Randomness in Computing: Applying Random Numbers
Announcements

- PS9 Due today
- PA due Sunday 11:59
- PS10 Due Monday Morning
Yesterday:

- Randomness is hard to define
- Randomness is harder to achieve
- Define tests for acceptable randomness
- Often Pseudo Random is random enough:
Linear Congruential Generators (LCGs)

We can generate a series of numbers, all different, that looks random even though it isn’t

If we choose appropriate constants for our LCG, then we can generate a very long sequence before numbers begin to repeat. The length of the sequence is its period

To generate random numbers in Python we can use randint(x,y), which generates a random integer between x and y.
Today: Monte Carlo methods

Idea: run many experiments with random inputs to approximate an answer to a question.

We might be unable to answer the question any other way, or an analytical (logical, mathematical, exact) solution might be too expensive.
Some Applications

The Monte Carlo Integral

Monte Carlo Simulation

Food Intake x Contaminant Level = Exposure

US Food and Drug Administration
Monte Carlo methods

- The hungry dice player
- The clueless student*
- The umbrella quandary*
- A survey of applications

* Source: *Digital Dice* by Paul J. Nahin
What is a Monte Carlo method?

- An algorithm that uses a source of (pseudo) **random numbers**

- Repeats an “experiment” many times and calculates a statistic, often an average

- **Estimates** a value (often a probability)

- ... usually a value that is **hard or impossible** to calculate analytically
A simple Monte Carlo method

(no computer needed!)
We can **analyze** throwing a pair of dice and get the following probabilities for the sum of the two dice:

Total number of states: 36

image source:
[Hyperphysics](http://hyperphysics.phy-astr.gsu.edu/hbase/math/dice.html) via [Goldsim](http://www.goldsim.com/Web/Introduction/Probabilistic/MonteCarlo/)
Simple example: dice statistics

- ... or we can throw a pair of dice 100 times and record what happens,
- or 10000 times for a more accurate estimate.

image source: http://www.goldsim.com/Web/Introduction/Probabilistic/MonteCarlo/
The Hungry Dice Player

estimating the expected value of a simple game
def dice_game():
 strikes = 0
 winnings = 0
 while strikes < 3:
 # 3 strikes and you’re out
 # get 2 random numbers (1..6)
 die1 = roll()
 die2 = roll()
 # strike or win?
 if die1 == die2:
 strikes = strikes + 1
 else:
 winnings = winnings + die1 + die2
 return winnings # in cents
The Hungry Dice Player

- In our simple game of dice: *Can I expect to make enough money playing it to buy lunch?*

- That is, what is the expected (average) value won in the game?

- We could figure it out by applying laws of probability

 ...or use a Monte Carlo method
Monte Carlo method for the hungry dice player

def average_winnings(samples):
 # samples is the number of experiments to run
 total = 0
 for n in range(samples):
 total = total + dice_game()
 return total / samples

>>> [round(average_winnings(10),2) for i in range(5)]
[85.8, 94.8, 120.7, 123.3, 90.0]

>>> [round(average_winnings(100),2) for i in range(5)]
[105.97, 102.95, 107.74, 134.4, 114.54]

>>> [round(average_winnings(1000),2) for i in range(5)]
[106.84, 107.11, 105.59, 104.28, 106.41]

>>> [round(average_winnings(10000),2) for i in range(5)]
[104.94, 105.71, 105.81, 105.74, 104.62]
The Clueless Student

a famous matching problem
The Clueless Student

A clueless student faced a pop quiz:

- a list of the 24 Presidents of the 19th century and
- another list of their terms in office, but scrambled.

The object was to match the President with the term.

