of Sharing: One might propose to
handle dynamic authorization very simply by arranging that Doe
have a capability to write into Smith's catalog. Then Doe could
store a copy of the capability for the new segment in Smith's
catalog. But this approach has a defect. Allowing Doe to have a
capability to write into Smith's catalog would enable Doe to
overwrite and destroy all of Smith's capabilities. The inverse
strategy of giving Smith a capability to read Doe's catalog would
give Smith access to all of Doe's segments. A more "secure"
approach to the problem is needed. To develop this approach, we
will consider a clumsy strategy with square-law growth, and then
refine it.
If the possibility of sharing had been anticipated, both Doe and
Smith might initially have had a capability allowing reading and
writing a communication segment used only to pass messages
and capabilities between Doe and Smith. Doe's program deposits
the capability for his newly created object in the communication
segment for Smith, and Smith's program can pick it up and use it
or catalog it at Smith's convenience. But that description
oversimplifies one step. Both Doe's and Smith's programs
somehow have to locate the capability for the common
communication segment. How do they know what to look for?
Consider the case of the sender, Doe's program, first. Presumably
it looks in some trusted catalog for the name "Smith" and finds
the capability for the communication segment next to Smith's
name. But how does Doe's program know to look for the name
"Smith"? The character-string name may be embedded in the
program by Doe or he may type it into his program as it runs, but
either way one thing is crucial--that there be a secure path from
Doe, who is authorizing the passing of the capability, to the
program, which is carrying it out. Next, we should ask, where
does Doe find out the character-string name "Smith" so that he
could type it in or embed it in his program? Presumably, he
learns Smith's name via some path outside the computer. Perhaps
Smith shouts it down the hall to him.30 The method of
communication is not important, but the fact of the
communication is. For dynamic authorization of sharing within a
computer, there must be some previous communication from the
recipient to the sender, external to the computer system. Further,
this reverse external communication path must be sufficiently
secure that the sender is certain of the system-cataloged name of
the intended recipient. That name is, by definition, the identifier
of the recipient's principal within the computer system. Thus the
sender can be sure that only programs run under the
accountability of that principal will have access to his new object.

An analogous chain of reasoning applies to Smith's program as
the recipient of the capability for the new object. Smith must
learn from Doe some piece of information sufficient that he can
instruct his program to look in the correct communication
segment for the capability which Doe is sending. Again, Doe's
principal identifier should be the name used in Smith's catalog of
communication segments, so Smith can be certain that only some
program run under Doe's accountability could possibly have sent
the capability. In summary, here is a complete protocol for
dynamically authorizing sharing of a new object.
Sender's part:

1. Sender learns receiver's principal identifier via a
communication path outside the system.

2. Sender transmits receiver's principal identifier to some
program running inside the system under the
accountability of the sender.

3. Sender's program uses receiver's principal identifier to
ensure that only virtual processors operating under the
accountability of the receiver will be able to obtain the
capability being transmitted.

Receiver's part:

1. Receiver learns sender's principal identifier, via a
communication path outside the system.

2. Receiver transmits sender's principal identifier to some
program running inside the system under the
accountability of the receiver.

3. Receiver's program uses the sender's principal identifier
to ensure that only a virtual processor operating under
the accountability of the sender could have sent the
capability being received.

This protocol provides protection for the authorization changing
mechanism (copying of a capability) by requiring an authority
check (comparison of a principal identifier found inside the
system with authorization information transmitted from outside).
Although the analysis may seem somewhat strained, it is
important because it always applies, even though parts of it may
be implicit or hidden. We have described the protocol in terms of
a capability system, but the same protocol also applies in access
control list systems.
Our analysis of the dynamics of authorizing sharing has been in
terms of private communication segments between every pair of
users, a strategy which would lead, with N users, to some N2
communication segments. To avoid this square-law growth, one
might prefer to use some scheme that dynamically constructs the
communication paths also, such as having special hardware or a
protected subsystem that implements a single "mailbox segment"
for each user to receive messages and capabilities sent by all
other users. Of course, the mechanism that implements the
mailbox segments must be a protected, reliable mechanism, since
it must infallibly determine the principal identifier of the sender
of a message and label the message with that identifier, so the
receiver can reliably carry out his step 3) of the protocol.
Similarly, as the sender's agency, it must be able to associate the
recipient's principal identifier with the recipient's mailbox, so that
the sender's intent in his step 3) of the protocol is carried out
correctly.

3) Revocation and Control of Propagation: The capability system
has as its chief virtues its inherent efficiency, simplicity, and
flexibility. Efficiency comes from the ease of testing the validity
of a proposed access: if the accessor can present a capability, the
request is valid. The simplicity comes from the natural
correspondence between the mechanical properties of capabilities
and the semantic properties of addressing variables. The
semantics for dynamically changing addressability that are part of
such modern languages as PL/I and Algol 68 fit naturally into a
capability-based framework by using capabilities as address
(pointer) variables. Straightforward additions to the capability
system allow it gracefully to implement languages with dynamic-
type extension [21] . Flexibility comes from the defining property
of a capability system: the user may decide which of his
addresses are to contain capabilities. The user can develop a data
structure with an arbitrary pattern of access authorizations to his
liking.
On the other hand, there are several potential problems with the
capability system as we have sketched it so far. If Doe has a
change of heart--he suddenly realizes that there is confidential
information in the segment he permitted Smith to read--there is
no way that he can disable the copy of the capability that Smith
now has stored away in some unknown location. Unless we
provide additional control, his only recourse is to destroy the
original segment, an action which may be disruptive to other
users, still trusted, who also have copies of the capability. Thus
revocation of access is a problem.
A second, related property of a capability system is that Smith
may now make copies of the capability and distribute them to
other users, without the permission or even the knowledge of
Doe. While in some cases, the ability of a recipient to pass access
authorization along is exactly what the original grantor intended,
in others it is not. We have not provided for any control of
propagation.
Finally, the only possible way in which Doe could make a list of
all users who currently can reach his segment would be by
searching every segment in the system for copies of the necessary
capability. That search would be only the beginning, since there
may be many paths by which users could reach those capability
copies. Every such path must be found, a task that may involve a
fair amount of computation and that also completely bypasses the
protection mechanisms. Thus review of access is a problem.31
To help counter these problems, constraints on the use of
capabilities have been proposed or implemented in some systems.
For example, a bit added to a capability (the copy bit) may be
used to indicate whether or not the capability may be stored in a
segment. If one user gives another user access to a capability with
the copy bit OFF, then the second user could not make copies of
the capability he has borrowed. Propagation would be prevented,
at the price of lost flexibility.
Alternatively, some segments (perhaps one per user) may be
designated as capability-holding segments, and only those
segments may be targets of the instructions that load and store
descriptor registers. This scheme may reduce drastically the
effort involved in auditing and make revocation possible, since
only capability-holding segments need be examined. (The CAP
system [20] and the Plessey 250 [53] are organized in
approximately this way, and the Burroughs B5000 family
restricts descriptor storage to the virtual processor stack and a
single table of outbound references [47].) In systems that make a
programmer-visible distinction between short-term processor-
addressable memory (addressed by LOAD and STORE

instructions) and long-term storage (addressed by GET and PUT
subroutines), it is possible to restrict capabilities so that they may
be stored only in processor-addressable memory. This restriction
not only reduces the effort required for auditing, but also limits
the lifetime of a capability to that of a virtual processor. When
the system shuts down, the only memory of the system is in long-
term storage and all capabilities vanish. Of course, the next time
the system starts up, newly created virtual processors need some
way (such as appeal to an access control list system, described in
the next subsection) to acquire the capabilities they need.
A third approach is to associate a depth counter with each
protection descriptor register. The depth counter initially would
have the value, say, of one, placed there by the supervisor.
Whenever a program loads a descriptor register from a place in
memory, that descriptor register receives a depth count that is one
greater than the depth count of the descriptor register that
contained the capability that permitted the loading. Any attempt
to increase a depth count beyond, say, three, would constitute an
error, and the processor would fault. In this way, the depth
counters limit the length of the chain by which a capability may
propagate. Again, this form of constraint reduces the effort of
auditing, since one must trace chains back only a fixed number of
steps to get a list of all potential accessors. (The M.I.T. CTSS
used a software version of this scheme, with a depth limit of
two.)
To gain more precise control of revocation, Redell [54] has
proposed that the basic capability mechanism be extended to
include the possibility of forcing a capability to specify its target
indirectly through a second location before reaching the actual
object of interest. This second location would be an
independently addressable recognizable object, and anyone with
an appropriate capability for it could destroy the indirect object,
revoking access to anyone else who had been given a capability
for that indirect object. By constructing a separate indirect object
for each different principal he shared an object with, the owner of
the object could maintain the ability to revoke access
independently for each principal. The indirect objects would be
implemented within the memory-mapping hardware (e.g., the
addressing descriptors of Fig. 5) both to allow high-speed
bypassing if frequent multiple indirections occur and also to
allow the user of a capability to be ignorant of the existence of
the indirection.32 Redell's indirect objects are closely related to
the access controllers of the access control list system, described
in the next subsection. While providing a systematic revocation
strategy (if their user develops a protocol for systematically using
them), the indirect objects provide only slight help for the
problems of propagation and auditing.
The basic trouble being encountered is that an authorization--a
kind of binding--takes place any time a capability is copied.
Unless an indirect object is created for the copy, there is no
provision for reversing this binding. The ability to make a further
copy (and potentially a new authorization) is coupled to
possession of a capability and is not independently controllable.
Restrictions on the ability to copy, while helping to limit the
number or kind of authorizations, also hamper the simplicity,
flexibility, and uniformity of capabilities as addresses. In
particular, capabilities are especially useful as a way of
communicating exactly the necessary arguments from one
procedure to another. In this way, they encourage wide use of
procedures, a cornerstone of good programming practice.
Restrictions on copyability, then, inhibit their usefulness in the
context of procedure calls, and that runs counter to the goal of

providing base-level facilities that encourage good programming
practice. This dilemma seems to present an opportunity for
research. At the present level of understanding, the most effective
way of preserving some of the useful properties of capabilities is
to limit their free copyability to the bottom most implementation
layer of a computer system, where the lifetime and scope of the
bindings can be controlled. The authorizations implemented by
the capability system are then systematically maintained as an
image of some higher level authorization description, usually
some kind of an access control list system, which provides for
direct and continuous control of all permission bindings.33

�����������������
�������
����
�������������������
�������
����
�������������������
�������
����
�������������������
�������
����
������

1) Access Controllers: The usual strategy for providing
reversibility of bindings is to control when they occur--typically
by delaying them until the last possible moment. The access
control list system provides exactly such a delay by inserting an
extra authorization check at the latest possible point. Where the
capability system was basically a ticket-oriented strategy, the
access control list system is a list-oriented strategy. Again, there
are many possible mechanizations, and we must choose one for
illustration. For ease of discussion, we will describe a mechanism
implemented completely in hardware (perhaps by
microprogramming), although, historically, access control list
systems have been implemented partly with interpretive software.
Our initial model will impose the extra authorization check on
every memory reference, an approach that is unlikely in practice
but simpler to describe. Later we will show how to couple an
access control list system to a capability system, a more typical
realization that reduces the number of extra checks.

