Data Representation and Compression
Announcements

- The first lab exam is Monday during the lab session.
 - Sample exam on web site
 - Practice problems (with soln) are on the web site.
 - Python tutors will also help

- PA6 and OLI Data representation over the weekend
Lingering questions…

- Data Structures
- Arrays
- Linked Lists
- Hash Tables
- Associative Arrays
Key Point:

- Data needs to be stored in physical memory
- How we organize data in memory has consequences
- In this class, you are not implementing data structures – you are taking advantage of python’s implementations...
- ...but you still need to understand (and make decisions) about these data structures.
Recall Arrays and Linked Lists

<table>
<thead>
<tr>
<th></th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrays</td>
<td>Constant-time lookup (search) if you know the index</td>
<td>Requires a contiguous block of memory</td>
</tr>
<tr>
<td>Linked Lists</td>
<td>Flexible memory usage</td>
<td>Linear-time lookup (search)</td>
</tr>
</tbody>
</table>

Hashing tables are one approach to exploit the advantages of arrays and linked lists (to improve search time in dynamic data sets)?
A hash function $h(key)$ that maps a key to an array index in $0..k-1$. To search the array table for that key, look in $table[h(key)]$

A hash function h is used to map keys to hash-table (array) slots. Table is an array bounded in size. The size of the universe for keys may be larger than the array size. We call the table slots buckets.
Suppose we have (key,value) pairs where the key is a string such as (name, phone number) pairs and we want to store these key value pairs in an array.

We could pick the array position where each string is stored based on the first letter of the string using this hash function:

```python
def h(str):
    return (ord(str[0]) - 65) % 6
```

Note `ord(‘A’) = 65`
Add Element “Graham”

In order to add Graham’s information to the table we had to form a link list for bucket 0.

In order to add Graham’s information to the table we had to form a link list for bucket 0.

\[h(“Graham”) \] is also 0 because \[\text{ord(“G”)} \] is 71.

\[h(“Emma”) = 4 \]
Requirements for the Hash Function $h(x)$

- Must be fast: $O(1)$

- Must distribute items roughly uniformly throughout the array, so everything doesn’t end up in the same bucket.
What’s A Good Hash Function?

- For strings:
 - Treat the characters in the string like digits in a base-256 number.
 - Divide this quantity by the number of buckets, k.
 - Take the remainder, which will be an integer in the range $0..k-1$.
Fancier Hash Functions

- How would you hash an integer i?
 - Perhaps $i \% k$ would work well.

- How would you hash a list?
 - Sum the hashes of the list elements.

- How would you hash a floating point number?
 - Maybe look at its binary representation and treat that as an integer?
Summary of Search Techniques

<table>
<thead>
<tr>
<th>Technique</th>
<th>Setup Cost</th>
<th>Search Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear search</td>
<td>0, since we’re given the list</td>
<td>O(n)</td>
</tr>
<tr>
<td>Binary search</td>
<td>O(n log n) to sort the list</td>
<td>O(log n)</td>
</tr>
<tr>
<td>Hash table</td>
<td>O(n) to fill the buckets</td>
<td>O(1)</td>
</tr>
</tbody>
</table>
Associative Arrays

- Hashing is a method for implementing associative arrays. Some languages such as Python have associate arrays (mapping between keys and values) as a built-in data type.

Examples:
- Name in contacts list => Phone number
- User name => Password
- Product => Price
This example maps car brands (keys) to prices (values).

```python
>>> cars = {"Mercedes": 55000,
         "Bentley": 120000,
         "BMW": 90000}

>>> cars["Mercedes"]
55000
```

Keys can be of any immutable data type.

Dictionaries are implemented using hashing.
Iteration over a Dictionary

```python
>>> for i in cars:
    print(i)

BMW
Mercedes
Bentley

>>> for i in cars.items():
    print(i)

("BMW", 90000)
("Mercedes", 55000)
("Bentley", 120000)

>>> for k,v in cars.items():
    print(k, " :", v )

BMW : 90000
Mercedes 55000
Bentley : 120000
```

Think what the loop variables are bound to in each case.

Note also that there is no notion of ordering in dictionaries. There is no such thing as the first element, second element of a dictionary.
Some Dictionary Operations

- `d[key] = value` -- Set `d[key]` to `value`.
- `del d[key]` -- Remove `d[key]` from `d`. Raises an error if `key` is not in the map.
- `key in d` -- Return True if `d` has a key `key`, else False.
- `items()` -- Return a new view of the dictionary’s items ((key, value) pairs).
- `keys()` -- Return a new view of the dictionary’s keys.
- `pop(key[, default])` If `key` is in the dictionary, remove it and return its value, else return `default`. If `default` is not given and `key` is not in the dictionary, an error is raised.

