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Abstract. In cold weather cities, snowstorms can have a significant dis-
ruptive effect on both mobility and safety, and consequently the faster
that streets can be cleared the better. Yet in most cities, plans for snow-
plowing are developed using simple allocation schemes that while easy
to implement can also be quite inefficient. In this paper we consider the
problem of optimizing the routes of a fleet of snow plowing vehicles,
subject to street network topology, vehicle operating restrictions, and
resource (salt, fuel) usage and replenishment constraints. We develop
and analyze the performance of three different optimization models: a
mixed-integer programming (MIP) model, a constraint programming
(CP) model, and a constructive heuristic procedure that is amplified
by an iterative improvement search. The models are evaluated on a set
of snow plow routing problems of various sizes, constructed using Open
Streets map data of Pittsburgh PA. Experimental results are presented
that illustrate the differential strengths and weaknesses of each model,
and suggest an alternative hybrid solution approach.

1 Introduction

Each year, many northern cities face significant expenditures pertaining winter
road maintenance. Snow removal constitutes a significant part of these costs. For
example, the city of Pittsburgh (USA) spent a staggering $4.3M on consumable
resources (salt, deicing chemicals), $3.3M on personnel, and $800K on equipment
(vehicles, plows, maintenance) during last year’s winter season (2014/2015). In
addition to these direct costs, a number of indirect costs can also be identified.
Slippery roads deteriorate driving conditions thereby increasing the number of
traffic accidents. Extensive utilization of snow plows, salt and chemicals damage
the roads, corrode cars and metal bridges, and have an overall negative impact
on the environment. Consequently, any ability to optimize winter road mainte-
nance and deicing operations offers significant opportunities to realize substantial
savings, to improve mobility and to reduce societal and environmental impact
[4, 14–16].

In this work we study the real-world snow plow routing problem (SPRP)
faced by the City of Pittsburgh PA where routes must be computed for a set of



heterogeneous vehicles such that they collectively cover a geographical area, and
comply with various resource constraints. Here, as in any snow plowing activity,
each vehicle removes snow from the streets and simultaneously spreads a mixture
of salt and chemicals for deicing purposes. Since each vehicle has only limited
fuel and salt capacity, resources have to be periodically replenished. A number
of resource depots are available throughout the city: these depots offer fuel, salt
or both. The objective is to compute a schedule for each vehicle, which satifies
resource constraints and minimizes the overall time it takes to clear all streets
(i.e., the schedule makespan).

This work is part of a larger initiative to provide the city with an adaptive
approach to snow plow route optimization and management. A route planning
system is under development which will ultimately issue optimized turn-by-turn
instructions to the vehicles in real-time during snow plowing operations, and dy-
namically revise these plans as unexpected events force changes. This paper lays
the foundations for this project, by formally defining the problem and analyzing
both exact (CP and MIP) and heuristic approaches for solving it. The heuristics
presented are designed with scalability and adaptivity in mind, such that they
can be adapted at a later stage of the project to modify schedules in response
to dynamic events such as blocked roads, equipment problems and emergency
requests.

The problem under consideration generalizes the well-known Chinese Post-
man Problem [8] and relates to other problems such as the Capacitated Arc
Routing Problem [2, 3] and Resource Constrained Project Scheduling.Although
an extensive amount of research has been devoted to road maintenance and snow
control, only a limited number of works has studied snow plow routing with re-
source constraints. For an excellent literature overview pertaining winter road
maintenance problems in general, and related solution approaches, we refer to
the survey series [9–12].

Salazar-Aguilar et al. [15] study a related routing problem where routes are
computed in such a way that street segments with two or more lanes in the same
direction are plowed simultaneously by different synchronized vehicles. This so-
called ‘tandem plowing’ pushes snow from one lane to the next and eventually to
the side of the road, thereby avoiding snow mounts building up between lanes.
The problem in [15] is first defined through a MIP model. In addition, an efficient
Adaptive Neighborhood Search approach is proposed. Although synchronized
plowing has certain benefits, it is not being applied in Pittsburgh due to the
added level of planning complexity that it implies. [15] primarily focuses on the
plowing aspects; management of resources such as salt and fuel is not considered.
The performance of their algorithms are evaluated on real-world data, including
an instance from the city of Dieppe, New Brunswick, Canada. With a population
of roughly 24,000 inhabitants, 462 intersections and 1,234 road segments, the city
of Dieppe is less than one fifth the size of downtown Pittsburgh. Consequently, it
is not obvious whether their approach can be scaled and adapted to our problem
setting.
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Perrier et al. [13] address another snow plow routing problem in urban areas.
Each area is partitioned into a number of districts. Routes have to be deter-
mined for vehicles, parked at the district’s depot, such that all road segments
are serviced and all operational constraints are satisfied. Routes crossing these
boundaries must be avoided from an administrative point of view. A similar sit-
uation arises currently in Pittsburgh where plows do not currently cross district
boundaries. Although these artificial boundaries simplify the problem, they may
also have an negative impact on the solution quality so these boundaries are not
considered in this work. In addition to traditional routing constraints, Perrier
et al. [13] consider road priorities, precedence relations between roads belonging
to different priority classes, tandem plowing and limitations on the plows which
can be used to service certain roads. The authors propose a multicommodity
network flow structure to impose the connectivity of the route performed by
each vehicle. Two heuristic approaches are presented: the first constructs routes
in parallel by solving a multiple vehicle rural postman problem with side con-
straints, the second is a cluster-first route-second approach.