Fig. 8. Conceptual model of an access controller. When a
virtual processor attempts to refer to the segment
associated with the access controller, the memory system
looks up the principal identifier in the access control list part.
If found, the permissions associated with that entry of the
access control list, together with the addressing descriptor,
are used to complete the access.

The system of Fig. 5 identified protection descriptors as a
processor mechanism and addressing descriptors as a memory
mechanism. Suppose that the memory mechanism is further
augmented as follows.

Fig. 9. A revision of Fig. 5, with the addition of an access
controller as an indirect address to be used on all
references by the processor to the memory. Since the
access controller contains permission bits, they no longer
need appear in the processor registers, which have been
renamed "pointer" registers. Note that the privileged state
bit of the processor has been replaced with a principal
identifier register.

Whenever a user requests that a segment be created, the memory
system will actually allocate two linked storage areas. One of the
storage areas will be used to store the data of the segment as
usual, and the second will be treated as a special kind of object,
which we will call an access controller. An access controller
contains two pieces of information: an addressing descriptor for
the associated segment and an access control list, as in Fig. 8. An
addressing descriptor for the access controller itself is assigned a
unique identifier and placed in the map used by the memory
system to locate objects. The access controller is to be used as a
kind of indirect address, as in Fig. 9. In order to access a
segment, the processor must supply the unique identifier of that
segment's access controller. Since the access controller is
protected, however, there is no longer any need for these unique
identifiers to be protected. The former protection descriptor
registers can be replaced with unprotected pointer registers,
which can be loaded from any addressable location with arbitrary
bit patterns. (In terms of IBM System 370 and Honeywell
Multics, the pointer registers contain segment numbers from a
universal address space. The segment numbers lead to the
segment addressing descriptors stored in the access controller.)
Of course, only bit patterns corresponding to the unique identifier
of some segment's access controller will work. A data reference
by the processor proceeds in the following steps, keyed to Fig. 9.

1. The program encounters an instruction that would write
in the segment described by pointer register 3 at offset
k.

2. The processor uses the unique identifier found in
pointer register 3 to address access controller AC1. The

processor at the same time presents to the memory
system the user's principal identifier, a request to write,
and the offset k.

3. The memory system searches the access control list in
AC1 to see if this user's principal identifier is recorded
there.

4. If the principal identifier is found, the memory system
examines the permission bits associated with that entry
of the access control list to see if writing is permitted.

5. If writing is permitted, the addressing descriptor of
segment X, stored in AC1, and the original offset k are
used to generate a write request inside the memory
system.

We need one more mechanism to make this system work. The set
of processor registers must be augmented with a new protected
register that can contain the identifier of the principal currently
accountable for the activity of the virtual processor, as shown in
Fig. 9. (Without that change, one could not implement the second
and third steps.)
For example, we may have an organization like that of Fig. 10,
which implements essentially the same pattern of sharing as did
the capability system of Fig. 6. The crucial difference between
these two figures is that, in Fig. 10, all references to data are
made indirectly via access controllers. Overall, the organization
differs in several ways from the pure capability system described
before.

1. The decision to allow access to segment X has known,
auditable consequences. Doe cannot make a copy of the
addressing descriptor of segment X since he does not
have direct access to it, eliminating propagation of
direct access. The pointer to X's access controller itself
may be freely copied and passed to anyone, but every
use of the pointer must be via the access controller,
which prevents access by unauthorized principals.34

2. The access control list directly implements the sender's
third step of the dynamic sharing protocol--verifying
that the requester is authorized to use the object. In the
capability system, verification was done once to decide
if the first capability copy should be made; after that,
further copying was unrestricted. The access control list,
on the other hand, is consulted on every access.

3. Revocation of access has become manageable. A
change to an access control list removing a name
immediately preludes all future attempts by that user to
use that segment.

4. The question of "who may access this segment?"
apparently is answered directly by examining the
access control list in the access controller for the
segment. The qualifier "apparently" applies because we
have not yet postulated any mechanism for controlling
who may modify access control lists.

5. All unnecessary association between data organization
and authorization has been broken. For example,
although a catalog may be considered to "belong" to a
particular user, the segments appearing in that catalog
can have different access control lists. It follows that
the grouping of segments for naming, searching, and
archiving purposes can be independent of any desired

grouping for protection purposes. Thus, in Fig. 10, a
library catalog has been introduced.

Fig. 10. A protection system using access controllers
containing access control lists. In this system, every
segment has a single corresponding access controller with
its own unique identifier for addressing purposes; pointer
registers always contain the unique identifiers of accoss
controllers. Program A is in control of the processor, and it
has already acquired a pointer to the library catalog. Since
the access control list in the access controller for the library
catalog contains Doe's name, the processor can use the
catalog to find the pointer for the shared math routine.
Since his name also appears in the accoss control list of
the math routine, the processor will then be able to use the
shared math routine.

It is also apparent that implementation, especially direct hardware
implementation, of the access control list system could be quite
an undertaking. We will later consider some strategies to simplify
implementation with minimum compromise of functions, but first
it will be helpful to introduce one more functional property-
protection groups.
2) Protection Groups: Cases often arise where it would be
inconvenient to list by name every individual who is to have
access to a particular segment, either because the list would be
awkwardly long or because the list would change frequently. To
handle this situation, most access control list systems implement
factoring into protection groups, which are principals that may be
used by more than one user. If the name of a protection group
appears in an access control list, all users who are members of
that protection group are to be permitted access to that segment.
Methods of implementation of protection groups vary widely. A
simple way to add them to the model of Figs. 9 and 10 is to
extend the "principal holding" register of the processor so that it
can hold two (or more) principal identifiers at once, one for a
personal principal identifier and one for each protection group of
which the user is a member. Fig. 10 shows this extension in
dashed lines. In addition, we upgrade the access control list
checker so that it searches for a match between any of the
principal identifiers and any entries of the access control list.35
Finally, who is allowed to use those principals that represent
protection group identifiers must also be controlled
systematically.
We might imagine that for each protection group there is a
protection group list, that is, a list of the personal principal
identifiers of all users authorized to use the protection group's
principal identifier. (This list is an example of an access control

list that is protecting an object--a principal identifier other than a
segment.) When a user logs in, he can specify the set of principal
identifiers he proposes to use. His right to use his personal
principal identifier is authenticated, for example, by a password.
His right to use the remaining principal identifiers can then be
authenticated by looking up the now-authenticated personal
identifier on each named protection group list. If everything
checks, a virtual processor can safely be created and started with
the specified list of principal identifiers.36
3) Implementation Considerations: The model of a complete
protection system as developed in Fig. 10 is one of many possible
architectures, most of which have essentially identical functional
properties; our choices among alternatives have been guided
more by pedagogical considerations than by practical
implementation issues. There are at least three key areas in which
a direct implementation of Fig. 10 might encounter practical
problems.

1. As proposed, every reference to an object in memory
requires several steps: reference to a pointer register;
indirect reference through an access controller
including search of an access control list; and finally,
access to the object itself via addressing descriptors.
Not only are these steps serial, but several memory
references are required, so fast memory access would
be needed.

2. An access control list search with multiple principal
identifiers is likely to require a complex mechanism, or
be slow, or both. (This tradeoff between performance
and complexity contrasts with the capability system, in
which a single comparison is always sufficient.)

3. Allocation of space for access control lists, which can
change in length, can be a formidable implementation
problem. (Compared to a capability system, the
mechanics of changing authorization in an access
control list system are inherently more cumbersome.)

Fig. 11. Use of "shadow" capability registers to speed up an
access control list system. When a pointer register
containing a unique identifier is flrst wed, the shadow
register is automatically loaded from the access controller
to which the unique identifier refers. Later wes of that
pointer register thw do not require reference to the access
controller. Storing of a pointer register means storing of the
unique identifier only; the shadow register is never stored.