If the student guesses a random one-to-one matching,

how many matches will be right out of the 24, on average?
The quiz

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Monroe</td>
<td>a. 1801-1809</td>
</tr>
<tr>
<td>2. Jackson</td>
<td>b. 1869-1877</td>
</tr>
<tr>
<td>3. Arthur</td>
<td>c. 1885-1889</td>
</tr>
<tr>
<td>4. Madison</td>
<td>d. 1850-1853</td>
</tr>
<tr>
<td>5. Cleveland</td>
<td>e. 1889-1893</td>
</tr>
<tr>
<td>6. Jefferson</td>
<td>f. 1845-1849</td>
</tr>
<tr>
<td>7. Lincoln</td>
<td>g. 1837-1841</td>
</tr>
<tr>
<td>8. Van Buren</td>
<td>h. 1853-1857</td>
</tr>
<tr>
<td>9. Adams</td>
<td>i. 1809-1817</td>
</tr>
<tr>
<td>etc.</td>
<td>etc.</td>
</tr>
</tbody>
</table>
Solving the problem

- The problem (1710, Pierre de Montmort) was important in development of probability theory

- The mathematical analysis is, um, interesting

 (see http://www.math.uah.edu/stat/urn/Matching.html)

- But we’re not that smart. Let’s just simulate the situation, randomly selecting guesses and checking to see how many correct match-ups they contain.
Representing a guess

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1801-09</td>
<td>1809-17</td>
<td>1817-25</td>
<td>1825-29</td>
<td>1829-37</td>
<td>1837-41</td>
<td>1841-41</td>
<td>1841-45</td>
<td>1845-49</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Indexes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Jefferson</td>
<td>Madison</td>
<td>Monroe</td>
<td>Adams</td>
<td>Jackson</td>
<td>Van Buren</td>
<td>Harrison</td>
<td>Tyler</td>
<td>Polk</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

values

indexes
Representing a guess

- **What is a guess?**

 E.g., [0, 1, 2, 3, 4, 5, ..., 23] represents a completely correct guess
 [1, 0, 2, 3, 4, 5, ..., 23] represents a guess that is correct
 except that it gets the first two presidents wrong.

- A guess is just a **permutation** (shuffling) of the numbers 0 ... 23.

- Let’s define a **match** in a guess to be any number \(k \) that occurs in position \(k \). (E.g., 0 in position 0, 10 in position 10)

- With this representation, our question becomes:
 if I pick a random shuffling of the numbers 0...23, how many (on average) matches occur?
Randomly permuting a list

To get a random shuffling of the numbers 0 to 23 we use the \texttt{shuffle} function from module \texttt{random}:

\begin{verbatim}
>>> nums = list(range(10))
>>> nums
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> shuffle(nums)
>>> nums
[4, 5, 3, 2, 0, 9, 6, 1, 8, 7]

>>> shuffle(nums)
>>> nums
[3, 6, 1, 4, 5, 8, 2, 9, 0, 7]
\end{verbatim}
Algorithm

- **Input:**
 - *pairs* (number of things to be matched),
 - *samples* (number of experiments to run)

- **Output:** average number of correct matches per sample

- **Method:**
 1. Set `num_correct = 0`
 2. Do the following *samples* times:
 a. Set `matching` to a random permutation of the numbers 0…*pairs*-1
 b. For *k* in 0…*pairs*, if `matching[k] = k` add one to `num_correct`
 3. The result is `num_correct / samples`
from random import shuffle

pairs is the number of pairs to be guessed
samples is the number of experiments to run

def student(pairs, samples):
 num_correct = 0
 matching = list(range(pairs))
 for i in range(samples):
 # experiment samples times
 shuffle(matching) # generate a guess
 # count matches
 for k in range(pairs):
 if matching[k] == k:
 num_correct = num_correct + 1
 return num_correct / samples # average correct
The mathematical analysis says the expected value is exactly 1 (no matter how many matches are to be guessed).

```python
>>> student(24, 10000)
0.9924
>>> student(24, 10000)
1.0071
>>> student(10, 10000)
1.0224
>>> student(10, 10000)
0.9999
>>> student(5, 10000)
1.0039
>>> student(5, 10000)
0.9826
```
More samples – smaller error

```python
>>> 1 - student(5, 1000)
0.03600000000000003

>>> 1 - student(5, 10000)
0.005900000000000016

>>> 1 - student(5, 100000)
0.0014100000000000223

>>> 1 - student(5, 1000000)
-0.0006679999999998909
```
The Umbrella Quandary

simulating a system
Mr. X walks between home and work every day
He likes to keep an umbrella at each location
But he always forgets to carry one if it’s not raining

If the probability of rain is p, how many trips can he expect to make before he gets caught in the rain because all his umbrellas are at the other location?

(Assuming that if it’s not raining when he starts a trip, it doesn’t rain during the trip.)
The trivial cases

- What if it always rains?