Gupta et al. [5] devise an iteration method to solve a snow plow routing
problem on a network topography with a single depot. Per iteration, a trip,
starting and ending at the depot and servicing a number of street segments
is calculated. Every new iteration iteration, the street segments serviced in the
previous iteration are removed from the network and a trip covering a (subset of)
the remaining edges is calculated. The procedure repeats until all street segments
have been serviced. The length of a single trip is limited by a maximum duration.
Moreover, the total amount of salt required by the edges in a trip cannot exceed
the truck’s salt capacity. Although this problem bares strong similarities to our
problem, the solution approach is not applicable because in our problem vehicles
have to manage both salt and fuel resources, and not every depot offers both
resources.

The remainder of this paper is structured as follows. First, Section 2 formally
defines the problem and introduces notation. Next, Sections 3 and 4 present a
number of exact and heuristic models including a MIP model (Section 3.1), a CP
model (Section 3.2), a constructive heuristic (Section 4.1) and a Late Acceptance
improvement heuristic (Section 4.2). Finally, Section 5 compares the performance
of these methods on real-world data, and draws some conclusions.

2 Problem Description

For a given network of streets and a fleet of snow plows, our SPRP consists of
finding a route for each vehicle, such that the routes collectively cover the entire
network. The objective is to minimize the duration of the longest route, i.e. to
minimize the makespan of the schedule. The road network is modeled as a mixed
multigraph. Vertices in the graph represent intersections in the road network,
the arcs and edges represent resp. directed and undirected road segments. For
instance, a road in between two intersections, consisting of 2 lanes in each di-
rection, translates to 4 directed arcs in the graph. We will refer to these arcs as
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Table 1: Parameters defining the snow plow optimization problem

Parameter Description

V R Set of intersections
ER Set of two-way, single lane residential streets
AR Multi-set of directed lanes and one-way streets
K Set of heterogeneous vehicles
F Fuel depots
S Salt depots
dij Time or distance it takes to get from intersection i to intersection j,

i, j ∈ V R.

fk
ij Fuel required to get from intersection i to intersection j, i, j ∈ V R

skij Salt required to get from intersection i to intersection j, i, j ∈ V R

0, n + 1 Resp. start and end depots of the trucks

F
k

Maximum fuel capacity of vehicle k ∈ K

S
k

Maximum salt capacity of vehicle k ∈ K

C Time horizon of the problem

unidirectional plow jobs. Unidirectional plow jobs are typically individual lanes
of a multi-lane street, or one-way roads. In addition to unidirectional plow jobs,
there also exist bidirectional plow jobs. Road segments in the latter category are
small enough to be covered by a single pass of a snow plow, and the plow may
come from either direction of the street. Typical examples of bidirectional plow
jobs are streets in residential neighborhoods where cars are parked on each side
of the road.

More formally, let GR(V R, AR∪ER) be a mixed multigraph where vertex set
V R represents the intersections, and ER, AR, the edges and arcs representing
resp. the uni- and bidirectional street segments. For simplicity, it is assumed that
graph GR is strongly connected.

The roads are serviced by a heterogeneous fleet of snow plows K. Servicing
a road segment (i, j) ∈ AR ∪ER takes dij time. Vehicles may traverse road seg-
ments without servicing them. This is called deadheading. Due to the relatively
low speed limits within the city, deadheading and servicing a road take equal
amounts of time, independent of the road conditions. Each vehicle occasionally

needs to refuel and resupply salt. A vehicle k ∈ K has a fuel capacity F
k

and

salt capacity S
k
, k ∈ K. There are several depots throughout the city. Let F

denote the set of fuel depots, S the set of salt depots. Some depots may supply
both salt and fuel, hence S ∩ F 6= ∅. The fuel (salt) consumption per street seg-
ment (i, j) ∈ AR ∪ER using vehicle k is denoted by fkij (skij). In addition to the
fuel and salt depots, we define 0 and n+ 1 as the origin and destination depots
where the vehicles are parked resp. before and after the trip. An overview of the
various parameters is provided in Table 1.
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3 Mathematical models

In order to construct a MIP or CP model, we first define an auxiliary graph,
using a set of unidirectional jobs J̄ and bidirectional jobs J~

~

. For every (u, v) ∈ AR
define a unidirectional plow job j = (u, v) ∈ J , which takes dj = duv time to
complete and requires resp. fkj fuel and skj salt when serviced by vehicle k ∈ K.