The first of these problems is attacked by recognizing that the
purpose of the access control list is to establish authorization
rather than to mediate every detailed access. Mediation of access
would be handled more efficiently by a capability system.
Suppose we provide for each pointer register a "shadow"
capability register that is invisible to the virtual processor, as in
Fig. 11. Whenever a pointer register containing the unique
identifier of an access controller is first used, the shadow register
is loaded with a capability consisting of a copy of the addressing
descriptor for the segment protected by the access controller,
together with a copy of the appropriate set of permission bits for
this principal.37 Subsequent references via that pointer register
can proceed directly using the shadow register rather than
indirectly through the access controller. One implication is a
minor change in the revocability properties of an access control
list: changing an access control list does not affect the capabilities
already loaded in shadow registers of running processors. (One
could restore complete revocability by clearing all shadow
registers of all processors and restarting any current access
control list searches. The next attempted use of a cleared shadow
register would automatically trigger its reloading and a new
access contra list check.) The result is a highly constrained but
very fast capabitity system beneath the access control list system.
The detailed checking of access control falls on the capability
mechanism, which on individual memory references exactly
enforces the constraints specified by the access control list
system.
The second and third problems, allocation and search of access
control lists, appear to require more compromise of functional
properties. One might, for example, constrain all access control
lists to contain, say, exactly five entries, to simplify the space
allocation problem. One popular implementation allows only
three entries on each access control list. The first is filled in with
the personal principal identifier of the user who created the object
being protected, the second with the principal identifier of the
(single) protection group to which he belongs, and the third with
the principal identifier of a universal protection group of which
all users are members. The individual access permissions for
these three entries are specified by the program creating the
segment.38
A completely different way to provide an access control list
system is to implement it in interpretive software in the path to
the secondary storage or file system. Primary memory protection
can be accomplished with either base-and-bound registers, or
more generally with a capability system in which the capabilities
cannot be copied into the file system. This approach takes the
access control list checking mechanisms out of the heavily used
primary memory access path, and reduces the pressure to
compromise its functional properties. Such a mixed strategy,
while more complex, typically proves to be the most practical
compromise. For example, the Multics system [55] uses
software-interpreted access control lists together with hardware-
interpreted tables of descriptors. Similarly, the "guard file" of the
Burroughs B6700 Master Control Program is an example of an
access controller implemented interpretively [57].
4) Authority to Change Access Control Lists: The access control
list organization brings one issue into focus: control of who may
modify the access control information. In the capability system,
the corresponding consideration is diffuse. Any program having a
capability may make a copy and put that copy in a place where
other programs, running in other virtual processors, can make use
(or further copies) of it. The access control list system was

devised to provide more precise control of authority, so some
mechanism of exerting that control is needed. The goal of any
such mechanism is to provide within the computer an authority
structure that models the authority structure of whatever
organization uses the computer. Two different authority-
controlling policies, with subtly different modeling abilities, have
been implemented or proposed. We name these two self control
and hierarchical control.

Flg. 12. The access controller extended for self contained
control over modification of its access control list. In this
example, user Smith has three permissions: to read and to
write into the associated segment, and to make
modfications to the access control list of this access
controller. Jones cannot modify the access control list,
even though he can read and write in the segment
described by this access controller. Doe is even more
constrained.

The simplest scheme is self control. With this scheme, we extend
our earlier concept of access permission bits to include not just
permission to read and write, but also permission to modify the
access control list that contains the permission bits. Thus, in Fig.
12, we have a slightly more elaborate access controller, which by
itself controls who may make modifications to it. Suppose that
the creation of a new segment is accompanied by the creation of
an access controller that contains one initial entry in its access
control list-an entry giving all permissions to the principal
identifier associated with the creating virtual processor. The
creator receives a pointer for the access controller he has just
created, and then can adjust its access control list to contain any
desired list of principal identifiers and permissions.39
Probably the chief objection is to the self-control approach is that
it is so absolute: there is no provision for graceful changes of
authority not anticipated by the creator of an access control list.
For example, in a commercial time-sharing system, if a key
member of a company's financial department is taken ill, there
may be no way for his manager to authorize temporary access to
a stored budget file for a co-worker unless the absent user had the
foresight to set his access control lists just right. (Worse yet
would be the possibility of accidentally producing an object for
which its access controller permits access to no one--another
version of the garbage collection problem.) To answer these
objections, the hierarchical control scheme is sometimes used.
To obtain a hierarchical control scheme, whenever a new object
is created the creator must specify some previously existing

access controller to regulate future changes to the access control
list in the access controller for the new object. The representation
of an access controller must also be expanded to contain some
kind of pointer to the access controller that regulates it (for
example, a unique identifier). In addition, the interpretation of the
permission bit named "ACLmod" is changed to apply to those
access controllers that hierarchically are immediately below the
access controller containing the permission bit. Then, as in Fig.
13, all of the access controllers of the system will be arranged in
a hierarchy, or tree structure, branching from the first access
controller in the system, whose creation must be handled as a
special case, since there is no previously existing access
controller to regulate it. The hierarchical arrangement is now the
pattern of access control, since a user with permission to modify
access control lists may add his own principal identifier, with
permission to modify access, to lower level access controllers,
giving himself ability to change access control lists still further
down the hierarchy. Permission to modify access at any one node
of the hierarchy permits the holder to grant himself access to
anything in the entire subtree based on that node.40
The hierarchical control scheme might be used in a timesharing
system as follows. The first access controller created is given an
access control list naming one user, a system administrator. The
system administrator creates several access controllers (for
example, one for each department in his company) and grants
permission to modify access in each controller to the department
administrator. The department administrator can create additional
access controllers in a tree below the one for his department,
perhaps for subdepartments or individual computer users in his
department. These individual users can develop any pattern of
sharing they wish, through the use of access control lists in access
controllers, for the segments they create. In an emergency,
however, the department administrator can intevene and modify
any access control list in his department. Similarly, the system
administrator can intervene in case a department administrator
makes a mistake or is unavailable.41
The hierarchical system in our example is subject to the objection
that the system administrator and department administrators are
too powerful; any hierarchical arrangement inevitably leads to
concentration of authority at the higher levels of the hierarchy. A
hierarchical arrangement of authority actually corresponds fairly
well to the way many organizations operate, but the hierarchical
control method of modeling the organization has one severe
drawback: the use and possible abuse of higher level authority is
completely unchecked. In most societal organizations, higher
level authority exists, but there are also checks on it. For
example, a savings bank manager may be able to authorize a
withdrawal despite a lost passbook, but only after advertising its
loss in the newspaper. A creditor may remove money from a
debtor's bank account, but only with a court order. A manager
may open an employee's locked file cabinet, but (in some
organizations) only after temporarily obtaining the key from a
security office, an action which leaves a record in the form of a
logbook entry. A policeman may search your house, but the
search is illegal unless he first obtained a warrant. In each case,
the authority to perform the operation exists, but the use of the
authority is coupled with checks and balances designed to
prevent abuse of the authority. In brief, the hierarchical control
scheme provides for exercise of authority but, as sketched so far,
has no provision for preventing abuse of that authority.
One strategy that has been suggested in various forms [58], [59]
is to add a field to an access controller, which we may call the

prescript field. Whenever an attempt is made to modify an access
control list (either by a special store instruction or by a call to a
supervisor entry, depending on the implementation), the access-
modifying permission of the higher level access controller
regulating the access control list is checked as always. If the
permission exists, the prescript field of the access control list that
is about to be modified is examined, and some action, depending
on the value found, is automatically triggered. The following list
suggests some possible actions that might be triggered by the
prescript value, and some external policies that can be modeled
with the prescript scheme.

1. No action.
2. Identifier of principal making change is logged (the

"audit trail").
3. Change is delayed one day ("cooling-off" period).
4. Change is delayed until some other principal attempts

the same change ("buddy" system).
5. Change is delayed until signal is received from some

specific (system-designated) principal ("court order").

The goal of all of the policies (and the prescript mechanism in
general) is to ensure that some independent judgment moderates
otherwise unfettered use of authority.
The notion of a prescript, while apparently essential to a
protection system intended to model typical real authority
structures, has not been very well developed in existing or
proposed computer systems. The particular prescript mechanism
we have used for illustration of the concept can model easily only
a small range of policies. One could, for example, arrange that a
prescript be invoked on every access to some segment, rather
than just on changes in the authority structure. One could
implement more complex policies by use of protected
subsystems, a general escape mechanism described briefly in a
later section.
5) Discretionary and Nondiscretionary Controls: Our discussion
of authorization and authority structures has so far rested on an
unstated assumption: the principal that creates a file or other
object in a computer system has unquestioned authority to
authorize access to it by other principals. In the description of the
self-control scheme, for example, it was suggested that a newly
created object begins its existence with one entry in its access
control list, giving all permissions to its creator.
We may characterize this control pattern as discretionary42
implying that the individual user may, at his own discretion,
determine who is authorized to access the objects he creates. In a
variety of situations, discretionary control may not be acceptable
and must be limited or prohibited. For example, the manager of a
department developing a new product line may want to
"compartmentalize" his department's use of the company
computer system to ensure that only those employees with a need
to know have access to information about the new product. The
manager thus desires to apply the principle of least privilege.
Similarly, the marketing manager may wish to compartmentalize
all use of the company computer for calculating product prices,
since pricing policy may be sensitive. Either manager may
consider it not acceptable that any individual employee within his
department can abridge the compartmentalization decision
merely by changing an access control list on an object he creates.
The manager has a need to limit the use of discretionary controls
by his employees. Any limits he imposes on authorization are

