
An Efficient Generic Network Flow Constraint

Robin Steiger
LIA — École Polytechnique

Fédérale de Lausanne
Lausanne, Switzerland

robin.steiger@epfl.ch

Willem-Jan van Hoeve
Tepper School of Business
Carnegie Mellon University

Pittsburgh, PA
vanhoeve@

andrew.cmu.edu

Radosław Szymanek
LIA — École Polytechnique

Fédérale de Lausanne
Lausanne, Switzerland

radoslaw.szymanek@
gmail.com

ABSTRACT
We propose a generic global constraint that can be applied tomodel
a wide range of network flow problems using constraint program-
ming. In our approach, all key aspects of a network flow can be
represented by finite domain variables, making the constraint very
expressive. At the same time, we utilize a network simplex algo-
rithm to design a highly efficient, and incremental, domain filtering
algorithm. We thus integrate two powerful techniques for discrete
optimization: constraint programming and the network simplex al-
gorithm. Our generic constraint can be applied to automatically
implement effective and efficient domain filterng algorithms for ad-
hoc networks, but also for existing global constraints thatrely on a
network structure, including several soft global constraints many of
which are not yet supported by CP systems. Our experimental re-
sults demonstrate the efficiency of our constraint, that canachieve
speed-ups of several orders of magnitude with negligible overhead,
when compared to a decomposition into primitive constraints.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures—Constraints, CSP; G.4 [Mathematics of Computing]: Math-
ematical software—Algorithm design and analysis

General Terms
Constraint programming, network flow constraint

Keywords
Minimum-cost network flow, global constraint

1. INTRODUCTION
Constraint programming (CP) is a paradigm to solve combinato-

rial optimization problems, combining an expressive modeling lan-
guage with powerful inference techniques and systematic search.
In addition to algebraic and logical relations over problemvari-
ables, CP allows the use of so-calledglobal constraintsthat pro-
vide shorthands to often-used combinatorial substructures [6, 13].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’11March 21-25, 2011, TaiChung, Taiwan.
Copyright 2011 ACM 978-1-4503-0113-8/11/03 ...$10.00.

Global constraints embed specialized inference techniques that ex-
ploit the associated combinatorial structure of the constraint, of-
ten allowing stronger levels of reasoning than would be possible
with a decomposed representation of the combinatorial structure.
Nowadays, global constraints are considered to be one of themost
important components of CP systems in practice.

Many global constraints utilize a combinatorial structurethat
takes the form of a specific network flow. For example, thealldiff-
erentconstraint is equivalent to a bipartite matching problem [10],
while theglobal cardinality constraint, or gcc, can be represented
by a bipartite network flow [11]. Also when an objective function
is combined with a global constraint, thus forming a so-called ‘op-
timization constraint’, the correspondence with network flows has
been exploited. One well-known example is theweighted gcc, that
corresponds to a weighted bipartite network flow [12].

Most, if not all, CP systems implement a dedicated inference
algorithm for each individual global constraint. Even whenglobal
constraints are based on network flows, and share similar data struc-
tures and procedures, each specialized network flow algorithm would
have to be implemented and tuned individually. The advantage of
this approach is that CP systems can offer highly efficient algo-
rithms for these constraints. In recent years, however, many more
network-based global constraints have appeared in the literature,
especially in the context ofsoft global constraints that can be ap-
plied to model and solve over-constrained problems [5]. This im-
poses a burden, as it may be unreasonable to implement and offer
a dedicated algorithm for each such global constraint. In fact, most
CP systems do not support any soft global constraint. A generic
network flow constraint allows to simulate the performance of the
specialized individual constraints in a convenient way.

Furthermore, many real-world problems contain a substructure
that can be represented by some network flow, but not necessarily
in the form of a global constraint that is offered by CP systems. Ex-
amples include process engineering, scheduling, routing,and trans-
portation problems; see [16] for a discussion of constraintprogram-
ming applications for networks. In order to exploit such ‘ad-hoc’
network flow structures, a generic network flow constraint would
be very convenient, both as a modeling tool and as a propagation
algorithm.

The main goal of this work is therefore to develop ageneric net-
work flow constraint. The purpose of this constraint is toi) allow
to model ad-hoc network flow structures,ii) allow to model ex-
isting global constraints, most importantly soft global constraints,
and iii) embed efficient inference algorithms, providing the best
trade-off between modeling power and practical solving efficiency.

Our first main contribution is the introduction of a more ex-
pressive generic Network Flow Constraint (NFC) than is currently
available in the literature. Particular features of theNFC are that

the following aspects of the network flow can be interpreted as a
variable: the total (weighted) value of the flow, the flow on each
arc, but also the unit cost of each arc. In addition, the constraint
supports a ‘structural’ variable for each arc that can be used to en-
force that the flow on the arc must equal its lower or upper capacity.
Finally, we show how the node balance, node capacity, and node
cost can be interpreted and handled as variables. These features al-
low us to model a wide range of network flow problems, including
the application areas mentioned above.

The second contribution of this paper is the embedding of very
efficient inference algorithms (in the form of so-called domain fil-
tering algorithms), that are based on the network simplex method [1].
Most of the domain filtering algorithms for network flow-based
global constraints, includingalldifferent, gcc, andsoft-alldifferent,
apply some variant of the combinatorial ‘successive shortest paths’
network flow algorithm. Indeed, for these global constraints that
are defined on bipartite networks, it can be shown that this ap-
proach yields powerful and provably efficient algorithms. For more
general networks, however, these algorithms may no longer be the
most efficient approach, most importantly because the worst-case
pseudo-polynomial time complexity is often encountered inprac-
tice. Instead, the network simplex is among the most efficient
network flow algorithms used in practical network flow applica-
tions. Moreover, as we will see, the network simplex method can be
naturally embedded inside a propagation algorithm and backtrack-
search environment. Since our main focus is on practical efficiency
and re-usability, we propose to balance the amount of filtering and
the associated computational load, resulting in highly efficient per-
formance. In particular, we consider checking the consistency of a
domain value only if our heuristic suggests it may be inconsistent
and can be filtered from its domain.