Similarly, for every (u, v) ∈ ER define a bidirectional plow job j ∈ J~

~

. Every
bidirectional plow job j ∈ J~

~

can be decoupled into two unidirectional plow jobs
j~, j

~

, representing the different orientations of the job. Obviously, in order to
service a bidirectional road, only j~ or j

~

needs to be executed. Finally, define set
J consisting of all jobs, i.e. J = J ∪ {j~i, j

~

i | i ∈ J~

~

}.
Let i, j ∈ J be two different jobs, representing road segments i = (u, v), j =

(s, t). Define dij as the time it takes to travel from intersection v to intersection
s, plus the time required to complete job j. The travel time can be computed
through a shortest path calculation in the routing graph GR.

For each fuel depot i ∈ F, a new ordered set of refuel jobs F i = 1, 2, . . .,
is defined. Furthermore, let F =

⋃
i∈F F

i. A vehicle can refuel at a fuel depot
i ∈ F by executing one of the fuel jobs F i = 1, 2, . . . associated with depot i.
Analogous for the salt depots i ∈ S, we define sets Si = 1, 2, . . ., S =

⋃
i∈S S

i

representing salt resupply jobs.
We can now define our auxiliary graph, a directed, weighted multigraph

G(V0,n+1, A) having vertex set V0,n+1 = {0}∪J ∪F ∪S ∪{n+ 1} and arc set A.
For shorthand notation, denote V = V0,n+1 \ {0, n+ 1}, V0 = V0,n+1 \ {n + 1},
Vn+1 = V0,n+1 \ {0}. Arc set A is defined as follows:

– there is an arc (0, j) for all j ∈ J ∪ {n+ 1}).
– there is an arc (i, n+ 1) for all i ∈ V0).
– there is an arc (i, j) for all i, j ∈ J , i 6= j.
– there are arcs (i, j), (j, i) for all i ∈ J, j ∈ F ∪ S.
– there is an arc (i, j) for all i ∈ F ∪ S, j ∈ J .

Observe that any resource-feasible vehicle schedule for SPRP can be represented
in the auxiliary graph through a simple path from vertex 0 to vertex n+ 1.

3.1 MIP model

A MIP model for SPRP can be constructed through the auxiliary graph. Let
binary variables xkij denote whether vehicle k ∈ K travels from i to j, (i, j) ∈ A,

and executes job j. Integer variables Ci record the time that job i ∈ V0,n+1

is completed. In addition, Cn+1 records the makespan of the schedule. Finally,
integer variables F ki , Ski indicate resp. the fuel and salt supply levels of vehicle
k after leaving node i. For notation purposes, let δ+(i) = {j | (i, j) ∈ A} and
δ−(i) = {j | (j, i) ∈ A}. Table 2 summarizes the various sets and parameters
used in the MIP model.
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Table 2: Sets and parameters used in the MIP model

Param Description

V J ∪ F ∪ S
V0 V ∪ {0}
Vn+1 V ∪ {n + 1}
V0,n+1 V ∪ {0, n + 1}
dkij Setup time between job i ∈ V0,n+1 and j ∈ V0,n+1, i 6= j, plus the time required

to perform job j, for vehicle k.

fk
ij Fuel required to get from i ∈ V0,n+1 to j ∈ V0,n+1, i 6= j, plus the fuel required

to perform job j, for vehicle k.

skij Salt required to get from i ∈ V0,n+1 to j ∈ V0,n+1, i 6= j, plus the salt required
to perform job j, for vehicle k.

The model, solvable using a traditional branch-bound-cut approach, is as
follows:

P : min C
n+1

(1)

s.t.
∑

j∈δ+(0)

x
k
0j =

∑
i∈δ−(n+1)

x
k
i,n+1 = 1 ∀k ∈ K (2)

∑
j∈δ−(i)

x
k
ji =

∑
j∈δ+(i)

x
k
ij ∀i ∈ V (3)

∑
k∈K

∑
j∈δ+(i)

x
k
ij = 1 ∀i ∈ J (4)

∑
k∈K

(
∑

j∈δ+(u)

x
k
uj +

∑
j∈δ+(v)

x
k
vj) = 1 ∀i ∈

↔
J , u = j

~

i, v = j~i, (5)

∑
k∈K

∑
j∈δ+(i)

x
k
ij ≤ 1 ∀i ∈ F (6)

∑
k∈K

∑
j∈δ+(u+1)

x
k
u+1,j ≤

∑
k∈K

∑
j∈δ+(u)

x
k
u,j ∀i ∈ F, u ∈ {1, . . . , |F i| − 1} (7)

∑
k∈K

∑
j∈δ+(i)

x
k
ij ≤ 1 ∀i ∈ S (8)

∑
k∈K

∑
j∈δ+(u+1)

x
k
u+1,j ≤

∑
k∈K

∑
j∈δ+(u)

x
k
u,j ∀i ∈ S, u ∈ {1, . . . , |Si| − 1} (9)