controls that are out of the hands of his employees, and are
viewed by them as nondiscretionary. Similar constraints are
imposed in military security applications, in which not only
isolated compartments are required, but also nested sensitivity
levels (e.g., top secret, secret, and confidential) that must be
modeled in the authorization mechanics of the computer system.
Nondiscretionary controls may need to be imposed in addition to
or instead of discretionary controls. For example, the department
manager may be prepared to allow his employees to adjust their
access control lists any way they wish, within the constraint that
no one outside the department is ever given access. In that case,
both nondiscretionary and discretionary controls apply.
The key reason for interest in nondiscretionary controls is not so
much the threat of malicious insubordination as the need to safely
use complex and sophisticated programs created by suppliers
who are not under the manager's control. A contract software
house may provide an APL interpreter or a fast file sorting
program. If the supplied program is to be useful, it must be given
access to the data it is to manipulate or interpret. But unless the
borrowed program has been completely audited, there is no way
to be sure that it does not misuse the data (for example, by
making an illicit copy) or expose the data either accidentally or
intentionally. One way to prevent this kind of security violation
would be to forbid the use of borrowed programs, but for most
organizations the requirement that all programs be locally written
(or even thoroughly audited) would be an unbearable economic
burden. The alternative is confinement of the borrowed program,
a term introduced by Lampson [61]. That is, the borrowed
program should run in a domain containing the necessary data,
but should be constrained so that it cannot authorize sharing of
anything found or created in that domain with other domains.
Complete elimination of discretionary controls is easy to
accomplish. For example, if self-controlling access controllers
are being used, one could arrange that the initial value for the
access control list of all newly created objects not give "ACL-
mod" permission to the creating principal (under which the
borrowed program is running). Then the borrowed program could
not release information by copying it into an object that it creates
and then adjusting the access control list on that object. If, in
addition, all previously existing objects in the domain of the
borrowed program do not permit that principal to modify the
access control list, the borrowed program would have no
discretionary control at all and the borrower would have
complete control. A similar modification to the hierarchical
control system can also be designed.
It is harder to arrange for the coexistence of discretionary and
nondiscretionary controls. Nondiscretionary controls may be
implemented, for example, with a second access control list
system operating in parallel with the first discretionary control
system, but using a different authority control pattern. Access to
an object would be permitted only if both access control list
systems agreed. Such an approach, using a fully general access
control list for nondiscretionary controls, may be more elaborate
than necessary. The few designs that have appeared so far have
taken advantage of a perceived property of some applications of
nondiscretionary controls: the desired patterns usually are
relatively simple, such as "divide the activities of this system into
six totally isolated compartments." It is then practical to provide a
simplified access control list system to operate in parallel with
the discretionary control machinery.
An interesting requirement for a nondiscretionary control system
that implements isolated compartments arises whenever a

principal is authorized to access two or more compartments
simultaneously, and some data objects may be labeled as being
simultaneously in two or more compartments (e.g., pricing data
for a new product may be labeled as requiring access to the
"pricing policy" compartment as well as the "new product line"
compartment). In such a case it would seem reasonable that,
before permitting reading of data from an object, the control
mechanics should require that the set of compartments of the
object being referenced be a subset of the compartments to which
the accessor is authorized.

Fig. 13. Hierarchical control of authority to modify access
control lists. Each access controller has an extra field in
addition to those of Fig. 12; the extra field contains the
unique identifier of some higher level access controller.
Authority to access segments A, X, and Y is controlled by
access controllers AC1, AC2, and AC3, respectively.
Authority to modify AC1 and AC2: is in turn controlled by
AC4, while authority to modify AC3 is controlled by AC5.
Authority to modify AC4 and AC5, is controlled by AC6,
which is the first access controller in the system. In this
example, the authority to modify AC6 is similar to the self-
control scheme. Note that segments S4, S5, and S6 may
be degenerate; AC4, AC5, and AC6 may exist solely to
control the authority to modify other access controllers. The
meaning of the backpointer, say, from AC1 to AC1, is that if
a user attempts to modify the access control list of AC1, the
backpointer is foUowed, leading to AC1. Only if the user's
principal identifier h found in AC4 (with appropriate
permission) is the modification to AC1 permitted. Segments
A, X, and Y are arranged in an independent hierarchy of
their own, with A superior to X and Y, by virtue of the
pointer values P1 and P2 found in segment A.

However, a more stringent interpretation is required for
permission to write, if borrowed programs are to be confined.
Confinement requires that the virtual processor be constrained to
write only into objects that have a compartment set identical to
that of the virtual processor itself. If such a restriction were not
enforced, a malicious borrowed program could, upon reading

data labeled for both the "pricing policy" and the "new product
line" compartments, make a copy of part of it in a segment
labeled only "pricing policy," thereby compromising the "new
product line'' compartment boundary. A similar set of restrictions
on writing can be expressed for sensitivity levels; a complete and
systematic analysis in the military security context was developed
by Weissman [14]. He suggested that the problem be solved by
automatically labeling any written object with the compartment
labels needed to permit writing, a strategy he named the "high
water mark." As an alternative, the strategy suggested by Bell and
LaPadula [62] declared that attempts to write into objects with
too few compartment labels are errors that cause the program to
stop.43 Both cases recognize that writing into objects that do not
have the necessary compartment labels represents potential
"declassification" of sensitive information. Declassification
should occur only after human judgment has been interposed to
establish that the particular information to be written is not
sensitive. Developing a systematic way to interpose such human
judgments is a research topic.
Complete confinement of a program in a shared system is very
difficult, or perhaps impossible, to accomplish, since the program
may be able to signal to other users by strategies more subtle than
writing into shared segments. For example, the program may
intentionally vary its paging rate in a way users outside the
compartment can observe, or it may simply stop, causing its user
to go back to the original author for help, thereby revealing the
fact that it stopped. D. Edwards characterized this problem with
the phrase "banging on the walls." Lampson [61], Rotenberg
[59], and Fenton [64] have explored this problem in some depth.

D. Protecting Objects Other Than Segments

So far, it has been useful to frame our discussion of protection in
terms of protecting segments, which basically are arbitrary-sized
units of memory with no internal structure. Capabilities and
access control lists can protect other kinds of objects also. In Fig.
9, access controllers themselves were treated as system-
implemented objects, and in Fig. 13 they were protected by other
access controllers. It is appropriate to protect many other kinds of
objects provided by the hardware and software of computer
systems. To protect an object other than a segment, one must first
establish what kinds of operations can be performed on the object,
and then work out an appropriate set of permissions for those
operations. For a data segment, the separately controllable
operations we have used in our examples are those of reading and
writing the contents.
For an example of a different kind of system-implemented object,
suppose that the processor is augmented with instructions that
manipulate the contents of a segment as a first-in, first-out queue.
These instructions might interpret the first few words of the
segment as pointers or counters, and the remainder as a storage
area for items placed in the queue. One might provide two special
instructions, "enqueue" and "dequeue," which add to and remove
from the queue. Typically, both of these operations would need to
both read and write various parts of the segment being used as a
queue.
As described so far, the enqueue and dequeue instructions would
indiscriminately treat any segment as a queue, given only that the
program issuing the instruction had loaded a capability permitting
reading and writing the segment. One could not set up a segment
so that some users could only enqueue messages, and not be able

to dequeue--or even directly read--messages left by others. Such
a distinction between queues and other segments can be made by
introducing the concept of type in the protection system.
Consider, for example, the capability system in Fig. 6. Suppose
we add to a capability an extra field, which we will name the type
field. This field will have the value 1 if the object described by
the capability is an ordinary segment, and the value 2 if the object
is to be considered a queue. The protection descriptor registers
are also expanded to contain a type field. We add to the processor
the knowledge of which types are suitable as operands for each
instruction. Thus the special instructions for manipulating queues
require that the operand capability have type field 2, while all
other instructions require an operand capability with type field 1.
Further, the interpretation of the permission bits can be different
for the queue type and the segment type. For the queue type, one
might use the first permission bit to control use of the enqueue
instruction and the second permission bit for the dequeue
instruction. Finally, we should extend the "create" operation to
permit specification of the type of object being created.

Fig. 14. A protected subsystem to implement the grade-
keeping system described in the text. P1, which can be
invoked by all students in the subjoct, is programmed to
return the caller's grade for a particular assignment or the
distribution of all grades for an assignment. P2 which can
be invoked by the teaching assistants for the subject, is
programmed to allow the addition of new grades to the
record but to prevent changing a grade once it is entered.
P3, which can be invoked only by the instructor, is
programmed to read or write on request any data in the
grade record.

Clearly, one could extend the notion of type beyond segments
and queues; any data structure could be similarly distinguished
and protected from misuse. Further, input and output streams
attached to interactive terminals, printers, and the like could be
considered distinct types with their own repertoire of separately
permitted operations. The concept of type extension is not
restricted to capability systems; in an access control list system

one could place the type field in the access controller and require
that the processor present to the memory, along with each
operand address, an indication of the type and permission bits
required for the operation being performed. Table I lists some
typical system-implemented objects and the kinds of operations
one might selectively permit. This table could be extended to
include other objects that are basically interpreted data structures,
such as accounts or catalogs.

��������������������������������

Typical System-Provided Protected Objects

Object
Typical Separately Permittable
Operations

Data segment

READ data from the segment
WRITE data into the segment
Use any capability found in the
segment
Write a capability into the
segment

Access controller

Read access control list
Modify names appearing on an
access control list
Modify permissions in access
control list entries
Destroy objects protected by
this access controller

FIFO message queue

Enqueue a message
Dequeue a message
Examine queue contents
without dequeueing

Input/Output

READ data
WRITE data
Issue device-control
commands

Remove recording medium (e.g.
magnetic tape reel)

READ data
WRITE over data
WRITE data in new area

Finally, one may wish to extend dynamically the range of objects
protected. Such a goal might be reached by making the type field
large enough to contain an additional unique identifier, and
allowing for software interpretation of the access to typed
objects. This observation brings us to the subject of user-
programmed controls on sharing and the implementation of
protected objects and protected subsystems. We shall not attempt
to examine this topic in depth, but rather only enough to learn
what problems are encountered.

������
��
����
���
�������������������
��
����
���
�������������������
��
����
���
�������������������
��
����
���
�����������������

Both the capability system and the access control list system
allow controlled sharing of the objects implemented by the
system. Several common patterns of use can be independently
controlled, such as reading, writing, or running as a program.
While it is a great improvement over "all-or-nothing" sharing,
this sort of controlled sharing has two important limitations.