The third contribution of this work is the application of ourgeneric
constraint to a number of network flow problems, includingsoft
global constraints. We show that theNFC can be easily configured
to represent, e.g., thesoft-alldifferent constraint, and we experi-
mentally demonstrate the computational performance of theNFC
in practice. Interestingly, theNFC can obtain speed-ups of several
orders of magnitude with respect to a corresponding decomposition
of the problem, while the computational overhead is negligible.

Lastly, we have made our implementation of theNFC publicly
available as an add-on to the open-source CP solver JaCoP [8]. We
view this as an important contribution to the community, as it al-
lows other researchers to quickly evaluate the performanceof new
(soft) global constraints based on network flows.

The remainder of the paper is organized as follows. In Section 2
we compare our generic network flow constraint with existingre-
lated work. Then, in Section 3 we provide necessary preliminaries
on constraint programming and network flow theory. In Section 4
we introduce our generic network flow constraint. The associated
propagation algorithm is described in Section 5. We presentcom-
putational results in Section 6. Finally, we conclude in Section 7.

2. RELATED WORK
Network flows play an important role in constraint program-

ming, in particular because specialized network flow algorithms
have been applied to design efficient filtering algorithms for sev-
eral global constraints includingalldifferent [10], gcc [11, 12], and
their soft variants [7]. Bockmayr et al. were first to introduce a
generic network flow constraint in a CP context [3]. Their con-
straint, called theflow constraint in [3], has been implemented in
the CHIP solver. Similar to ourNFC, theflow constraint can be
applied to model minimum-cost network flow problems. Declar-
atively, ourNFC is more generic in that all flow aspects can be

interpreted as variables, whereas theflow constraint only considers
as variable the total value of the flow, the arc flow, and the demand
at each node. On the other hand, theflow constraint offers so-called
‘conversion nodes’ at the modeling level. These conversionnodes
are not offered by theNFC, because they can be transformed into an
equivalent multiple network flow problem (see Section 4). Indeed,
this approach is also taken by theflow constraint to handle conver-
sion nodes [3]. The domain filtering rules for theflow constraint
are based on the computation of a network flow for feasibilityrea-
soning, and on reduced costs for optimality reasoning. OurNFC
also includes this reasoning as part of the propagation algorithm.

A different network flow constraint has been proposed in [2];see
also [4]. It can be used to model maximum flow problems (that is,
no costs are involved), where the flow on each arc in the graph as
well as the total flow value is represented by a finite domain vari-
able. Therefore, this flow constraint is less generic than the flow
constraint in [3] and ourNFC. The domain filtering algorithm em-
ploys the highest-label preflow-push algorithm, which is particu-
larly efficient for maximum flow problems.

Another closely related work is theeplex library [15], which
provides a constraint programming interface to efficient linear pro-
gramming techniques. OurNFC can be viewed as a network-
specific variant of that work. Finally, in [9] it is discussedhow
global constraints such asgcc, among, and their combinations can
be modeled in terms of a tractable set-intersection problemcalled
‘Two Families of Sets’ (TFOS). It is shown that domain filtering
for the TFOS can be based on a maximum flow algorithm, and how
the extension to the weighted TFOS problem can be represented by
a minimum-cost flow.

3. PRELIMINARIES

3.1 Constraint Programming
We assume basic familiarity with constraint programming, and

refer to [14] for more information.
A constraint programming problem is defined on a set of vari-

ablesX, and a set of constraintsC on subsets ofX, and optionally
an objective functionf : X → Q. Each variablex ∈ X has
an associated finite domainD(x). The goal is to find a variable
assignmentx = d with d ∈ D(x) for all x ∈ X such that all
constraints are satisfied, andf is optimized (if it exists).

For a set of variablesX, we defineD(X) = ∪x∈XD(x). We
denote the lower and upper bound of a variablex by xmin =
min(D(x)) andxmax = max(D(x)), respectively.

3.2 The minimum-cost flow problem
We next present background information on network flow theory

to fix terminology. For a more thorough treatment of network flow
theory we refer to the textbook [1].

An instance of the minimum-cost flow problem on a directed
graph is defined by a tuple(N,A, l, u, c, b), where

• N is the set of nodes,

• A is the set of directed arcs,

• l : A → Z≥0 is the lower capacity function on the arcs,

• u : A → Z≥0 is the upper capacity function on the arcs,

• c : A → Z is the flow cost-per-unit function on the arcs,

• b : N → Z is the node mass balance function on the nodes.

A flow is a functionx : A → Z≥0. The minimum-cost flow prob-
lem asks to find a flow that satisfies all arc capacity and node bal-
ance conditions, while minimizing total cost. It can be stated as

follows:

min z(x) =
∑

(i,j)∈A

cijxij (1)

s.t. lij ≤ xij ≤ uij ∀(i, j) ∈ A, (2)
∑

j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji = bi ∀i ∈ N (3)

In addition to the parameters above, it is sometimes convenient to
apply cost and capacity functions on the nodes as well:

• ln : N → Z≥0 is the lower capacity function on the nodes,

• un : N → Z≥0 is the upper capacity function on the nodes,

• cn : N → Z is the flow cost-per-unit function on the nodes.

A network with cost and capacity functions on the nodes can be
transformed into an equivalent network of the form(N,A, l, u, c, b)
[1]. Namely, we can split a nodei ∈ N into two nodesiin andiout
collecting all incoming, respectively outgoing arcs ofi. We then
introduce an arc(iin, iout) with arc costcni and lower and upper
arc capacitieslni andun

i , respectively.

A flow x is feasibleif it satisfies the arc capacity constraints
(2) and node balance constraints (3). Under the assumption that
a feasible flow exists, we can formulate the problem differently.
For this formulation we need the concept ofresidual network. The
residual network with respect to a feasible flowx is defined on
the same node setN , but uses arc setAres(x) that is defined as
follows. An arc(i, j) with flow xij has two copies inAres(x), arc
(i, j) with residual lower capacity0 and upper capacityuij − xij ,
and an arc(j, i) with residual lower capacity0 and residual upper
capacityxij − lij . Moreover,lij is subtracted frombi and added
to bj (the residual node balances). Two arcs that correspond to the
same edge in the network flow problem are calledsister arcs.