C
0 −M(1− xk0j) ≤ C

j − dk0j ∀(0, j) ∈ A, k ∈ K (10)

C
i −M(1− xkij) ≤ C

j − dkij ∀(i, j) ∈ A, i 6= 0, k ∈ K (11)

F
k
j ≤ F

k
i − f

k
ij + F

k
(1− xkij) ∀i ∈ J ∪ {0}, j ∈ J ∪ {n+ 1}, k ∈ K (12)

F
k
j ≤ F

k − fkijx
k
ij ∀i ∈ F, j ∈ J ∪ {n+ 1}, k ∈ K (13)

S
k
j ≤ S

k
i − s

k
ij + S

k
(1− xkij) ∀i ∈ J ∪ {0}, j ∈ J ∪ {n+ 1}, k ∈ K (14)

S
k
j ≤ S

k − skijx
k
ij ∀i ∈ S, j ∈ J ∪ {n+ 1}, k ∈ K (15)

x
k
ij ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K (16)

0 ≤ Ci ≤ C ∀i ∈ V ∪ {0, n+ 1} (17)

0 ≤ Fki ≤ F
k ∀i ∈ V ∪ {0, n+ 1} (18)

0 ≤ Ski ≤ S
k ∀i ∈ V ∪ {0, n+ 1} (19)
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Constraints (2) define the starting and ending of the tour: every vehicle
must start and end at the depot. Constraints (3) enforce flow preservation. Each
unidirectional plow job must be performed exactly once ((4), (5)). Similarly, each
bidirectional plow job must be executed, but only in one direction (5). Optional
refueling/resupply jobs may be performed at most once (6), (8). Constraint (7)
orders the refueling jobs: a refueling job u ∈ F i must be performed before v ∈ F i,
v > u, can be performed. This constraint reduces the amount of symmetry
in the model. Constraint (9) is identical to Constraint (7) in the context of
salt resupply jobs. Constraint (10)-(11) relate the completion time variables to
the nodes, while taking the setup times and job durations into consideration.
Similarly Constraints (12)-(13), (14)-(15) manage resp. the fuel and salt levels
of the vehicles at each node. A vehicle leaves a refueling/resupply node with a
full tank/salt supply.

3.2 CP Model

To model SPRP efficiently through CP, we will rely on interval variables [6,
7]. An interval variable represents an interval during which an activity can be
performed. For notation purposes, an interval variable will be denoted as a tuple
α = {r, d, t, [opt]}, where r denotes the earliest start time of the interval, d
the latest finish time, t the minimum duration of the interval, and the optional
parameter [opt] indicates whether scheduling of the interval is optional. Optional
intervals can be either present or absent in the final solution. An absent interval
variable is ignored by any constraint or expression it is part of. The CP model
presented in Algorithm 1 relies on three types of interval variables:

1. Job variables ji for all i ∈ V having duration di.
2. Assignment variables aki for all k ∈ K, i ∈ V0,n+1

3. Unidirectional plow job variables j~i, j

~

i for all i ∈ J~

~

to distinguish the two
possible orientations of bidirectional plow jobs.

A summary of the constraints used in Algorithm 1 is given in Table 3.
The objective of the model, minimize the makespan, is modeled through Con-

straints 5, 9. Constraint 6 states that every bidirectional plowing job has to be
performed in only one direction and Constraint 7 ensures that every job is as-
signed to a single vehicle. Next, a number of constraints per vehicle are specified.
Sequencing of the jobs on each vehicle is performed through Constraints 10-12.
Resources are managed through a number of cumulative resource constraints
(Constraints 13-16). Vehicles start with a full load of salt, performing a plow
job i consumes ski salt, and visiting a salt depot replenishes the salt resource
(Constraints 13). For each truck, the salt level needs to remain between 0 and

S
k
, the maximum salt capacity of the truck (Constraints 14). Similar constraints

(15-16) are imposed for the fuel resource. In addition, Constraint 15 also takes
the fuel consumption related to traveling in between jobs (deadheading) into
account.
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Table 3: Description of CP constraints. All of these constraints are available in
IBM ILOG CP Optimizer by default.

Constraint Description

presenceOf(α) Returns 1 if interval α is present, 0 otherwise.
noOverlapSeq(B, dist) Sequences the intervals in the set B. Ensures that the intervals in B

do not overlap. Furthermore, the two-dimensional distance matrix dist
specifies for each pair of intervals a sequence dependent setup time.
Absent intervals are ignored. Returns a sequence of the intervals in B.

first(α, seq) If interval α is present in sequence seq, it must be scheduled before
any other interval in the sequence.

last(α, seq) If interval α is present in sequence seq, it must scheduled after all
other intervals in the sequence.

succ(α, seq) Returns the interval immediately succeeding the interval α in the se-
quence seq.

pred(α, seq) Returns the interval immediately preceding the interval α in the se-
quence seq.

startOf(α) Returns an expression representing the start time of interval α.
endOf(α) Returns an expression representing the end time of interval α.

stepAtStart(α, h−, h+) Function in time t which returns a value between h− and h+, start-
ing from time t = startOf(α). The function returns 0 when t is

absent, or before the start of α. When h− = h+, the shorthand
stepAtStart(α, h) is used instead.

alternative(α,B) If interval α is present, then exactly one of the intervals in set B is
present. The start and end of interval α coincides with the start and
end of the selected interval from set B.