The first limitation is that only those access restrictions provided
by the standard system facilities can be enforced. It is easy to
imagine many cases where the standard controls are not
sufficient. For example, an instructor who maintains his course
grade records in a segment on an interactive system may wish to
allow each student to read his own grades to verify correct
recording of each assignment, but not the grades of other
students, and to allow any student to examine the histogram of
the class grades for each assignment. Implementing such controls
within systems of the sort discussed in the last few sections
would be awkward, requiring at least the creation of a separate
segment for each student and for the distributions. If, in addition,
the instructor wishes an assistant to enter new grades, but wants
to guarantee that each grade entered cannot be changed later
without the instructor's specific approval, we have a situation that
is beyond the ability of the mechanisms so far described.
The mechanisms described so far cannot handle this situation
because the manipulations we wish to perform on a grade or a set
of grades are not fundamental operations of the base-level
system. In essence, we wish to dynamically define a new type,
the grade record, and provide a set of programs that interpretively
implement the operations appropriate for this new type.44
The second limitation concerns users who borrow programs
constructed by other users. Execution of a borrowed program in
the borrower's domain can present a real danger to the borrower,
for the borrowed program can exercise all the capabilities in the
domain of the borrower. Thus a user must have a certain amount
of faith in the provider of a program before he executes the
program in his own domain.
The key to removing these limitations is the notion of a protected
subsystem. A protected subsystem is a collection of program and
data segments that is "encapsulated" so that other executing
programs cannot read or write the program and data segments
and cannot disrupt the intended operation of the component
programs, but can invoke the programs by calling designated
entry points. The encapsulated data segments are the protected
objects. Programs in a protected subsystem can act as caretakers
for the protected objects and interpretively enforce arbitrarily
complex controls on access to them. Programs outside the
protected subsystem are allowed to manipulate the protected
objects only by invoking the care taker programs. Algorithms in
these caretaker programs may perform any appropriate operation,
possibly depending on the circumstances of invocation, and may
even record each access request in some way in some protected
objects. For example, the protected subsystem shown in Fig. 14
implements the grade keeping system discussed above. Clearly,
any access constraints that can be specified in an algorithm can
be implemented in this fashion. Giving users the ability to
construct protected subsystems out of their own program and data
segments allows users to provide arbitrary controls on sharing.
If programs inside a protected subsystem can invoke programs in
another protected subsystem without compromising the security
of the first subsystem, then we can plug together multiple
protected subsystems to perform a computation. We also find a
way around the borrowed program problem. The normal domain
of a user is one example of a protected subsystem. The user
arranges for programs borrowed from other users to execute
outside of this "home" protected subsystem. In this way, the
borrowed programs can be invoked without giving them access to
all the programs and data of the borrower. If the borrowed
program is malicious or malfunctions, the damage it can do is
limited. The lending user could also encapsulate the lent program

complex in a protected subsystem of its own and thus insulate it
from the programs of the borrower.45
The notion of protected subsystems, then, provides mutual
protection for multiple program complexes cooperating in the
same computation and removes two limitations of facilities
providing simple controlled sharing. It is clear from the
description of protected subsystems that each must operate in its
own domain. Implementing protected subsystems requires
mechanisms that allow the association of more than one domain
with a computation and also requires means for changing from
one protection domain to another as control passes from one
protected subsystem to another. The design must ensure that one
protected subsystem cannot interfere in any way with the correct
operation of another subsystem involved in the same
computation.
We note in passing that the supervisor in most computer systems
is an example of a protected subsystem. If general facilities are
provided for supporting user-constructed protected subsystems,
then these mechanisms can be applied to protect the supervisor
from user programs as well. Thus the protection mechanisms are
protecting their own implementation. The resulting uniformity is
consistent with the design principle of economy of mechanism.
In order to implement protected subsystems, then, there must be a
way of associating multiple domains with a single computation.
One way would be to use a separate virtual processor, each with
its own domain, for each protected subsystem, a notion proposed
by Dennis and Van Horn [41] and discussed by Lampson [30]. A
computation involving multiple protected subsystems would
require multiple cooperating virtual processors. The invocation of
one protected subsystem by another, and the communication of
any response, would be done using the interprocessor
communication facilities of the system [67]. An implementation
using multiple virtual processors, though conceptually
straightforward, tends to be awkward and inefficient in practice.
Furthermore, it tends to obscure important features of the
required mechanisms. Unless there is an inherent reason for the
protected subsystems in a computation to be expressed as
asynchronous activities, a single virtual processor
implementation seems more natural. Such an implementation
would require the association of multiple domains with a single
virtual processor, a strategy proposed by LeClerc [68], [69] and
explored in detail by Lampson [19], Schroeder [70],Needham
[20],Sturgis [17], Jones [71], and Rotenberg [59] . In this case,
communication among protected subsystems could be via
interprocedure call and return operations.
The essence of changing domains is, in access control list terms,
to change principal identifiers; in capability terms it is to acquire
the set of capabilities of the new domain. In both cases, it is also
essential that the virtual processor begin execution at some
agreed-to starting point in the new domain.
Let us consider first an access control list implementation.
Suppose we extend the possible permissions on a segment, as
recorded in an access controller, to include ENTER permission,
and add one more field to an access controller, the domain
identifier, which is the principal identifier of the domain to be
entered. The meaning of ENTER permission on a segment is that
a virtual processor having only that permission may use (the first
address in) that segment only as the target of a GO TO or CALL
instruction. Further, upon executing a GO TO or CALL
instruction, the processor will automatically pick up the domain
identifier field in the access controller and use it as the principal
identifier in transactions with the memory system.

We now have a controlled domain entry facility. A user wishing
to provide a protected subsystem can do so by setting the access
control lists of all objects that are to be internal parts of the
system to contain one of his own principal identifiers. He also
adds to the access control list of the initial procedure of his
subsystem ENTER permission for any other principals who are
allowed to use his protected subsystem.
In a capability system, a similar addition produces protected
subsystems. The permission field of a capability is extended to
include ENTER permission, and when a capability is used as the
target of a GO TO or a CALL instruction, control is passed to the
procedure in the segment pointed to by the capability.
Simultaneous with passing control to the procedure, the processor
switches on the READ permission bit of the capability, thereby
making available to the virtual processor a new domain--all those
objects that can be reached starting from capabilities found in the
procedure.
Two mechanisms introduced earlier can now be seen to be
special cases of the general domain entry. In the initial discussion
of the capability system, we noted that the authentication system
starts a new user by allowing a virtual processor to enter that
user's domain at a controlled starting point. We could use the
domain entry mechanism to accomplish this result as follows. A
system program is "listening" to all currently unused terminals or
system ports. When a user walks up to a terminal and attempts to
use it, the system program creates a new virtual processor and has
that processor ENTER the domain named by the prospective
user. The entry point would be to a program, perhaps supplied by
the user himself, which authenticates his identity before doing
any other computation. Because a protected subsystem has been
used, the program that monitors the unused terminals does not
have access to the data in the protected subsystem (in contrast
with the system of Fig. 7), a situation in better accord with the
principle of least privilege. Instead, it has an enter capability for
every domain that is intended to be entered from a terminal, but
that capability leads only to a program that demands
authentication.
We have sketched only the bare essentials of the mechanism
required to provide domain switching. The full mechanics of a
practical system that implements protected objects and
subsystems are beyond the scope of this tutorial, but it is useful to
sketch quickly the considerations those mechanisms must handle.

1. The principle of "separation of privilege" is basic to the
idea that the internal structure of some data objects is
accessible to virtual processor A, but only when the
virtual processor is executing in program B. If, for
example, the protection system requires possession of
two capabilities before it allows access to the internal
contents of some objects, then the program responsible
for maintenance of the objects can hold one of the
capabilities while the user of the program can hold the
other. Morris [72] has described an elegant semantics
for separation of privilege in which the first capability
is known as a seal. In terms of the earlier discussion of
types, the type field of a protected object contains a
seal that is unique to the protected subsystem; access to
the internal structure of an object can be achieved only
by presenting the original seal capability as well as the
capability for the object itself. This idea apparently was
suggested by H. Sturgis. The HYDRA and CAL

systems illustrate two different implementations of this
principle.

2. The switching of protection domains by a virtual
processor should be carefully coordinated with the
mechanisms that provide for dynamic activation
records and static (own) variable storage, since both the
activation records and the static storage of one
protection domain must be distinct from that of another.
(Using a multiple virtual processor implementation
provides a neat automatic solution to these problems.)

3. The passing of arguments between domains must be
carefully controlled to ensure that the called domain
will be able to access its arguments without violating
its own protection intentions. Calls by value represent
no special problem, but other forms of argument
reference that require access to the original argument
are harder. One argument that must be especially
controlled is the one that indicates how to return to the
calling domain. Schroeder [70] explored argument
passing in depth from the access control list point of
view, while Jones [71] explored the same topic in the
capability framework.

The reader interested in learning about the mechanics of
protected objects and subsystems in detail is referred to the
literature mentioned above and in the Suggestions for Further
Reading. This area is in a state of rapid development, and several
ideas have been tried out experimentally, but there is not yet
much agreement on which mechanisms are fundamental. For this
reason, the subject is best explored by case study.