In order to ensure that the network allows a feasible solution, we
apply the standard technique of introducing auxiliary arcsthat are
used to potentially fulfill the node balance constraints, with associ-
ated penalty costs. If the original network has no solution,this is
detected by the huge cost of the ‘solution’ in the extended network.

We introduce a ‘potential’ functionπ : N → Z and define the
reduced costof an arc(i, j) ascπij = cij −π(i)+π(j). A feasible
flow x : A → Z≥0 is optimal if and only if there exists a potential
functionπ : N → Z such that:

cπij ≥ 0, ∀(i, j) ∈ Ares(x), (4)

Algorithms for the minimum-cost flow can be separated intopri-
mal anddual algorithms depending on how they ‘move’ towards
an optimal solution. Primal algorithms start with a feasible, but
non-optimal flow and then iteratively improve the optimality of the
flow until the optimality condition (4) is met. Conversely, dual
algorithms start with an optimal, but infeasible solution.They it-
eratively improve the feasibility of the solution until thefeasibility
conditions (2) and (3) are met.

3.3 Network simplex algorithm
The network simplex algorithm uses the fundamental observa-

tion that if a minimum-cost network flow problem has a solution,
then it has an optimal solution that can be represented as a spanning
tree [1]. This is called aspanning tree solution. The basic idea of
the algorithm is that at each step we move from one tree to another
by replacing a tree arc with a non-tree arc, until we find an optimal
spanning tree.

In a spanning tree solution, the flowxij of every arc(i, j) not in
the spanning tree is either at its lower bound or at its upper bound.

The network simplex algorithm maintains this information explic-
itly, by representing a spanning tree solution as the arc setpartition
(T,L, U), whereT is the set of tree arcs,L is the set of arcs with
flow xij = lij andU is the set of arcs with flowxij = uij .

There are two basic operations defined on the spanning tree,
called primal pivot and dual pivot. A primal pivot adds a non-
tree arc to the spanning tree, thus creating a cycle in the tree. Flow
is then sent through the cycle until some arc on the cycle reaches
its upper capacity bound and isblocking the flow. This process is
calledflow augmentation. One of the blocking arcs is then removed
from the tree structure, which eliminates the temporary cycle in the
tree. In adualpivot we first select the arc(i, j) that leaves the span-
ning tree. This will divide the set of nodes in two subsets(N1, N2),
where each subset is reachable from exactly one endpointi, j of the
leaving arc, along the spanning tree. We then consider all arcs in
the cut(N1, N2) and choose the arc with the lowest reduced cost
to enter the tree and replace(i, j). After a primal or dual pivot we
again have a spanning tree.

Even though the standard network simplex algorithm has an ex-
ponential worst-case time complexity in theory, it is well-known
that this bound is virtually never encountered in practice.To the
contrary; the method is known to be among the most efficient net-
work flow algorithms in practice [1]. We will apply the primalalgo-
rithm to re-optimize the flow after (small) structural changes, while
the dual algorithm will be applied to perform sensitivity analysis.

4. NETWORK FLOW CONSTRAINT
As stated before, the purpose of our network flow constraint is

to be as expressive as possible, while being as computationally ef-
ficient as possible. The constraint definition provided below speci-
fies which parts of the network flow are specified by variables and
which parts of the network flow are fixed. Syntactically, we define
our Network Flow Constraint as

NFC(N,A,L,U,C, Ln, Un, Cn, B,X, Z, S),

where the parameters are defined as follows:

• N is the list of nodes: fixed

• A is the list of directed arcs: fixed

• L is the list of lower capacities for the arcs: fixed

• U is the list of upper capacities for the arcs: fixed

• C is the list of unit costs for the arcs: fixed or variable

• Ln is the list of lower capacities for the nodes: fixed

• Un is the list of upper capacities for the nodes: fixed

• Cn is the list of unit costs for the nodes: fixed or variable

• B is the list of mass balances for the nodes: fixed or variable

• X is the list of flow values for the arcs: fixed or variable

• Z is the total weighted flow value: variable

• S is the list of tuples providing structural rules onX and
other problem variables

These parameters map directly (by capitalization) to the parameters
that define the minimum-cost network flow problem in Section 3.
We note that a user can define a maximization problem using the
NFC by negating all costs of the network.

For internal representation and solving purposes, however, we
only actively consider the variables in(C,X,Z, S). Namely, we
can transform the network such that variables inB andCn are rep-
resented by variables of typeX andC. For node balance variables
B, we introduce an artificial noden0 and connect this node to all

nodesi in N that have a node balance variable inB. For each
such arc(i, n0), the flow variablexi,n0

is made equal to the cor-
responding variablebi. The transformation of node cost variables
Cn into arc cost variablesC was already discussed in Section 3.
We note that these transformations maintain the inference power of
the constraint, without affecting its complexity.

All variable typesC,X andZ are assumed to have anintervalas
their domain. That is, the propagation algorithm will only maintain
and update the lower and upper bound of the domains.

The parameterS specifies a list ofstructural rulesthat are used
to force the flow on an arc to be equal to its upper or lower capac-
ity. A structural rule is specified by a tuple(v, d, a, t), wherev
is a finite domain variable,d is a domain (a finite set),a is an arc
(i, j), andt denotes the type of the rule, being either UB (for upper
bound) or LB (for lower bound). An UB rule is defined as

D(v) ⊆ d ⇒ xij = uij ,
xij < uij ⇒ D(v) ∩ d = ∅,

(5)

while a LB rule is defined as

D(v) ∩ d = ∅ ⇒ xij = lij ,
xij > lij ⇒ D(v) ∩ d 6= ∅,

(6)

wherexij ∈ X, lij ∈ L, anduij ∈ U . These rules are specifically
designed to map the network flow variablesX to other problem
variablesv. The following example illustrates the use of structural
rules when modeling thesoft-alldifferentconstraint using theNFC.