Finally, lines 17-20 specify a number of redundant constraints which are
meant to improve the performance of the model. Constraints 17, 18 reduce the
amount of symmetry in the model by imposing an order on the refuel and resup-
ply salt jobs. Constraint 20 links the start and end times of consecutive intervals.

A note on implementation The CP model presented in Algorithm 1 is imple-
mented in IBM ILOG CP Optimizer 12.6.2. To implement this model, a minor
modification is required, as CP Optimizer has no direct way to implement the
function stepAtStart(aki , fki,succ[ji,seqk]) used in Constraint 15. To resolve this

issue, a new variable fuelki is introduced into the model which records the fuel
level of vehicle k after performing job i. Constraints 15-16 may now be replaced
by the equivalent constraints from Algorithm 2.

4 Heuristic models

4.1 Constructive Heuristic

The constructive heuristic uses a greedy approach to construct a feasible initial
schedule. The heuristic works in two stages: stage one sequences all plow jobs
while ignoring resource feasibility. Stage two makes the schedule feasible in terms
of resources. The heuristic starts off with an empty schedule for every vehicle,
that is, each vehicle has a schedule: [0, n + 1]. The heuristic iterates over all
unscheduled plow jobs and schedules them one-by-one. To schedule a particular
job, the heuristic evaluates for every vehicle all possible places to insert the job
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Algorithm 1: CP model.

Variable definitions:

1 ji =

{
{0,∞, di} if i ∈ J ∪ J~

~

{0,∞, di, opt} if i ∈ F ∪ S

2 ak
i =


{0, 0, 0} if i = 0

{0,∞, 0} if i = n + 1

{0,∞, di} otherwise

3 j~i, j

~

i = {0,∞, di, opt} ∀i ∈ J~

~

4 obj ∈ {0,∞}

Objective:

5 Min obj

6 alternative(ji, {j

~

i, j~i}) ∀i ∈ J~

~

7 alternative(ji,
⋃

k∈K ak
i ) ∀i ∈ J ∪ F ∪ S

8 forall k ∈ K

Objective Constraints:

9 obj ≥ endOf(ak
n+1)

Sequencing Constraints:

10 seqk = noOverlapSeq(
⋃

i∈J∪F∪S ak
i , [dij − dj | (i, j) ∈ A])

11 first(ak
0 , seqk)

12 last(ak
n+1, seqk)

Salt Constraints:

13 saltCumulFunck =stepAtStart(ak
0 , S

k
)−

∑
i∈JstepAtStart(ak

i , ski )

+
∑

i∈SstepAtStart(ak
i , 0, S

k
)

14 0 ≤ saltCumulFunck ≤ S
k

Fuel Constraints:

15 fuelCumulFunck =stepAtStart(ak
0 , F

k
)+

∑
i∈F stepAtStart(ak

i , 0, F
k
)

−
∑

i∈J∪F∪S∪{0}stepAtStart(ak
i , fk

i,succ[ji,seqk]
)

16 0 ≤ fuelCumulFunck ≤ F
k

Performance Constraints:

17 presenceOf(jv) =⇒ presenceOf(ju) ∀i ∈ F, u ∈ {1, . . . , |F i| − 1}, v = u + 1

18 presenceOf(jv) =⇒ presenceOf(ju) ∀i ∈ S, u ∈ {1, . . . , |Si| − 1}, v = u + 1
19 forall k ∈ K

20 startOf(ji)=endOf(pred(ji,seq
k))+tpred[ji,seqk],ji

∀i ∈ J ∪ F ∪ S ∪ {n + 1}

into its schedule. The impact of the job insertion onto the completion time of
the vehicle’s schedule is computed by factoring in the added travel time and job
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Algorithm 2: CP model extension

1 forall k ∈ K

2 fuelkj ∈

{
[F

k
, F

k
] if j = ak

0

[0, F
k
] if j = ak

i , i ∈ J ∪ F ∪ S ∪ {n + 1}
3 fuelksucc[j,seqk] ={

fuelkj − fk
j,succ[j,seqk] − fk

succ[j,seqk] if j = ak
0

F
k − fk

j,succ[j,seqk] − fk
succ[j,seqk] if j = ak

i , i ∈ J ∪ F ∪ S ∪ {0}

duration. In addition, a lower bound is calculated on the number of refuel and
resupply trips the vehicle will have to make based on the amount of salt (fuel)
the vehicle will need to complete its schedule. The number of refuel/resupply
operations is then multiplied with the duration of a refuel/resupply job, thereby
obtaining a lower bound on the time required to refuel and resupply. The actual
driving time to a refuel or resupply depot is neglected in these calculations.
Finally, recall that the bidirectional plow jobs can be performed from either
direction. While evaluating a candidate position to insert the job, the heuristic
chooses the best orientation of the plow job in respect to the jobs immediately
preceding/succeeding the insert position.

