Starred problems are for students enrolled in 80-713

1. (a) Fix a small category \mathcal{C}. Show that taking the category of elements of presheaves, together with the projection functor, determines a functor

$$\int_{\mathcal{C}} : \hat{\mathcal{C}} \rightarrow \text{Cat}/C,$$

taking $P \in \hat{\mathcal{C}}$ to $\pi : \int_{\mathcal{C}} P \rightarrow C$.

(b) Show that if P is a poset and $A : P^{\mathrm{op}} \rightarrow \text{Sets}$ a presheaf on P, then the category of elements $\int_{P} A$ is also a poset and the projection $\pi : \int_{P} A \rightarrow P$ is a monotone map.

2. The \mathcal{L} be a theory in the λ-calculus with $(1, \times, \rightarrow)$. For any type symbols σ and τ, let

$$[\sigma \rightarrow \tau] := \{M : \sigma \rightarrow \tau \mid M \text{ closed}\}$$

be the set of closed terms of type $\sigma \rightarrow \tau$. Suppose that for each type symbol ρ, there is a function,

$$f_{\rho} : [\rho \rightarrow \sigma] \rightarrow [\rho \rightarrow \tau]$$

with the following properties:

- for any closed terms $M, N : \rho \rightarrow \sigma$, if $\vdash_{\mathcal{L}} M = N$ (\mathcal{L}-provably equivalent), then $f_{\rho} M = f_{\rho} N$,
- for any closed terms $M : \mu \rightarrow \nu$ and $N : \nu \rightarrow \sigma$,

$$\vdash_{\mathcal{L}} f_{\mu}(\lambda x : \mu, N (M x)) = \lambda x : \mu, (f_{\nu}(N))(M x).$$

Use the Yoneda embedding of the cartesian closed category of types $\mathbf{C(\mathcal{L})}$ of \mathcal{L} to show that there is a term $F : \sigma \rightarrow \tau$ such that f_{ρ} is induced by composition with F, in the sense that, for every closed term $R : \rho \rightarrow \sigma$,

$$\vdash_{\mathcal{L}} f_{\rho}(R) = \lambda x : \rho, F(R x).$$

Show that, moreover, F is unique up to \mathcal{L}-provable equivalence.
3. Show that every slice category \textbf{Sets}/X is cartesian closed, by proving it equivalent to the presheaf topos \textbf{Sets}^X. Calculate the exponential of two objects \(A \rightarrow X \) and \(B \rightarrow X \) by transferring across the equivalence.

4. (*) Explicitly determine the graph that is the subobject classifier \(\Omega \) in the topos of graphs (i.e., what are its edges and vertices). How many points \(1 \rightarrow \Omega \) does it have?