Source: https://docs.python.org/
Left – Node - Right
Recursively

- Get the left tree
- Get the node
- Get the right tree
We use computers to model i.e. represent, things in the real world:
- Numbers, pictures, music, climate, markets...

Three topics:
- Representing numbers
- Exploiting redundancy in representation (compression)
- Representing images and sound
First, what do we mean by Representation?
Representing Data

- **Keyboard**: A B C D E F
- **Machine Storage**: 0 1 0 0 0 0 0 1
- **Screen**: “A”

External representation → **Internal representation** → **External representation**
Digital Data

- Inside the digital machine it's all just
 - binary physical states (high or low voltages, etc.)
 - which we interpret as bits (1s and 0s)

- In turn we interpret these bits as representing data such as integers, real numbers, text, ...

- Machine storage is finite and divided into fixed-size chunks of bits
 - bytes, usually 8 bits
 - words, usually 64 or 32 bits
 - machine storage capacity usually expressed as number of bytes or words
 - loosely speaking: “memory size”
- a 32-bit "word" might be
 1100 1100 1011 0111 0000 0000 0000 0000

- what this means depends on the machinery to interpret it, could be (explore with 0xED)

<table>
<thead>
<tr>
<th>Type</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Raw" bits</td>
<td>1100 1100 1011 0111 0000 0000 0000 0000</td>
</tr>
<tr>
<td>Floating point number</td>
<td>6.59339 X 10^{-41}</td>
</tr>
<tr>
<td>String (Unicode UTF-16)</td>
<td>'첨'</td>
</tr>
<tr>
<td>RGB pixel color</td>
<td></td>
</tr>
<tr>
<td>Little-endian integer</td>
<td>47052</td>
</tr>
</tbody>
</table>
Fundamental Issue: Information Capacity

<table>
<thead>
<tr>
<th># bits</th>
<th>Possible values</th>
<th># possible values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>00 01 10 11</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>000 001 010 011 100 101 110 111</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111</td>
<td>16</td>
</tr>
</tbody>
</table>

\[2^1 = 2, \quad 2^2 = 4, \quad 2^3 = 8, \quad 2^4 = 16\]

Hmmm…could it be?
Yes, \(k\) bits can represent \(2^k\) different values.
Today

- Numerals are not numbers!
 - place-value representations

- Positive and negative integers

- Real numbers and floating-point representations
You should be able to

- Count in unsigned binary
 0, 1, 10, 11, 100, ...

- Add in binary and know what overflow is

- Determine the sign and magnitude of an integer represented in two’s complement binary

- Determine the two’s complement binary representation of a positive or negative integer
numerals are not numbers!
don’t be drawn like moths to the flame of meaning*:

* Geoffrey Pullum
Numbers: semantics (quantities) versus syntax (numerals)

<table>
<thead>
<tr>
<th></th>
<th>Semantics</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is it?</td>
<td>Our idea of quantity</td>
<td>How we write our idea of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>quantity</td>
</tr>
<tr>
<td>What is it good for?</td>
<td>Insight</td>
<td>Calculation,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>communication,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>computation</td>
</tr>
<tr>
<td>Example</td>
<td>II (Roman numeral)</td>
<td>2 (decimal Arabic numeral)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 (binary numeral)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– all with the same</td>
</tr>
<tr>
<td></td>
<td></td>
<td>semantics!</td>
</tr>
</tbody>
</table>

machines don’t have ideas!

only syntax!
Numerals aren’t numbers, but

- ...to communicate a number (quantity), I have to write something

- I will write numbers (quantities) as ordinary base-10 numerals (or sometimes as words)
place-value syntax of numerals representing non-negative integers (0, 1, 2, 3, …)
The numeral we write: 15627

What it means:
$7 \times 10^0 + 2 \times 10^1 + 6 \times 10^2 + 5 \times 10^3 + 1 \times 10^4$

Problem: electronic circuitry for base-10 arithmetic is slow.

Solution: use place-value numerals, but in base 2–binary notation
Place-value numerals in general

- Choose a number b for the **base** or **radix**

- Choose list of **digits**, there must be b of them
 - **base 10 example**: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - **base 2 example**: 0, 1
 - **base 16 example**: 0, 1, ..., 9, A, B, C, D, E, F

- To represent a quantity n in base b
 - integer divide n by b with remainder r (a **digit**)
 - repeat until the quotient is zero
 - the remainders are the digits in reverse order
Binary place-value example

- Base two, digits 0 and 1
- To represent “six”:
 - $6 \div 2 = 3$ remainder 0

remainder when dividing by 2 can only be 0 or 1
Binary place-value example

- Base two, digits 0 and 1

- To represent “six”:
 - $6 \div 2 = 3$ remainder 0
 - $3 \div 2 = 1$ remainder 1
Binary place-value example