Example. Consider the constraintsoft-alldifferent(X, z, µdec),
whereX = {x1, . . . , xn} is a set of variables,z is a variable rep-
resenting the total violation cost, and the decomposition-based vi-
olation measureµdec is defined as

µdec(x1, . . . , xn) = |{(i, j) | xi = xj , for i < j}|.

A tuple(d1, . . . , dn, d) with di ∈ D(xi), d ∈ D(z) is a solution to
soft-alldifferent(X, z, µdec) if and only ifµdec(d1, . . . , dn) ≤ d.

Solutions to thesoft-alldifferent constraint can be represented
by a minimum-cost network flow as follows [7]. We introduce a
node setNX representing the variables inX, and a node setND

representing the values inD(X). We also introduce a ‘sink’ nodet.
For each variablexi ∈ X and domain valued ∈ D(xi) we define
an arc(xi, d), as well as an arc(d, t). We refer to the arc set asA.
Wheneverd belongs to the domain of two or more variables, we
have created parallel arcs fromd to t. We order these parallel arcs
in a fixed but arbitrary way, and define a costci = i− 1 to thei-th
arc fromd to t, wherei = 1, 2, The arcs fromNX toND have
cost 0. Each arca has a lower capacityla = 0 and upper capacity
ua = 1. We finally associate a node balancebxi

= 1 to each node
xi ∈ NX , while bt = −n. An integer minimum-cost flow in the
resulting graph has a one-to-one correspondence with a solution
to the soft-alldifferent constraint minimizing the decomposition-
based violation measure, by interpreting the unit flow on an arc
(xi, d) as the assignmentxi = d.

In order to model thesoft-alldifferentconstraint with theNFC,
we need to map the assignmentsxi = d to the arcs(xi, d), for all
xi ∈ X andd ∈ D(X). We do this by using structural rules, as
follows. For each pair(xi, d) we introduce both structural rules
(xi, {d}, (xi, d), UB) and(xi, {d}, (xi, d), LB). Together, these
will ensure that the flow on arc(xi, d) is exactly 1 wheneverxi =
d, and 0 otherwise.

The soft-alldifferent constraint can now be modeled using the
NFC using the parameters described above. We remark that the
parametersLn, Un andCn are void in this case, and thatz repre-
sents the total weighted flow variableZ in theNFC.

In addition tosoft-alldifferent, we can apply theNFC to imple-
ment any existing network flow-based constraint, such as theclas-
sical (weighted and unweighted)alldifferent andgcc constraints,
but also various other soft global constraints including the soft-gcc
and thesoft-regularconstraints. We note that the current version of
theNFC requires soft global constraints to have violation measures
that can be expressed as convex costs on the arcs.

5. PROPAGATION ALGORITHM

5.1 Domain Filtering Algorithm
As discussed in Section 4, theNFC applies domain filtering (in

fact, bounds reduction) to the three variable typesC, X, Z, and
the structural rulesS. Domain filtering for the variables inS is
performed by establishing domain consistency on the constraints
that define the rules (5) and (6). We note that domain consistency is
not guaranteed if for a particular rulev andx are the same variable.
We next discuss the domain filtering with respect toZ, X andC.

Algorithm 1 represents the overall propagation algorithm of the
NFC. The first goal is to verify that a solution exists, i.e, that the
constraint isconsistent. This is done by computing a minimum-
cost flow, using the network simplex method; see line 2 of Algo-
rithm 1. We note that only upon the first propagation event (usually
at the root of the search tree), we need to run the network sim-
plex algorithm from scratch. After that, the consistency check is
performed incrementally by re-optimizing the network flow,taking
into account the changes that have been made to the network struc-
ture. In particular we need to ensure that changes in the bounds of
variablesX, C, andZ still allow a feasible flow, with total cost
at mostZmax. We note that, when using the network simplex al-
gorithm, the network flow can be re-optimized very quickly upon
such changes. After (re-)optimization, we can immediatelyupdate
the lower bound on the total flow value, i.e.,Zmin, as shown in
line 4. Note that theNFC only ensures thatz(x) ≤ Zmax, where
z(x) is the total cost of the flow (see equation (1)). Thus, theNFC
prunesZmin while other model constraints and search constraints
pruneZmax.

If no failure is thrown (line 6) then we perform a consistency
analysis with respect to individual arcs of the network (line 9), in
order to filter the domains of variables inX andC. The algorithm
that analyzes a single arc is presented as Algorithm 2. For anarc
(i, j) the goal of arc analysis is to find the maximum amount of flow
through that arc, with cost at mostZmax, corresponding toxmax

ij or
xmin
ij , depending on the orientation of the arc in the residual graph.

Observe that in the residual network, the residual lower capacity lij
for each arc(i, j) is 0.

To find the maximum amount of flow through an arc(i, j), we
try to route as much flow fromj to i as the remaining capacity of
arc(i, j) allows for it, without using more than the remaining ‘cost
slack’, as defined in line 8 of Algorithm 1. We can do this by first
removing the arc(i, j) from the graph and then considering the

Algorithm 1 Main propagation
1: updateCache()
2: { cost, isFeasible }← networkSimplex()
3: if (isFeasible ∧ cost ≤ Zmax) then
4: Zmin←max(cost,Zmin)
5: else
6: throw Failure
7: end if
8: costSlack← Zmax - cost
9: arcAnalysis(costSlack)

Algorithm 2 Analyzing a single arc
1: { Input: (arc (i, j), costSlack) }
2: source← arc.head
3: sink← arc.tail
4: capacity← arc.capacity
5: flow← 0
6: while (capacity> 0) do
7: unitCost← cπij
8: if (unitCost > 0) then
9: maxCapacity← costSlack / unitCost