After the plow jobs have been scheduled, phase two of the constructive heuris-
tic will make the schedule resource feasible by inserting refuel and resupply jobs.
For a given vehicle k ∈ K, the resupply salt jobs are inserted as follows. Let the
plow jobs assigned to vehicle k in phase 1 be indexed from 0, . . . , n, and let j be

the job for which
∑j
i=0 s

k
i > S

k

i . That is, after j − 1 jobs, the vehicle runs out
of salt and as such, cannot complete job j. In such cases, the heuristic schedules
a resupply job between jobs j − 1 and j, thereby choosing the nearest resupply
depot. This procedure is repeated until the schedule is feasible in terms of salt.
Next, refuel jobs are inserted in a similar fashion. However, before inserting a
new fuel job between jobs j − 1 and j, an extra check has to be performed to
verify that after job j − 1 the vehicle has sufficient fuel to reach the nearest fuel
depot. If not, we iterate backwards through the schedule, thereby searching for
the nearest feasible position to insert a refuel job. A visual representation of the
heuristic is given in Figure 1.

4.2 Late Acceptance improvement heuristic

After executing the first phase of the constructive heuristic, a Late Acceptance
(LA) heuristic [1] is used to improve the quality of the solution before phase 2
is initiated. To generate new solutions, the heuristic utilizes two simple search
neighborhoods:

1. bestSwapMove: randomly choose a vehicle k1 ∈ K, a job j1 from the schedule
of vehicle k1 and a target vehicle k2. For every possible plow job j2 scheduled
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(a) Phase one: insert the plow jobs one-
by-one, thereby selecting a insert posi-
tion and potentially an orientation for
the bidirectional jobs.

? ?

F
u

e
l

Time

(b) Phase two: making the schedule
resource feasible by inserting resource
jobs

Fig. 1: Constructive Heuristic

on vehicle k2, and for every possible orientation of jobs j1, j2, evaluate the
impact of swapping jobs j1 and j2.

2. bestRemoveInsertMove: randomly choose a vehicle k1 ∈ K, a job j1 from
the schedule of vehicle k1 and a target vehicle k2. For every possible insert
position of the schedule of vehicle k2 and for every possible orientation of
job j1, evaluate the impact of removing job j1 from the schedule of k1 and
inserting it into k2.

To move from one solution to a neighboring solution, we randomly select one
of the two neighborhoods and evaluate the best candidate solution produced
by this neighborhood. Following a standard LA approach, a move is accepted
if its cost is better (or equal) to the cost of a solution L iterations ago, where
L is a user-controlled parameter of the heuristic. The heuristic is terminated
if (a) a maximum time limit is reached or (b) the incumbent solution has not
been improved during 10000 consecutive iterations, where 10000 is determined
empirically. Notice that when L = 1, the heuristic behaves as a greedy heuristic,
only accepting improving moves. Selecting a larger value for L generally decreases
the convergence rate of the heuristic, but reduces the chance of getting stuck in
a local optimum.

5 Computation Experiments

5.1 Setup

Experiments are conducted on real world data, in collaboration with the city
of Pittsburgh. Routing data is obtained through Open Street Maps (OSM). To
extract data from a geographical area, including information about the roads,
lanes, shapes, speed limits, traffic restrictions, etc, rectangular shaped snapshots
are taken from an area on the map. In this experimental setup, we captured 21
different regions of Pittsburgh, varying from residential areas, downtown, rural
areas, and business districts. Travel times between two neighboring intersections
are computed by multiplying the length of the road with the maximum allowed
driving speed.
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Pittsburgh has 9 depots at different locations, 8 of which have salt, 5 of
which have fuel. For experimental purposes, we use a small heterogeneous fleet
of five vehicles to service each area. The smallest pickup-truck in our fleet has
a capacity of 2 tons of salt and 26 gallons of fuel, whereas the largest plow has
a capacity of 20 tons of salt and 75 gallons of fuel. Currently, the city utilizes
about 1 ton of salt per mile, rendering salt the most constraining resource.

5.2 Results

Experiments have been conducted on 22 instances, which are summarized in
Table 4. For each instance, the total number of plow jobs, percentage of bidirec-
tional jobs, and total plowing distance (miles) is given. The MIP and CP models
have been implemented using Cplex, resp. CP Optimizer 12.6.2. Experiments
were run using default parameters and extended inference on the CP sequence
variables.