- Base two, digits 0 and 1
- To represent “six”:
 - $6 \div 2 = 3$ remainder 0
 - $3 \div 2 = 1$ remainder 1
 - $1 \div 2 = 0$ remainder 1

 Binary numeral: 110

- What it means:
 $0 \times 2^0 + 1 \times 2^1 + 1 \times 2^2 = “six”$
Information Capacity and Range

- Remember: k bits can represent 2^k different things
- So k-bit binary numerals represent $0...2^k-1$
 - For $k = 3$,

<table>
<thead>
<tr>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>bits</td>
<td>minimum</td>
<td>maximum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>$2^8 - 1$ (255)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>$2^{16} - 1$ (65,535)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>0</td>
<td>$2^{32} - 1$ (4,294,967,295)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>0</td>
<td>$2^{64} - 1$ (18,446,744,073,709,551,615)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
binary arithmetic

some familiar operations
Counting in binary

<table>
<thead>
<tr>
<th>Binary numerals</th>
<th>Decimal equivalents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>101</td>
<td>5</td>
</tr>
<tr>
<td>110</td>
<td>6</td>
</tr>
<tr>
<td>111</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
</tr>
</tbody>
</table>
Addition and Multiplication Tables

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>×</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Binary Arithmetic

- All the familiar methods work, but with only 1 and 0 for digits

- \(1 + 1 = 10\), \(10 - 1 = 1\), \(10 + 1 = 11\), ...

- Example:

 \[
 \begin{array}{c c c c c}
 & 1 & 1 \\
 & 1 & 0 & 1 & 0 \\
 + & 1 & 0 & 1 & 0 \\
 \hline
 & 1 & 0 & 1 & 0 & 0
 \end{array}
 \]

 Notice: we need more bits for the answer than we did for the operands.
Overflow: the first difficulty

- Machine word only has k bits for some fixed k!
- If k is 4, then we have overflow in the following:

```
  1 1
  1010
+1010
-----
10100
```

- The machine retains only 0100 (the “least significant” bits), so $(n+n) - n$ not always equal to $n + (n - n)$
Modular Arithmetic

- Dropping the overflow bit is **modular arithmetic**
- We can carry out any arithmetic operation modulo 2^k for the precision k. The example again for precision 4:

<table>
<thead>
<tr>
<th>binary</th>
<th>decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 1 0</td>
<td>= 10</td>
</tr>
<tr>
<td>+ 1 0 1 0</td>
<td>= 10</td>
</tr>
<tr>
<td>(1) 0 1 0 0</td>
<td>= 20</td>
</tr>
</tbody>
</table>

 overflow can be ignored or signaled as an error
negative integers representing all the integers, including
Representing a sign +/-

- A natural idea: reserve one of the bits to stand for a sign.

- E.g., 0 could stand for + and 1 could stand for –
 - unsigned “ten” is 1010
 - so “negative ten” would be 11010

- But someone had a cleverer idea…
 - first, we’d like to avoid “two zeroes”: +0 and -0
 - second, we’d like the same machinery to work for addition and subtraction
Two’s Complement Negative Numbers

- A clever approach based on modular arithmetic
- Remember, with k bits, we do arithmetic mod 2^k
- We define negative numbers as additive inverse: $-x$ is the number y such that $x + y = 0 \mod 2^k$ – this is the two’s complement of x

Example with 4 bits: if 1 is 0001, what is -1?

```
carry bits 1 11 111 1111
0001 0001 0001 0001 0001 0001
+ ????? +???1 +??11 +?111 +1111 +1111
---- ---- ---- ---- ---- ----
0000 ???0 ??00 ?000 0000 10000
```
Two’s complement property

- When you add a number to its two’s complement (modulo 2^k), you always get 0.
- That’s why we use it to represent negative numbers!
- Remember, you’re using base 2 arithmetic.

Example (using 3 bits):

$$
\begin{array}{c}
\text{011} \quad (+3 \text{ in decimal}) \\
+ \quad \text{101} \quad (-3 \text{ in decimal})
\end{array}
$$

$$(1) \quad 000 \quad 0$$

modular arithmetic discards
All two’s complement integers using 3 bits, arithmetic mod 8

<table>
<thead>
<tr>
<th>Bit pattern</th>
<th>Decimal value</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>0</td>
</tr>
<tr>
<td>001</td>
<td>+1</td>
</tr>
<tr>
<td>010</td>
<td>+2</td>
</tr>
<tr>
<td>011</td>
<td>+3</td>
</tr>
<tr>
<td>100</td>
<td>-4</td>
</tr>
<tr>
<td>101</td>
<td>-3</td>
</tr>
<tr>
<td>110</td>
<td>-2</td>
</tr>
<tr>
<td>111</td>
<td>-1</td>
</tr>
</tbody>
</table>

Adding + n to − n gives 0
For example: 011 + 101 = 000
Great! but how do we “read” two’s complement integers?