10: if (capacity> maxCapacity)then
11: capacity←maxCapacity
12: if (capacity= 0) then
13: break
14: end if
15: end if
16: end if
17: { delta, bArc }← augmentFlow(source, sink, capacity)
18: flow← flow + delta
19: capacity← capacity - delta
20: costSlack← costSlack - unitCost * delta
21: if (capacity= 0∨!dualPivot(bArc))then
22: break
23: end if
24: end while
25: if (flow < arc.capacity)then
26: amount← arc.capacity - flow
27: if (arc.isForward)then
28: xmax

ij ← xmax
ij − amount

29: else
30: xmin

ij ← xmin
ij + amount

31: end if
32: end if

problem of sendinguij units of flow from a source (j) to a sink (i),
whereuij represents the residual capacity of(i, j). This is done in
several iterations. At each iteration we send one or more units of
flow from j to i, by augmenting the flow along thej-i path in the
spanning tree (there is exactly one path fromj to i), i.e., here we
apply primal pivot operations. We try to send the maximum amount
of flow possible (line 17 of Algorithm 2) and by doing so we will
either reach the capacity limit of the original arc(i, j) or create a
blocking arc(called ‘bArc’) on the augmenting path. A blocking
arc prevents us from sending more flow and has to be replaced by
another arc with non-zero residual capacity. This is done bya dual
pivot operation (line 21). This operation returns false if no such arc
exists. If this is the case, then the current computed flow from j to
i is maximal and we exit the loop.

Another termination condition is when the flow becomes too
costly. The cost of sending one more unit of flow is equal to the
reduced cost of the arc (cπij). Note that sending flow along the
spanning tree has always cost0. Since we started from an optimal
solution,cπij is non-negative and it will increase at each iteration as
the spanning tree changes. This exposes the (convex) cost structure
of the arc, which we use for cost-based pruning by comparing it to
the cost slack.

We can prune the domain ofxij ∈ X whenever the maximum
flow that can be sent fromj to i is less than the arc capacity (line
25). Depending on the orientation (forward/backward) of the arc
either the upper or lower bound ofxij is narrowed. For the vari-
ables inC, we apply a more passive filtering algorithm. First, ob-
serve that theNFC can never increasecmin for c ∈ C, but it may
decreasecmax. We decreasecmax whenever we can determine that
the flow requirements on(i, j) makecmax inconsistent, that is, we
apply the conditioncmax

ij ≤ cmin
ij + costSlack/xmin

ij .
The correctness of Algorithm 2 follows from standard network

flow theory [1]. In fact, lines 6–7, 17–19, 21–24 implement a dual
network simplex algorithm, while lines 8–16, 20 implement the
cost-based pruning procedure.

5.2 Efficiency and Improvements
Performing an analysis for all arcs in the network would be quite

expensive, most importantly because in many cases it may notre-
sult in any domain filtering. Therefore, we only consider those arcs
that seem most promising to yield actual pruning of the variable do-
mains. To this end, we employ a scoring heuristic to choose which
arcs should be analyzed. Each arc is assigned a score that indicates
how likely we are able to do successful pruning based on that arc.
Here, successful pruning means that we have pruned the domain of
one of the variables associated to that arc. During our propagation
algorithm we only consider the topP% of arcs with the highest
scores, for some percentageP .

Our dynamically updated scoring heuristic is based on collecting
the history of an arc with respect to pruning. That is, if an arc
yielded successful pruning, its score is increased. If an arc was
analyzed but no associated variable domain could be pruned,then
the score is decreased. We will see that the experiments support the
assumption that the history of pruning is a relevant indicator of the
pruning potential for the remaining part of the search.

For nodes that are connected to only 1 or 2 arcs we can achieve
stronger pruning than Algorithm 2. If nodeni ∈ N has degree 1
then there is only one possible flow assignment for the arc con-
nected to that node. Depending on the direction of the arc we set
the correspondingX-variable to+bi or −bi, wherebi denotes the
balance ofni. In effect, the flow on the arc is then fixed, and it
can be removed from the network. Next, consider the situation of a
nodeni with degree 2. Letx1 andx2 be the flow variables of the
two arcs connected to that node. The relation betweenx1 andx2

can be expressed as

d1 · x1 = d2 · x2 + bi

wheredi ∈ {−1, 1}, i = 1, 2, depending on the direction of the
arcs. We perform a standard domain consistency propagationalgo-
rithm for these binary constraints.

5.3 Implementation Details
We next discuss the most important data structures of the algo-

rithm, as well as implementation details concerning efficiency, and
state restoration upon backtracking.

Residual Network. We store the network in the form of a residual
network. Recall that the residual network defines two sisterarcs for
each arc(i, j) ∈ A. In effect, we do not need to treat forward and
residual (backward) arcs differently. In our implementation, sister
arcs have pointers to each other. For efficiency we allow residual
arcs to have upper capacity of0, so that we do not have to allocate
or de-allocate arcs when the flow is redistributed.

Spanning Tree. In order to maintain the spanning tree solution
of the network simplex algorithm, we apply the parent-thread-depth
(PTD) representation [1]. The PTD representation allows pre-order
traversal inO(1) memory because it stores the pre-order explicitly
using pointers. Recall that the network simplex algorithm requires
access to three sets of arcs(T,L, U). Our spanning tree already
contains the tree arcsT , while we store the set of arcs at their lower
bound (L) in a global list of arcs. The list of arcs at their upper
bound (U) does not need to be maintained explicitly, since each arc
in U is a sister arc of an arc inL.

We also utilize the information in(T,L, U) during the arc anal-
ysis. Namely, arcs(i, j) in L have a supporting flow forxmin

ij ,
while arcs(i, j) in U have a supporting flow forxmax

ij . Therefore,

for these arcs the consistency of one bound comes for free, and we
only perform the arc analysis for the other direction. Moreover,
some arcs inT may be at their lower or upper bound, which again
saves the check for one bound.