Figure 2 compares the performance of CP and the LA Heuristic. Since each of
these methods is warm-started with the solution obtained from the Constructive
heuristic, we only show how much either of these approaches could improve the
constructive solution. Runtimes for the CP approach were capped at resp. 10
minutes and 1 hour. Similarly, the runtime of the LA Heuristic was capped at 10
minutes, or 10000 non-improving iterations, whichever came first. To measure
the impact of the randomization in the LA Heuristic, 8 runs of the heuristic
have been performed for each instance. The results of these runs are visualized
by boxplots in Figure 2.

The constructive heuristic produces an initial solution of reasonable quality
in very little time, usually in the order of milliseconds for instances with less
than 1000 jobs. For the smaller instances, up to 1000 jobs, the CP approach is
capable of improving upon the constructive heuristic. For the larger instances, we
noticed that the CP model ran out of memory and had to fall back on the much
slower swap memory, thereby slowing down the CP approach tremendously. The
largest instances, Residential Pittsburgh and inst18, could not be solved through
CP on our machine due to insufficient memory. The LA approach produces good
results in relatively little time. As can be observed from the largest instances,
and most notably the Residential instance, the LA approach scales well. An ad-
ditional advantage of this method is that the convergence rate can be adjusted,
depending on the availability of computation time. Occasionally, as for instance
inst12, the CP approach significantly outperforms the LA approach. The LA
approach tracks for each vehicle how often it needs to resupply fuel and salt
based on its resource consumption, and multiplies this with the average distance
to a resupply depot to approximate the time spent on resupplying and refueling.
This approximates becomes inaccurate when the travel time to a depot varies
substantially, depending on the location of the vehicle. Calculating a more accu-
rate approximation on the travel time to a depot, for instance by considering the
position of the vehicle at the time it needs to resupply, would help mitigating
this issue.
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Table 4: Instance data: number of jobs, percentage of jobs that are bidirectional,
total distance to plow (mi).

inst jobs bidir dist inst jobs bidir dist inst jobs bidir dist

kaminst 45 38 3.4 inst5 631 74 55.2 inst13 529 59 47.3
downtown 724 38 38.1 inst6 632 68 52.9 inst14 498 64 37.2
mntWash. 577 81 52.1 inst7 796 58 50.9 inst15 531 63 36.9
Residential 4073 64 315.5 inst8 500 31 42.8 inst16 498 92 47.5
inst1 233 61 27 inst9 481 38 38.4 inst17 499 75 42.6
inst2 346 93 38.6 inst10 574 64 41.5 inst18 1324 24 80.5
inst3 451 53 32.1 inst11 547 54 42.2
inst4 287 87 22.9 inst12 339 91 30.7

In addition to experiments with the CP model, a number of experiments were
conducted with the MIP Model. For all but the smallest instance in our data set
(Kaminst), the MIP model did not fit into our computer memory (16GB+30GB
swap). The latter is mainly attributed to the vast number of variables in each
model, namely |K||V |2 flow variables, and 2|K||V | resource variables. For the
Kaminst instance, after a 1 hour runtime, the MIP model (warm-started by the
constructive heuristic) did not manage to improve upon its initial solution and
had an optimality gap of 91.98%. The large optimality gap is explained by the
presence of the big-M constraints, where the ratio between M and the length of
the jobs dkij is very large.

Figure 3 shows more details for the 4 named instances in Table 4, and the
spreading of the depots (blue squares). Each of these 4 instances represents a
different geographical area in Pittsburgh, marked on the map in Figure 5. From
left to right: Mnt Washington, Downtown, Residential, Kaminst. The x-axis of
the graphs in Figure Figure 3 shows the makespan of the schedule, converted
to a HH::MM::SS format. At time 0, 0% of the area has been serviced (y-axis),
whereas, by the end of the schedule, 100% of the area has been serviced. Some
of the graphs, e.g. the Kamin instance, have a flat section at the beginning and
end of the graph. This is where the vehicles travel from the nearest depot to the
service area, and eventually back to the depot. The graphs have been generated
using the same settings as before, unless mentioned otherwise.

Each graph shows the best CP solution, when one could be found, a solu-
tion from the constructive heuristic and LA improvement heuristic. For the LA
heuristic, the graphs plot the average solution, as well as the diversity of solutions
encountered. The MIP approach was unable to improve upon its warm-start so-
lution, and is therefore not included in any of the graphs. As can be observed
from the largest instance, the LA heuristic finds significant improvements over
the constructive heuristic. Furthermore, when focusing on the robustness of the
heuristic, the LA solutions show only a moderate variance in solution quality
over multiple runs; the longer the heuristic runs, the smaller the variance.

Figure 4 presents a progress-over-time graph for the LA Heuristic for various
list lengths L (see Section 4.2). Choosing L small results in an aggressive con-
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Fig. 2: Improvement over Constructive Heuristic: LA heuristic (8 iterations, 10
min runtime), CP (10 min resp. 1h runtime). Each of these methods is warm-
started by the constructive solution.

vergence, whereas higher values L allow a wider exploration of the search space
at the cost of a slower convergence.