III. THE STATE OF THE ART

A. Implementations of Protection Mechanisms

Until quite recently, the protection of computer-stored
information has been given relatively low priority by both the
major computer manufacturers and a majority of their customers.
Although research time-sharing systems using base and bound
registers appeared as early as 1960 and Burroughs marketed a
descriptor-based system in 1961, those early features were
directed more toward preventing accidents than toward providing
absolute interuser protection. Thus in the design of the IBM
System/360, which appeared in 1964 [73], the only protection
mechanisms were a privileged state and a protection key scheme
that prevented writing in those blocks of memory allocated to
other users. Although the 360 appears to be the first system in
which hardware protection was also applied to the I/O channels,
the early IBM software used these mechanisms only to the
minimum extent necessary to allow accident free
multiprogramming. Not until 1970 did "fetch protect" (the ability
to prevent one user from reading primary memory allocated to
another user) become a standard feature of the IBM architecture
[74]. Recently, descriptor-based architectures, which can be a
basis for the more sophisticated protection mechanisms described
in Section II, have become common in commercially marketed
systems and in most manufacturers' plans for forthcoming
product lines. Examples of commercially available descriptor-
based systems are the IBM System/370 models that support

virtual memory, the Univac (formerly RCA) System 7, the
Honeywell 6180, the Control Data Corporation Star-100, the
Burroughs B5700/6700, the Hitachi 8800, the Digital Equipment
Corporation PDP- 11/45, and the Plessey System 250. On the
other hand, exploitation of such features for controlled sharing of
information is still the exception rather than the rule. Users with a
need for security find that they must improvise or use brute force
techniques such as complete dedication of a system to a single
task at a time [75]. The Department of Defense guide for
safeguarding classified information stored in computers provides
a good example of such brute force techniques [76].
In the decade between 1964 and 1974, several protection
architectures were implemented as research and development
projects, usually starting with a computer that provided only a
privileged mode, adding minor hardware features and interpreting
with software the desired protection architecture. Among these
were M.l.T.'s CTSS which, in 1961, implemented user
authentication with all-or-nothing sharing and, in 1965, added
shared files with permission lists [12]. In 1967, the ADEPT
system of the System Development Corporation implemented in
software on an IBM System/360 a model of the U.S. military
security system, complete with clearance levels, compartments,
need-to-know, and centralized authority control [14]. At about
the same time, the IBM Cambridge Scientific Center released an
operating system named CP/67, later marketed under the name
VM/370, that used descriptor-based hardware to implement
virtual System/360 computers using a single System/360 Model
67 [11]. In 1969, the University of California (at Berkeley) CAL
system implemented a software-interpreted capability system on
a Control Data 6400 computer [17]. Also in 1969, the Multics
system, a joint project of M.I.T. and Honeywell, implemented in
software and hardware a complete descriptor-based access
control list system with hierarchical control of authorization on a
Honeywell 645 computer system [26], [77]. Based on the plans
for Multics, the Hitachi Central Research Laboratory
implemented a simplified descriptor-based system with
hardware-implemented ordered domains (rings of protection) on
the HITAC 5020E computer in 1968 [78]. In 1970, the Berkeley
Computer Corporation also implemented rings of protection in
the BCC 500 computer [19]. In 1973, a hardware version of the
idea of rings of protection together with automatic argument
address validation was implemented for Multics in the Honeywell
6180 [63]. At about the same time, the Plessey Corporation
announced a telephone switching computer system, the Plessey
250 [53], based on a capability architecture.
Current experimentation with new protection architectures is
represented by the CAP system being built at Cambridge
University [20] and the HYDRA system being built at Carnegie-
Mellon University [21] . Recent research reports by Schroeder
[70], Rotenberg [59], Spier et al. [79], and Redell [54] propose
new architectures that appear practical to implement.

���������
���������������
�������������
���������������
�������������
���������������
�������������
���������������
��������

Experimentation with different protection architectures has been
receiving less attention recently. Instead, the trend has been to
concentrate in the following five areas: 1) certification of the
correctness of protection system designs and implementations, 2)
invulnerability to single faults, 3) constraints on use of
information after release, 4) encipherment of information with

secret keys, and 5) improved authentication mechanisms. These
five areas are discussed in turn below.
A research problem attracting much attention today is how to
certify the correctness of the design and implementation of
hardware and software protection mechanisms. There are actually
several sub-problems in this area.
a) One must have a precise model of the protection goals of a
system against which to measure the design and implementation.
When the goal is complete isolation of independent users, the
model is straightforward and the mechanisms of the virtual
machine are relatively easy to match with it. When controlled
sharing of information is desired, however, the model is much
less clear and the attempt to clarify it generates many
unsuspected questions of policy. Even attempts to model the
well-documented military security system have led to
surprisingly complex formulations and have exposed formidable
implementation problems [14], [62] .
b) Given a precise model of the protection goals of a system and
a working implementation of that system, the next challenge is to
verify somehow that the presented implementation actually does
what it claims. Since protection functions are usually a kind of
negative specification, testing by sample cases provides almost
no information. One proposed approach uses proofs of
correctness to establish formally that a system is implemented
correctly. Most work in this area consists of attempts to extend
methods of proving assertions about programs to cover the
constructs typically encountered in operating systems [52] .
c) Most current systems present the user with an intricate
interface for specifying his protection needs. The result is that the
user has trouble figuring out how to make the specification and
verifying that he requested the right thing. User interfaces that
more closely match the mental models people have of
information protection are needed.
d) In most operating systems, an unreasonably large quantity of
"system" software runs without protection constraints. The
reasons are many: fancied higher efficiency, historical accident,
misunderstood design, and inadequate hardware support. The
usual result is that the essential mechanisms that implement
protection are thoroughly tangled with a much larger body of
mechanisms, making certification impossibly complex. In any
case, a minimum set of protected supervisor functions--a
protected kernel--has not yet been established for a full-scale
modern operating system. Groups at M.l.T. [80] and at Mitre
[81], [82] are working in this area.
Most modern operating systems are vulnerable in their reaction to
hardware failures. Failures that cause the system to misbehave
are usually easy to detect and, with experience, candidates for
automatic recovery. Far more serious are failures that result in an
undetected disabling of the protection mechanisms. Since routine
use of the system may not include attempts to access things that
should not be accessible, failures in access-checking circuitry
may go unnoticed indefinitely. There is a challenging and
probably solvable research problem involved in guaranteeing that
protection mechanisms are invulnerable in the face of all single
hardware failures. Molho [83] explored this topic in the IBM
System 360/Model 50 computer and made several suggestions for
its improvement. Fabry [84] has described an experimental
"complete isolation" system in which all operating system
decisions that could affect protection are duplicated by
independent hardware and software.
Another area of research concerns constraining the use to which
information may be put after its release to an executing program.

In Section 1, we described such constraints as a fifth level of
desired function. For example, one might wish to "tag" a file with
a notation that any program reading that file is to be restricted
forever after from printing output on remote terminals located
outside the headquarters building.
For this restriction to be complete, it should propagate with all
results created by the program and into other files it writes.
Information use restrictions such as these are common in legal
agreements (as in the agreement between a taxpayer and a tax
return preparing service) and the problem is to identify
corresponding mechanisms for computer systems that could help
enforce (or detect violations of) such agreements. Rotenberg
explored this topic in depth [59] and proposed a "privacy
restriction processor" to aid enforcement.
A potentially powerful technique for protecting information is to
encipher it using a key known only to authorized accessors of the
information. (Thus encipherment is basically a ticket-oriented
system.) One research problem is how to communicate the keys
to authorized users. If this communication is done inside the
computer system, schemes for protecting the keys must be
devised. Strategies for securing multinode computer
communication networks using encipherment are a topic of
current research; Branstad has summarized the state of the art
[40] . Another research problem is development of encipherment
techniques (sometimes called privacy transformations) for
random access to data. Most well-understood enciphering
techniques operate sequentially on long bit streams (as found in
point-to-point communications, for example). Techniques for
enciphering and deciphering small, randomly selected groups of
bits such as a single word or byte of a file have been proposed,
but finding simple and fast techniques that also require much
effort to cryptanalyze (that is, with high work factors) is still a
subject for research. A block enciphering system based on a
scheme suggested by Feistel was developed at the IBM T. J.
Watson Research Laboratory by Smith, Notz, and Osseck [38].
One special difficulty in this area is that research in encipherment
encounters the practice of military classification. Since World
War II, only three papers with significant contributions have
appeared in the open literature [27], [39], [85]; other papers have
only updated, reexamined, or rearranged concepts published
many years earlier.
Finally, spurred by the need for better credit and check cashing
authentication, considerable research and development effort is
going into better authentication mechanisms. Many of these
strategies are based on attempts to measure some combination of
personal attributes, such as the dynamics of a handwritten
signature or the rhythm of keyboard typing. Others are directed
toward developing machine-readable identification cards that are
hard to duplicate.
Work in progress is not well represented by published literature.
The reader interested in further information on some of the
current research projects mentioned may find useful the
proceedings of two panel sessions at the 1974 National Computer
Conference [86], [87], a recent workshop [88], and a survey
paper [89].

������������ ������!������������� ������!������������� ������!������������� ������!�����

In reviewing the extent to which protection mechanisms are
systematically understood (which is not a large extent) and the
current state of the art, one cannot help but draw a parallel

between current protection inventions and the first mass produced
computers of the 1950's. At that time, by virtue of experience and
strongly developed intuition, designers had confidence that the
architectures being designed were complete enough to be useful.
And it turned out that they were. Even so, it was quickly
established that matching a problem statement to the architecture-
-programming--was a major effort whose magnitude was quite
sensitive to the exact architecture. In a parallel way, matching a
set of protection goals to a particular protection architecture by
setting the bits and locations of access control lists or capabilities
or by devising protected subsystems is a matter of programming
the architecture. Following the parallel, it is not surprising that
users of the current first crop of protection mechanisms have
found them relatively clumsy to program and not especially well
matched to the users' image of the problem to be solved, even
though the mechanisms may be sufficient. As in the case of all
programming systems, it will be necessary for protection systems
to be used and analyzed and for their users to propose different,
better views of the necessary and sufficient semantics to support
information protection.

��"#�$���%&�#���"#�$���%&�#���"#�$���%&�#���"#�$���%&�#�����

R. Needham, A. Jones, J. Dennis, J. P. Anderson, B. Lindsay, L.
Rotenberg, B. Lampson, D. Redell, and M. Wilkes carefully
reviewed drafts of the manuscript and offered technical
suggestions. In addition, the preparation of this paper was aided
by discussions with many people including H. Forsdick, P.
Janson, A. Huber, V. Voydock, D. Reed, and R. Fabry. L.
Schroeder ruthlessly edited out surplus jargon and prose
inelegance.