Caching. Often, certain parts of the flow are fixed and we could
use an integer constant instead of singleton variables. Moreover,
an efficient approach also takes advantage of the fact that variables
change relatively rarely when compared to how often their state
is being read. Therefore, the cached residual graph representation
is only being updated if values ofxmin

ij , xmax
ij and cmin

ij change.
Caching has a number of advantages and one disadvantage. First, if
we do not cache, recomputing flow bounds of arcs in residual graph
with the help ofmin() andmax() functions is expensive when
compared to one memory access. Caching results in a large per-
formance boost since flow bounds access operations are performed
extremely often in our algorithm. Moreover, for singleton variables
the domain does no longer change, and we do not need to update
the cache. However, one disadvantage is that the cache must be
maintained (procedureupdateCache() in line 1 of Algorithm 1).

Backtracking. Upon backtracking, theNFC must restore its data
to make it consistent with the search state. In order to do this effi-
ciently and with little memory, we only remember the set of mod-
ified or deleted arcs at each search level. Their state can then be
restored by refreshing the cached values with the state of the corre-
sponding search variables. Note that we can reuse the current flow,
the current node potentials (reduced costs) and the currentspanning
tree along with the associated arc sets(T,L, U). On backtracking,
we only need to re-establish the invariants of the spanning tree so-
lution when it restores the previous state. This will require at most a
few pivot operations on the tree. As backtracking can only destroy
the optimality of the flow, but not its feasibility, we normally would
apply the primal algorithm to re-optimize the flow. However,since
consistency also uses the primal algorithm we can simply defer the
re-optimization until then and save execution time.

6. EXPERIMENTAL RESULTS
The main purpose of our experiments is to assess the computa-

tional efficiency of various aspects of theNFC, including the over-
all efficiency and the performance of the arc selection heuristic. In
addition, we compare the computational efficiency of theNFC to
decomposed models in which only primitive constraints are used,
to evaluate the potential gain in performance when using a network
flow-based global constraint.

6.1 Soft All-Different
Our first experiments are performed on problems that consistof

a single decomposition-basedsoft-alldifferentconstraint (as in the
example of Section 4). The reason for using a singlesoft-alldiff-
erent constraint is that domain consistency can be established in
polynomial time for this constraint, which allows us to evaluate
the quality of the arc scoring heuristic. Namely, we can increase
the number of arcs to include until we effectively approach domain
consistency.

We represent this problem using theNFC, and with a decom-
posed model using primitive constraints. The decomposition asso-
ciates a Boolean variabletij to each equality constraintxi = xj ,
yielding the reified constrainttij ⇔ (xi = xj), for all i < j. The
total violation is expressed asz =

∑
i<j

tij .
We created random problem instances based on three parame-

ters,N , MaxL (for maximum length), andMaxC (for maximum
cost). They define the constraintsoft-alldifferent(X, z, µdec)where
|X| = N andD(z) = [0,MaxC]. The domains of the variables in

Arcs % Arcs # Nodes # Wrong Time (s)
considered pruned decisions

Primitive - - 333,147 162,014 4.0
NFC 0 - 118,371 54,626 9.12
NFC 1 25.8 23,395 7,138 2.29
NFC 2 10.7 13,679 2,280 1.82
NFC 3 10.6 11,233 1,057 1.81
NFC 4 9.1 9,907 394 1.89
NFC 5 8.2 9,327 104 1.9
NFC 6 7.5 9,239 60 2.1
NFC 7 6.5 9,195 38 2.13
NFC 8 5.9 9,143 12 2.15
NFC 9 5.7 9,141 11 2.19
NFC 10 5.4 9,137 9 2.2
NFC 11 5.2 9,125 3 2.28
NFC 12 5.1 9,123 2 2.29
NFC 13 5.0 9,121 1 2.32
NFC 14 5.0 9,121 1 2.34
NFC 29 4.8 9,119 0 2.4

Table 1: The NFC applied to a soft-alldifferent problem with
a sparse solution space of only 9,120 solutions. The parameters
are N = 19,MaxL = 4 andMaxC = 3; the network has 38 nodes
and 390 arcs. We search for all solutions. TheNFC is config-
ured to only prune a small number of arcs per search node.

X are defined as follows. Letrandom(m) be a function that pro-
duces a random number uniformly chosen from the interval[1, m].
For each variablexi, we generateleni = random(MaxL− 1) and
mini = random(n − leni). We then defineD(xi) = [mini,
(mini + leni)]. Note that the size ofD(xi) is leni + 1 and
lies between 2 andMaxL. We consider various problem variants to
these instances: finding all solutions, proving unsatisfiability (that
is, there exists no assignment forX such thatz ≤ MaxC, and find-
ing a minimum-cost solution.

We first investigate the performance of our arc scoring heuristic.
Recall that at each propagation event we only perform arc analy-
sis on a subset of the arcs in the network, having the largest score.
Tables 1 and 2 show the results on problems with different char-
acteristics. The first problem has a sparse solution space ofonly
9,120 solutions, while the second problem is much less constrained
and allows 54,996 solutions. In both tables, we find all solutions to
the problem. In these tables, we report the performance of theNFC
when the number of arcs considered is increased. Here (% Arcs
pruned’) refers to the average success ratio of pruning, i.e. how
often arc analysis leads to actual pruning, given by

% of arcs pruned = # of arcs pruned
of arcs examined.

We can observe that the number of wrong decisions is roughly di-
vided by 2 for every additional arc that we attempt to prune. Inter-
estingly, the results show that when only 29 (Table 1), respectively
14 (Table 2), arcs are considered during each filtering event(about
7.4%, resp. 6.0%, of the total number of arcs), the correspond-
ing pruning is sufficient to make no wrong decisions during search
(similar to what domain consistency would achieve). This suggests
that our scoring heuristic is performing quite well.

These tables also illustrate the impact of solution density, that
can be adjusted with the parameterMaxC. When the solution space
is smaller (Table 1), theNFC has more pruning opportunities, and
can outperform the decomposition using primitive constraints. How-
ever, when the solution space is larger (Table 2), the additional
pruning may not lead to a reduced computation time when only
a single constraint is considered.