Finally, Figure 6 shows for the Residential instance the amount of plowing
versus deadheading for every vehicle. The completion time of a vehicle schedule
is obtained by summing these two values. As can be observed, the makespan of
the schedule is dominated by the the completion time of the first vehicle. The
capacity of this vehicle (1 ton salt) is significantly smaller than the capacity of
the largest vehicle (20 ton). For such a large instance, the number of trips to
a salt depot becomes significantly large, especially for smaller vehicles. Having
a better approximation of the time required to travel to a depot would resolve
this issue.

6 Conclusion

The constructive heuristic is capable of finding initial solutions of reasonable
quality fast. The CP approach finds good solutions to instances up to a 1000
jobs, but does not scale well beyond that. The LA heuristic scales considerably
better. A logical direction for further research would be to combine the LA
heuristic and the CP approach in a Large Neighborhood Search. First, the LA
heuristic is used to find a good global solution, after which the CP approach can
be used to locally optimize small area’s of the map in an iterative procedure.
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Fig. 3: Service over time

Another research direction for this project involves online adaptations of the
schedule. Unexpected events such as a blocked road, traffic congestion, emer-
gency request etc, could necessitate modifications to the schedule. Again, the
CP approach may be of use to ‘repair’ a small portion of the schedule, while
leaving the remainder of the schedule intact.

Finally, from a model perspective, a number of additional features may be
incorporated, including:

– Road priorities. The city assigns priorities to roads. In general, roads with
high priorities should be serviced as fast as possible. This can be achieved by
replacing the makespan objective by a weighted objective which minimizes
the completion time per priority class.

– U-turns. Due to the size of the plows, having a large number of U-turns
in a schedule is undesirable. As such, U-turns should be forbidden (hard-
constrained) or penalized in the objective function.

– Road limitations. Some roads are too small or too steep to be plowed by
the largest (and heaviest) vehicles. Similarly, in rural areas, the weight of
large plows may exceed weight limitations on certain bridges. Consequently,
a routing graph per vehicle category will be necessary. In addition, some
plow jobs cannot be assigned to some of the heavier vehicles.

Road priorities are easily accounted for in the models presented, by assigning
a priority class to each job and by using a weighted objective function which
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keeps track of the completion time of each priority class. Similarly, U-Turns can
be penalized by increasing the setup time between a pair of jobs which would
require a u-turn if one is performed immediately after the other. In case of a
forbidden U-Turn, the setup-time will be significantly larger, representing the
detour the truck has to make to get back, e.g. the time it takes to drive around
the block.
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with conditional time-intervals. part ii: An algebraical model for resources.
In FLAIRS Conference, 2009.

8. Kwan Mei-Ko. Graphic programming using odd or even points. Chinese
Math, 1:273–277, 1962.

9. Nathalie Perrier, Andr Langevin, and James F. Campbell. A survey of
models and algorithms for winter road maintenance. part i: system design
for spreading and plowing. Computers & Operations Research, 33:209–238,
2006.

10. Nathalie Perrier, Andr Langevin, and James F. Campbell. A survey of
models and algorithms for winter road maintenance. part ii: system design
for snow disposal. Computers & Operations Research, 33(1):239 – 262, 2006.

11. Nathalie Perrier, Andr Langevin, and James F. Campbell. A survey of
models and algorithms for winter road maintenance. part iii: Vehicle routing
and depot location for spreading. Computers & Operations Research, 34(1):
211 – 257, 2007.

12. Nathalie Perrier, Andr Langevin, and James F. Campbell. A survey of
models and algorithms for winter road maintenance. part iv: Vehicle routing
and fleet sizing for plowing and snow disposal. Computers & Operations
Research, 34(1):258 – 294, 2007.

13. Nathalie Perrier, Andr Langevin, and Ciro-Alberto Amaya. Vehicle routing
for urban snow plowing operations. Transportation Science, 42(1):44–56,
2008. doi: 10.1287/trsc.1070.0195.

14. Jonathan Rubin, Per E. Garder, Charles E. Morris, Kenneth L. Nichols,
John M. Peckenham, Peggy McKee, Adam Stern, and T. Olaf John-
son. Maine winter roads: Salt, safety, environment and cost. Techni-
cal report, Margaret Chase Smith Policy Center, University of Maine,
2010. URL http://umaine.edu/mcspolicycenter/files/2010/02/Winter-
Road-Maint-Final.pdf.

15. M. Anglica Salazar-Aguilar, Andr Langevin, and Gilbert Laporte. Synchro-
nized arc routing for snow plowing operations. Computers & Operations
Research, 39(7):1432–1440, 2012.

16. Taimur Usman, Liping Fu, and Luis F. Miranda-Moreno. Quantifying safety
benefit of winter road maintenance: Accident frequency modeling. Acci-

17



dent Analysis & Prevention, 42(6):1878 – 1887, 2010. ISSN 0001-4575. doi:
http://dx.doi.org/10.1016/j.aap.2010.05.008.

18