SUGGESTIONS FOR FURTHER READING

The following short bibliography has been selected from the
reference list to direct the reader to the most useful, up-todate,
and significant materials currently available. Many of these
readings have been collected and reprinted by L. J. Hoffman in
[90]. The five bibliographies and collections (item 8 below)
provide access to a vast collection of related literature.

1. Privacy and the impact of computers [1]-[3], [91], [92].
2. Case studies of protection systems [14], [17], [20], [26],

[63], [83], [84].
3. Protected objects and protected subsystems [30], [45],

[54], [59], [70]-[72].
4. Protection with encipherment [38]-[40], [93], [94].
5. Military security and nondiscretionary controls [82],

[95], [96].
6. Comprehensive discussions of all aspects of computer

security [6] - [8].
7. Surveys of work in progress [86]-[89] .
8. Bibliographies and collections on protection and

privacy [90], [97]-[100].

[Norm Hardy, 1997: OCR performs poorly on material such as
that below. Mail to norm@netcom.com might occasionally elicit
help in distress situations.]

References are presented in order of First citation. The sections in
which each reference is cited appear in parentheses following the
reference. Section SFR is Suggestions for Further Reading.

[1] A. Westin, Privacy and Freedom. New York: Atheneum,
1967. (I-A1, SFR)

[2] A. Miller, The Assault on Privacy. Ann Arbor, Mich.: Univ.
of Mich. Press, 1971; also New York: Signet, 1972, Paperback
W4934. (I-A1, SFR)

[3] Dept. of Health, Education, and Welfare, Records,
Computers, and the Rights of citizens. Cambridge, Mass.: M.I.T.
Press, 1973. (I-A1, SFR)

[4] R. Turn and W. Ware, "Privacy and security in computer
systems," I-A1 Amer. Scientist, voL 63, pp. 196-203, Mar.-Apr.
1975. (I-A1)

[5] W. Ware, "Security and privacy in computer systems," in
1967 S,CC, AFIPS Cont. Proc., vol. 30, pp. 287-290. (I-A1)

[6] J. Anderson, "Information security in a multi-user computer
environment," in Advances in Computers, vol. 12. New York:
Academic Press, 1973, pp. 1-35. (I A1, SFR)

[7]J. Martin, Scurity. Accuracy, and Primey in Computer
Systems. Englewood Cliffs, N.J.: Prentice-Hall, 1973. (I-A1,
SFR) I

[8] R. Patrick, Security Systems Review Manual. Montvale, N.J.:
AFIPS Press, 1974. (I-A1, SFR)

[9]G. Bender, D. Freeman, and J. Smith, "Function and design of
DOS/360 and TOS/360," IBM Syst. J., vol. 6, pp. 2-21, 1967. (I-
A2)

[10] R. Hargraves and A. Stephenson, "Dodge considerations for
an educational time-sharing system," in 1969 SJCC, AFIPS ConJ.
Proc., vol. 34, pp. 657-664. (I-A2)

[11] R. Meyer and L. Seawright, "A virtual machine time-sharing
system," IBM Syst. J., vol. 9, pp. 199-218, 1970. (I-A2, I-B3, III-
A)

[12] M l.T. Computation Center, CTSS Programmer's Cuide, 2nd
ed. Cambridge, Mass.: M.I.T. Press, 1965. (I-A2, III-A)

[13] D. Stone,"PDP-IOsystem concepts end capabilities," in
PDP10 Applicanons in Science, vol. II. Maynard, Mass: Digital
Equipment Corp., undated (ca. 1970), pp. 32-55. (I-A2)

[14] C. Weissman,"Security controls in the ADEPT-SO time-
sharing system " in 1969 FJCC, AFIPS Conf. Proc., vol. 3S, pp.
119-133. (I-A2, II-C5, III-A, III-B, SFR)

[15] D. Bobrow et al., "TENEX, a paged time sharing system for
the PDP-10," Commun. ACM, vol. 15, pp. 135-143, Mar. 1972.
(I-A2, II-C3)

[16] F. Corbato, 1. Saltzer, and C. Clingen, "Multics--The first
seven years" in 1972 SJCC, AFIPS Conf. Proc., vol. 40, pp. 571-
583. (I-A2)

[17] H. Sturgis, "A postmortem for a time sharing system," Ph.D.
dissertation, Univ. of Calif., Berkeley, 1973. (Also available as
Xerox Palo Alto Res. Center Tech. Rep. CSL74-1.) (I-A2, II-C2,
II-E, III-A, SFR)

[18] D. Ritchie and K. Thompson, "The UNIX time-sharing
system," Commun. ACM, vol. 17, pp. 365-375, July 1974. (I-A2,
II-C3)

[19] B. Lampson, "Dynamic protection structures," in 1969
FJCC, AFIPS Conf. Proc., vol. 35, pp. 27-38. (I-A2, II-E, III-A)

[20] R. Needham, "Protection systems and protection
implementations," in 1972 FJCC, AFIPS Conf. Proc., vol. 41, pt.
1, pp. 571-578. (I-A2, II-B3, II-E, III-A, SFR)

[21] W. Wulf etal., "HYDRA: The kernel of a multiprocessor
operating system," Commun. ACM, vol. 17, pp. 337-345, June
1974. (I-A2, II-B3, III-A)

[22] R. Conway, W. Maxwell and H. Morgan, "On the
implementation of security measuies in information systems,"
Commun. ACM, vol. 15, pp. 211-220, Apr. 1972. (I-A2)

[23] 1. Reed, "The application of information theory to privacy in
data banks," Rand Corp., Tech. Rep. R-1282-NSF, 1973. (I-A2)

[24] D. Hsiso, D. Kerr, and F. Stahl, "Research on data secme
systems," in 1974 NCC, AFIPS Conf. Proc., vol. 43, pp. 994-996.
(I-A2)

[25] L. Hoffman and W. Miller, "Getting a petsonal dossier from
a statistical data bank," Datamation, vol. 16, pp. 74-75, May
1970. (I-A2)

[26] J. Saltzer, "Protection and the control of information sharing
in Multics," Commun. ACM, vol. 17, pp. 388-402, July 1974. (I-
A3, 1-B4, III-A, SFR)

[27] P. Baran, "Security, secrecy, and tamper-free
considerations,' On Distributed Communications, no. 9, Rand
Corp. Tech. Rep. RM-3765-PR, 1964. (I-A3, III-B)

[28] G. Popek, "A principle of kernel design," in l974 NCC,
AFIPS Conf. Proc., vol. 43, pp. 977-978. (I-A3)

[29] D. Hollingsworth, "Enhancing computer system security,"
Rand Corp. Paper P-S064, 1973. (I-A3)

[30] B. Lampson, "Protection," in Proc. 5th Princeton Symp.
Informanon Science and Systems (Mar. 1971), pp. 437-443.
(Reprinted in ACM Operating Syst. Rev., vol. 8, pp. 18-24, Jan.
1974.) (I-B1, II-B2, II-E, SFR)

[31] E. Codd etal., "Multiprogramming Stretch: Feasibility
considerations," Commun. ACM, vol. 2, pp. 13-17, Nov. 1959. (I-
B3)

[32] W. Lonergan and P. King, "Design of the B5000 system,"
Datamation, vol. 7, pp. 28-32, May 1961. (I-B3, I-B5)

[33] G. Popek and R. Goldberg, "Formal requirements for
virtualizable third generation architectures," Commun. ACM, vol.
17, pp. 412-421, July 1974. (I-B3)

[34] R. Goldberg, "Architecture of virtual machines," in 1973
NCC, AFIPS Conf. Proc., vol. 42, pp. 309-318. (I-B3)

[35] G. Purdy, "A high security log-in procedure," Commun.
ACM, vol. 17, pp. 442-445, Aug. 1974. (I-B4)

[36] A. Evans, W. Kantrowitz and E. Weiss, "A user
authontication scheme not requiring secr;cy in the computer,"
Commun. ACM, vol. 17, pp. 437-442, Aug. 1974. (I-B4)

[37] M. Wilkes, Time-Sharing Computer Systems, 2nd ed. New
York: American-Elsevier, 1972. (I-B4, I-B5, II-A)

[38] J. Smith, W. Notz, and P. Osseck, "An experimental
application of cryptography to a remotely accessed data system,"
in Proc. ACM 25th Nat. Conf., pp. 282-298, 1972. (I-B4, III-B,
SFR)

[39] H. Feistel, "Cryptographic coding for data bank privacy,"
IBM Corp. Res. Rep. RC 2827, Mar. 1970. (I-B4, III-B, SFR)

[40] D. Branstad, "Security aspects of computer networks," in
AIAA Computer Network Systems Conf. (Apr. 1973), Paper 73-
427. (I-B4, I-B5, III-B, SFR)

[41] J. Dennis and E. Van Horn, "Programming semantics for
multiprogrammed computations," Commun. ACM, vol. 9, pp.
143155, Mar. 1966. (I-B5, II-B1, II-E)

[42] J. Dennis, "Segmentation and the design of
multiprogrammed computer systems," J. ACM, vol. 12, pp. 589-
602, Oct. 1965. (I-B5, II-A)

[43] R. Daley and J. Dennis, "Virtual memory, processes, and
sharing in Multics," Commun. ACM, vol. 11, pp. 306-312, May
1968. (I-B5)

[44] R. Watson, Timesharing System Design Concepts. New
York: McGraw-Hill, 1970. (II-A)

[45] R. Fabry, "Capabilitybased addressing," Commun. ACM,
voL 17, pp. 403-412, July 1974. (II-A, SFR)

[46] E. Organick, The Multics System: An Examinanon of its
Structure. Cambridge, Mass.: M.I.T. Press, 1971. (II-A)

[47] ---, Computer System Organization. TheB5700/B6700Serics.
New York: Academic Press, 1973. (II-A, II-B3)