- What if it never rains (ok, that was too easy)

- So we only need to think about a probability of rain greater than zero and less than one
Solving the umbrella quandary

- Analysis of the problem can be done with Markov chains

- But we’re just humble programmers; we’ll simulate and measure
Simulating an event with a given probability

- In contrast to the clueless student problem we’re given a probability of an event

- We want to simulate that the event rain happens, with the given probability p (where p is a number between 0 and 1)

Technique: Get a random float between 0 and 1;

If it’s less than p simulate that the event happened

```python
if random() < p:
    raining = True
```
Representing home, work, and umbrellas

- Use 0 for home,
 1 for work

- A list for the **number of umbrellas** at each location (2 locations)

How should we initialize?

```python
location = 0  # start at home
umbrellas = [1, 1]
```

Recall: he likes to keep an umbrella at each location
Figuring out when to stop

- We want to count the number of trips before Mr. X gets wet, so we want to keep simulating trips until he does.

- To keep track:

  ```python
  wet = False
  trips = 0
  while (not wet) :
      ...
  ```
Changing locations

Mr. X walks between home (0) and work (1)

- To keep track of where he is:
 \[
 \text{location} = 0 \quad \# \text{ start at home}
 \]

- To move to the other location:
 \[
 \text{location} = 1 - \text{location}
 \]

- To find how many umbrellas at current location:
 \[
 \text{umbrellas}[\text{location}]
 \]
from random import random

def umbrella(p):
 # p is the probability of rain
 wet = False
 trips = 0
 location = 0
 umbrellas = [1, 1] # index 0 stands for home, 1 stands for work
 while (not wet):
 if random() < p: # it's raining
 if umbrellas[location] == 0: # no umbrella
 wet = True
 else:
 trips = trips + 1
 umbrellas[location] -= 1 # take an umbrella
 location = 1 - location # switch locations
 umbrellas[location] += 1 # put umbrella
 else: # it's not raining, leave umbrellas where they are
 trips = trips + 1
 location = 1 - location
 return trips
Running simulations

>>> umbrella(.5)
22
>>> umbrella(.5)
4
>>> umbrella(.5)
13
>>> umbrella(.5)
2
>>> umbrella(.5)
2
Great, but we want averages

- One experiment doesn’t tell us much—we want to know, on average, if the probability of rain is p, how many trips can Mr. X make without getting wet?

- We add code to run `umbrella(p)` 10,000 times for different probabilities of rain, from $p = .01$ to .99 in increments of .01

- We accumulate the results in a list that will show us how the average number of trips is related to the probability of rain.
Running the experiments

10,000 experiments for each probability .01 to .99
Accumulate averages in a list

def test() :
 results = [None]*99 # Initialize: 99 probabilities
 p = 0.01 # probability starts at .01
 for i in range(99) :
 trips = 0
 # find average of 10000 experiments
 for k in range(10000) :
 trips = trips + umbrellas(p)
 results[i] = trips/10000
 p = p + .01 # next probability
 return results
Crude plot of results

number of trips without getting wet

\[p = 0.01 \]

\[p = 0.99 \]

probability of rain
Applications

many, many, many
Finance

- Investment portfolio analysis
- Stock option analysis
- Personal financial planning
Engineering

- Reliability engineering
- Wireless network design
- Wind farm yield prediction
- Fluid dynamics
- Robotics
Mathematics and physics

- Multi-dimensional partial differentiation and integration

- Optimization

- Simulating quantum systems (pioneered by Fermi in 1930)
Many others

- Computational biology
- Physical chemistry
- Applied statistics where data distributions are difficult to analyze
- Game playing
Graphics: path tracing

image: http://www.graphics.cornell.edu/~eric/thesis/images.html

image: http://2.bp.blogspot.com/-cUQu1ym3krA/UPYw6qhsZPI/AAAAAAAADeU/YnqtyJjBJJc/s1600/cubecity9b.png
Summary

- Monte Carlo methods use random number generator to “run experiments” in software

Operations we used:
- get random integer in a given range
- get a random permutation of a list
- use random float between 0 and 1 to decide if an event with probability p happens

 \[
 \text{if random()} < p : \# \text{ event happened}
 \]
Next time: Simulation