Arcs % Arcs # Wrong Time (s)
considered pruned decisions

Primitive - - 32,932 1.3
NFC 0 - 63,592 6.9
NFC 1 19.4 26,838 7.4
NFC 2 13.6 16,146 8.0
NFC 3 12.2 8,818 8.2
NFC 4 11.2 4,137 8.1
NFC 5 10.6 1,934 8.5
NFC 6 9.9 718 8.9
NFC 7 9.3 384 8.9
NFC 8 9.1 199 9.0
NFC 9 8.7 45 9.5
NFC 10 8.3 30 9.3
NFC 11 8.3 10 9.4
NFC 12 8.1 4 9.5
NFC 13 8.0 7 9.6
NFC 14 8.0 0 9.6

Table 2: TheNFC applied to asoft-alldifferent problem with a
dense solution space with 54,996 solutions. The parameters are
N = 15,MaxL = 4 andMaxC = 5; the network has 29 nodes and
232 arcs. We search for all solutions.

N MaxL MaxC # Nodes # Wrong Time (s)
Decisions

NFC 17 4 2 0 0 0.023
Primitive 17 4 2 8951 4476 0.164

NFC 20 7 3 0 0 0.04
Primitive 20 7 3 840,011 420,006 8.34

NFC 24 4 6 0 0 0.024
Primitive 24 4 6 >4,372,355 >2,186,170 >60

Table 3: Unsatisfiable instances ofsoft-alldifferent . The NFC
fails immediately without search. Primitive constraints time
out on the last instance.

In order to further investigate the power of theNFC, we next
consider unsatisfiable problem instances, for whichMaxC is too
low to allow any solution. These instances expose an important
difference between theNFC and the decomposition: theNFC can
immediately deduce that an instance is unsatisfiable, whileprimi-
tive constraints cannot, as illustrated in Table 3. All instances in
this table are unsatisfiable. TheNFC fails immediately at the first
node, whereas primitive constraints need to explore a largetree to
prove that the instance is unsatisfiable.

Finally, we compare theNFC and the decomposition on the op-
timization variant of this problem, in which we want to find a so-
lution with minimum total violation cost. The optimizationin the
search is achieved by decreasing the upper bound of the cost vari-
able every time a solution is found. The search stops when no more
solutions can be found. As there may be many suboptimal (infeasi-
ble) search nodes, it is expected that theNFC performs better than
the decomposition into primitive constraints, based on theresults
in Table 3. The performance of the different models is presented
in Table 4. The reported instances in this table all have at least
one feasible solution. Observe that the primitive constraints indeed
perform poorly in this case. They are not aware of the optimiza-
tion goal, and the upper limit on the cost has little direct influence
on the propagation. The performance ofNFC is remarkable, as al-
ready for small problemsNFC uses four orders of magnitude less
search nodes than the decomposition.

N MaxL Cost # Nodes Time (s)

NFC 17 5 1 42 0.154
Primitive 17 5 1 896,655 10.4

NFC 20 5 1 44 0.155
Primitive 20 5 (2) 1,569,962 > 30

NFC 50 5 4 239 2.4
Primitive 50 5 (10) 1,270,823 > 30

NFC 70 5 8 605 11.4
Primitive 70 5 (25) 647,708 > 30

NFC 17 10 0 88 0.154
Primitive 17 10 0 55,068 0.685

NFC 20 10 3 64 0.155
Primitive 20 10 (4) 2,175,059 > 30

NFC 50 10 8 285 4.8
Primitive 50 10 (18) 947,174 > 30

NFC 70 10 8 723 21.5
Primitive 70 10 (32) 382,176 > 30

Table 4: Finding an optimal solution for soft-alldifferent . Prim-
itive constraints time out for the network with 20 or more vari-
ables. A cost in parenthesis is the minimal cost that was found
before timeout.

6.2 Personnel Scheduling
The next set of experiments is performed on a personnel schedul-

ing problem introduced in [3]. In this problem, we need to assign
8-hour shifts to telephone operators. A day is divided into 6periods
of 4 hours. Each period has a minimum requirement on the num-
ber of operators. We assume that operators work for a consecutive
period of 8 hours and that they can start to work at the beginning
of any of the 6 periods. The objective is to minimize the number of
shifts while respecting the minimum requirements for each period.

The personnel scheduling problem has been used by [3] to test
the implementation of their network flow constraint. Unfortunately,
they only publish their model but not their benchmarking results.
We will still use the same data set that they proposed: the minimum
requirement of working operators per each shift are{26, 52, 86,
120, 75, 35}. This problem can be modeled using a simple network
with 6 nodes and 12 arcs. Nodes correspond to the beginning ofa
time period. There are two types of arcs:working arcsgoing from
t to t + 4 hours andfree arcslasting fromt to t + 16 hours (both
modulo 24 hours). Working arcs have a cost of one per unit of
flow and a lower capacity equal to minimum requirements for that
period. Free arcs have no cost and a lower capacity of zero.

For this problem, the decomposed model consists of the individ-
ual constraints (2) and (3) that constitute the network flow problem
of Section 3. In our experiments we let both approaches, theNFC
and the primitive model, find all solutions up to a given cost bound.
We measure the time and the number of search nodes for each exe-
cutions. The results, shown in Table 5 show that theNFC makes no
wrong decisions. Interestingly, there is virtually no overhead in us-
ing theNFC over the primitive model. Both process nodes at about
the same rate. Together, theNFC is faster by 11x (cost 425) to 19x
(cost 455) when compared to the model using primitive constraints.

6.3 Random Shift Scheduling Networks
TheNFC was designed to be very expressive, but it is difficult

to find benchmark problems that use all properties of our constraint
simultaneously. Therefore, in this last set of experiments, we apply
random networks to evaluate all theNFC features simultaneously.
We compare theNFC against a decomposed model that applies
global sum and weighted global sum constraints that constitute the

Maximal # Solutions # Search Time (s) # Nodes / s
cost Nodes

NFC 415 231 230 0.13 1.77
Primitive 415 231 5,650 0.47 12.0

NFC 425 6,496 6,495 0.57 11.4
Primitive 425 6,496 75,607 6.23 12.1

NFC 435 26,411 26,410 1.92 13.8
Primitive 435 26,411 351,198 27.8 12.8

NFC 445 68,460 68,459 4.68 14.6
Primitive 445 68,460 1,112,925 76.7 14.5

NFC 455 141,960 141,959 9.0 15.8
Primitive 455 141,960 2,784,763 171 16.3

Table 5: Finding all operator schedules up to a given cost. The
NFC mimics domain consistency (no wrong decisions) on all
cases, while processing nodes at the same rate as primitive con-
straints.