[48] W. Ackerman and W. Plummer, "An implementation of a
multiprocessing computer system," in Proc. ACM Symp.
Operanag System Principles (Oct. 1967), Paper D-3. (II-B1)

[49] R. Fabry, "Preliminary description of a supervisor for a
machine oriented around capabilities," Inst. Comput. Res. Quart.
Rep., vol. 18, sec. IB, Univ. of Chicago, Aug. 1968. (II-B1)

[50] J. Iliffe and J. Jodeit, "A dynamic storage allocation
scheme," Comput. J., vol. 5, pp. 200-209, Oct. 1962. (II-B1)

[51] E. A. Feustel, "On the advantages of tagged architecture,"
IEEE Trans. Comput.. vol. C-22, pp. 644-656, July 1973. (II-B1)

[52] L. Robinson et al., "On attaining reliable software for a
secure operating system," in Int. Conf. Reliable Software (Apr.
1975), pp. 267-284. (II-B3, III-B)

[53] D. England, "Capability concept mechanism and structure in
system 2s0," in IRIA Int. Workshop Protection in Operating
Systems (Aug. 1974), pp. 63-82. (II-B3, III-A)

[54] D. Redell, "Naming and protection in extendible operating
systems," Ph.D. dissertation, Univ. of Calif., Berkeley, 1974.
(Available as M.I.T. Proj. MAC Tech. Rep. TR-140.) (II-B3, III-
A, SFR)

[55] A. Bensoussan, C. Clingen, and R. Daley, "The Multics
virtual memory: Concepts and design," Commun. ACM, vol. 15,
pp. 308-318, May 1972. (II-B3, II-C3)

[56] B. W. Lampson, W. W. Lichtenberger, and M. W. Pirtle, "A
user machine in a time-sharing system," Proc. IEEE, vol. 54, pp.
1766-1774, Dec. 1966. (II-C3)

[57] H. Bingham, "Access controls in Burroughs large systems,"
Privacy and Security in Computer Systems, Nat. Bur. Stand.
Special Pub. 404, pp. 42-45, Sept. 1974. (II-C3)

[58] R. Daley and P. Neumann, "A general-purpose file system
for secondary storage," in 1965 FJCC, AFIPS Conf. Proc., vol.
27, pt. I, pp. 213-229. (II-C4)

[59] L. Rotenberg, "Making computers keep secrets," Ph.D.
dissertation, M.I.T., Cambridge, Mass., 1973. (Also available as

M.I.T. Proj. MAC Tech. Rep. TR-115.) (II-C4, II-C5, II-E, III-A,
III-B, SFR)

[60] K Walters et al., "Structured specification of a security
kernel," in Int. Conf. Reliable Software, Los Angeles, Calif., pp.
285-293, Apr. 1975. (ii-C5)

[61] B. Lampson, "A note on the confinement problem,"
Commun. ACM, vol. 1 6, pp. 613-615, Oct. 1973. (II-C5)

[62] D. Bell and L. LaPadula, "Secure computer systems," Air
Force Elec. Syst. Div. Rep. ESD-TR-73-278, vols. 1, 11, and III,
Nov. 1973. (II-C5, III-B)

[63] M. Schroeder and J. Saltzer, "A hardware architecture for
implementing protection rings," Commun. ACM, vol. 15, pp. 157-
170, Mar. 1972. (II-C5, III-A, SFR)

[64] J. Fenton, "Memoryless subsystems," Comput. J., vol. 17,
pp. 143-147, May 1974. (II-C5)

[65] O. Dahl and C. Hoare, "Hierarchical program structures," in
Structured Programming. New York: Academic Press, 1972, pp.
175-220. (II-E)

[66] D. Branstad, "Privacy and protection in operating
systems,"Computer, vol. 6, pp. 43-46, Jan. 1973. (II-E)

[67] P. Brinch-Hansen, "The nucleus of a multiprogramming
system," Commun. ACM, vol. 13, pp. 238-250, Apr. 1970. (II-E)

[68] J. LeClerc, "Memory structures for interactive computers,"
Ph.D. dissertation, Univ. of Calif., Berkeley, May 1966. (II-E)

[69] D. Evans and J. LeClerc, "Address mapping and the control
of access in an interactive computer," in 1967 SJCC, AFIPS
Conf. Proc., vol. 30, pp. 23-30. (II-E)

[70] M. Schroeder, "Cooperation of mutually suspicious
subsystems in a computer utility," Ph.D. dissertation, M.I.T.,
Cambridge, Mass., 1972. (Also available as M.I.T. Proj. MAC
Tech. Rep. TR-104.) (II-E, III-A, SFR)

[71] A. Jones, "Protection in programmed systems," Ph.D.
dissertation, Carnegie-Mellon Univ., Pittsburgh, Pa.. 1973. (II-E,
SFR)

[72] J. Morris, "Protection in programming languages," Commun.
ACM, vol. 16, pp. 15-21, Jan. 1973. (II-E, SFR)

[73] G. Amdahl, G. Blaauw, and F. Brooks, "Architecture of the
IBM System/360," IBM J. Res Develop., vol 8, pp. 87-101, Apr.
1964. (III-A)

[74] IBM Corp., "System 370/Principles of operation," IBM
Corp. Syst. Ref. Lib. GA22-7000-3, 1973. (III-A)

[75] R. Bisbey, II, and G. Popek, "Encapsulation: An approach to
operating system security," in Proc. ACM 1974 Annul Conf., pp.
666-675. (III-A)

[76] Dept. of Defense, Manual of Techniques and Procedures for
Implementing, Deactivating, Testing, and Evaluatiing Secure
Resource-Sharing ADP Systems, DOD5200.28-M, Aug. 1972.
(III-A)

[77] R. Graham, "Protection in an information processing utility,"
Commum ACM, vol. 11, pp. 36s-369, May 1968. (III-A)

[78] S. Motobayashi, T. Masuda, and N. Takahashi, "The Hitac
5020 time-sharing system," in Proc. ACM 24th Nat. Conf., pp.
419-429, 1969. (III-A)

[79] M. Spier, T. Hastings, and D. Cutler, "An experimental
implementation of the kernel/domain architecture," ACM
Operating Syst. Rev., vol. 7, pp 8-21, Oct. 1973. (III-A)

[80] M.I.T. Proj. MAC, "Computer systems research," in Project
MAC Progress Reporr XI: July 1973 to June 1974, pp. 155-183.
(III-B)

[81] E. Burke, "Synthesis of a software security system," in Proc.
ACM 1974 Annu. Conf., pp. 648-650. (III-B)

[82] W. Schiller, "Design of a security kernel for the PDP-11/45,"
Air Force Elec. Syst. Div. Rep. ESD-TR-73-294, Dec. 1973. (III-
B, SFR)

[83] L. Molho, "Hardware aspects of secure computing," in 1970
SJCC, AFIPS Conf. Proc., vol. 36, pp. 135-141. (III-B, SFR) 199

[84] R. Fabry, "Dynamic verification of operating system
decisions," Commun. ACM, vol. 16, pp. 659-668, Nov. 1973. (III-
B, SFR)

[85] C. Shannon, "Communication theory of secrecy systems,"
Bell Syst. Tech. J., vol. 28, pp. 656-715, Oct. 1949. (III-B)

[86] S. Lipner, Chm., "A panel session--Security kernels," in
1974 NCC, AFIPS Conf. Proc., vol. 43, pp. 973-980. (III-B, SFR)

[87] R. Mathis, Chm., "A panel session--Research in data
security--Policies and projects," in 1974 NCC, AFIPS Conf.
Proc., vol. 43 pp. 993-999. (III-B, SFR)

[88] Institut de Recherche d'Informatique et d'Automatique
(IRIA), Int. Workshop Protectlon in Operating Systems.
Rocquencourt, France: IRIA, Aug. 1974. (III-B, SFR)

[89] J. Saltzer, "Ongoing research and development on
information protection," ACM Operating Syst. Rev., vol. 8, pp. 8-
24, July 1974. (III-B, SFR)

[90] L. Hoffman Ed., Security and Privacy in Compurer Systems.
Los Angeles, Calif.: Melville Pub. Co., 1973. (SFR)

[91] C. W. Beardsley, "Is your computer insecure?" IEEE
Speetrum, vol. 9, pp. 67-78, Jan. 1972. (SFR)

[92] D. Parker, S. Nycom, and S. Oura, "Computer abuse,"
Stanford Res. Inst. Proj. ISU 2501, Nov. 1973. (SFR)

[93] D. Kahn, The Codebreakers. New York: Macmillan, 1967.
(SFR)

[94] G. Mellen, "Cryptology, computers, and common sense," in
1973 NCC, AFlPS Conf. Proc. ,vol.42, pp.569-579. (SFR)

[95] J. Anderson, "Computer security technology planning
study," Air Force Elec. Syst. Div. Rep. ESD-TR-73-51, Oct.
1972. (SFR)

[96] W. Ware et al., "Security controls for computer systems,"
Rand Corp. Tech. Rep. R-609, 1970. (Classified confidontial.)
(SFR)

[97] R. Anderson and E. Fagerlund, "Privacy end the computer:
An annotated bibliography," ACM Compur. Rev., vol. 13, pp.
551-559, Nov. 1972. (SFR)

[98] J. Bergart, M. Denicoff, and D. Hsiao, "An annotated and
cross-referenced bibliography on computer security and access
control in computer systems," Ohio State Univ., Computer and
Information Science Res. Center Rep. OSU-CISRC-T072-12,
1972. (SFR)

[99] S. Reed and M. Gray, "Controlled accessibility
bibliography," Nat. Bur. Stand. Tech. Note 780, June 1973.
(SFR)

[100] J. Scherf, "Computer and data base security: A
comprehensive annotated bibliography," M.I.T. Proj. MAC Tech.
Rep. TR-122, Jan. 1974. (SFR)