Arcs # Solutions # Search # Wrong Time
Nodes Decisions (s)

NFC 18 4,712 48,035 21,662 0.29
Primitive 18 4,712 51,067 23,178 5.57

NFC 20 621 9,288 4,334 0.19
Primitive 20 621 44,068 21,724 9.67

NFC 30 4,587 34,882 15,148 0.28
Primitive 30 4,587 52,638 24,026 10.1

NFC 40 35,123 478,662 221,770 4.14
Primitive 40 (0) 265,469 132,730>120

Table 6: Finding all solutions of randomly generated shift
scheduling problems.

network flow problem.
The random networks have a cyclical structure similar to theper-

sonnel scheduling problem in the previous section, but withmore
shifts, and with variable arc costs. Each node has an arc to the next
node in the cycle and to two nodes earlier in the cycle. Our in-
stances withm arcs containm/2 shifts (each shift is represented
by a node). Each arc(i, j) has associated variablesxij ∈ X and
cij ∈ C. For both variable types, the domains are generated ran-
domly as an interval betweenmin andmax. Heremin is a num-
ber produced byrandom(10) − 1, yielding the range[0, 9], while
max is equal to21− random(10) yielding the range[11, 20]. Re-
call thatrandom(m) produces a random number uniformly chosen
from the interval[1, m].

Table 6 shows the results that we obtained for instances with18,
20, 30, and 40 arcs. Observe that theNFC is performing more
pruning, resulting in fewer search nodes, than the decomposition.
More importantly, however, theNFC is at least one order of mag-
nitude faster already for small problems. Realizing that the global
sum constraints of the decomposed model are already optimized,
the difference in efficiency is even more striking. Apparently, the
decomposition not only loses the network structure, but it also pays
a computational price in the overhead of maintaining a largenum-
ber of smaller constraints.

7. CONCLUSIONS
We have introduced a generic network flow constraint that can

be applied to model ad-hoc global constraints for network prob-
lems as well as existing global constraints that utilize a specific
network flow representation, in particular soft global constraints.

We have shown how the efficient network simplex algorithm can
be embedded inside the domain filtering filtering associatedwith
this network flow constraint. We have evaluated the performance
of our network flow constraint, and demonstrated its efficiency with
respect to corresponding decomposed models, on three application
areas: soft global constraints, realistic network flow problems (per-
sonnel scheduling), and randomly generated shift scheduling prob-
lems exhibiting all features modeled by our constraint. Ourexperi-
ments indicate that the network flow constraint can achieve speed-
ups of orders of magnitude compared to a corresponding decompo-
sition into primitive constraints.

8. REFERENCES
[1] R. Ahuja, T. Magnanti, and J. Orlin.Network Flows -

Theory, Algorithms and Applications. Prentice-Hall, 1993.
[2] T. Benoist, E. Gaudin, and B. Rottembourg. Constraint

Programming Contribution to Benders Decomposition: A
Case Study. InProceedings of CP, volume 2470 ofLNCS,
pages 603–617. Springer, 2002.

[3] A. Bockmayr, N. Pisaruk, and A. Aggoun. Network Flow
Problems in Constraint Programming. InProceedings of CP,
volume 2239 ofLNCS, pages 196–210. Springer, 2001.

[4] É. Gaudin, N. Jussien, and G. Rochart. Implementing
explained global constraints. InProceedings of the CP’04
Workshop on Constraint Propagation and Implementation,
pages 61–76, 2004.

[5] W.-J. van Hoeve. Over-Constrained Problems. In
P. Van Hentenryck and M. Milano, editors,Hybrid
Optimization: the 10 years of CPAIOR, chapter 6. Springer,
2010.

[6] W.-J. van Hoeve and I. Katriel. Global constraints. In Rossi
et al. [14], chapter 6.

[7] W.-J. van Hoeve, G. Pesant, and L.-M. Rousseau. On global
warming: Flow-based soft global constraints.Journal of
Heuristics, 12(4):347–373, 2006.

[8] Java Constraint Programing (JaCoP) solver.
http://jacop.osolpro.com.

[9] I. Razgon, B. O’Sullivan, and G. Provan. Generalizing
Global Constraints Based on Network Flows. InRecent
Advances in Constraints, volume 5129 ofLNCS, pages
127–141. Springer, 2008.

[10] J.-C. Régin. A Filtering Algorithm for Constraints of
Difference in CSPs. InProceedings of AAAI, volume 1,
pages 362–367. AAAI Press, 1994.

[11] J.-C. Régin. Generalized Arc Consistency for Global
Cardinality Constraint. InProceedings of AAAI/IAAI,
volume 1, pages 209–215. AAAI Press/The MIT Press, 1996.

[12] J.-C. Régin. Cost-Based Arc Consistency for Global
Cardinality Constraints.Constraints, 7(3-4):387–405, 2002.

[13] J.-C. Régin. Global Constraints and Filtering Algorithms. In
M. Milano, editor,Constraint and Integer Programming -
Toward a Unified Methodology, chapter 4. Kluwer Academic
Publishers, 2003.

[14] F. Rossi, P. van Beek, and T. Walsh, editors.Handbook of
Constraint Programming. Elsevier, 2006.

[15] K. Shen and J. Schimpf. Eplex: Harnessing Mathematical
Programming Solvers for Constraint Logic Programming. In
Proceedings of CP, volume 3709 ofLNCS, pages 622–636.
Springer, 2005.

[16] H. Simonis. Constraint applications in networks. In Rossi
et al. [14], chapter 25.