- **Sign:** look at leftmost bit
 - 1 means negative, 0 means positive
 - e.g. with four bits 1010 represents a negative number

- **Magnitude:** if negative, compute the two’s complement
 - flip each bit (one’s complement)
 - e.g. flip 1010 to get 0101
 - then add 1
 - e.g. 0101 + 0001 = 0110, or
 - $0 \times 2^0 + 1 \times 2^1 + 1 \times 2^2 + 0 \times 2^3 = 6$
 - voilà! 1010 represents negative six
Two’s complement is an approach for representing negative integers

- Define negative by addition: \(-x\) is value added to \(x\) to get 0
- Process:
 1. Write out the number in binary
 2. Invert the bits
 3. Add 1
- From and To two’s complement use an identical process
- How does this work? Overflow...
Another Example

What value is this 8-bit signed integer?

1 1 0 0 1 1 0 0

Flip each bit

0 0 1 1 0 0 1 1

Add one

0 0 1 1 0 1 0 0

So 11001100 represents -52

2^5 2^4
32 + 16 +
2^2
4 = 52

two’s complement

sign bit
so we can “decode” binary signed integers, now for encoding signed integers
Signed Integers: encoding negative values

Example: How do you store -52 in 8 bits?
Start by encoding +52:

One way to do it: by repeated integer division
52 // 2 = 26 r 0
26 // 2 = 13 r 0
13 // 2 = 6 r 1
6 // 2 = 3 r 0
3 // 2 = 1 r 1
1 // 2 = 0 r 1

Another way: find the powers of two that add up to 52:

52 = 32 + 16 + 4
2^7 2^6 2^5 2^4 2^3 2^2 2^1 2^0
0 0 1 1 0 1 0 0
Signed Integers: encoding negative values

Example continued: How do you store -52 in 8 bits?

We’ve encoded +52 like this:

\[52 = 32 + 16 + 4 \]

\[2^7 \quad 2^6 \quad 2^5 \quad 2^4 \quad 2^3 \quad 2^2 \quad 2^1 \quad 2^0 \]

\[0 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1 \quad 0 \quad 0 \]

Flip each bit (one’s complement):

\[1 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 1 \]

Add 00000001, modulo 2^8:

\[1 \quad 1 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0 \quad 0 \quad = \quad -52 \]

The same steps convert positive to negative and vice-versa! (try it and see)
Range of Two’s Complement Representations (for \(k \) bits)

<table>
<thead>
<tr>
<th>Bit pattern</th>
<th>Decimal value</th>
</tr>
</thead>
<tbody>
<tr>
<td>00…00</td>
<td>0</td>
</tr>
<tr>
<td>00…01</td>
<td>+1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>01…11</td>
<td>(+2^{k-1}-1)</td>
</tr>
<tr>
<td>10…00</td>
<td>(-2^{k-1})</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>11…11</td>
<td>-1</td>
</tr>
</tbody>
</table>
Range Examples

<table>
<thead>
<tr>
<th>bits</th>
<th>minimum value</th>
<th>maximum value</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>$-2^7 = -128$</td>
<td>$2^7 - 1 = +127$</td>
</tr>
<tr>
<td></td>
<td>10000000</td>
<td>01111111</td>
</tr>
<tr>
<td>16</td>
<td>$-2^{15} = -32,768$</td>
<td>$2^{15} - 1 = +32,767$</td>
</tr>
<tr>
<td>32</td>
<td>-2^{31}</td>
<td>$2^{31} - 1$</td>
</tr>
<tr>
<td></td>
<td>$= -2,147,483,648$</td>
<td>$= +2,147,483,647$</td>
</tr>
<tr>
<td>64</td>
<td>-2^{63}</td>
<td>$2^{63} - 1$</td>
</tr>
</tbody>
</table>
From whole numbers to rational numbers
Real Numbers in the Machine?

- Real numbers measure *continuous* quantities; can we represent them exactly in the machine?

- Not possible with a fixed number of bits

- Can only approximate by rational numbers using **floating point** representations

- e.g. \(\pi \approx 3.14159 \)
Floating point is based on scientific notation

Age of the Universe in years:
+ 1.37×10^{10}

Idea: use same method, but with a binary number for each part (and remember, a fixed number of bits)
Decimal 5.75 can be represented in binary as follows, because \(0.75 = \frac{1}{2} + \frac{1}{4} = 2^{-1} + 2^{-2}\)

\[
5.75 = 5 + 0.75
\]
\[
= 101 + 0.11 \text{ (i.e. } 2^{-1} + 2^{-2})
\]
\[
= 101.11 = 1.0111 \times 10^{10}
\]

In binary floating point the mantissa is a binary fraction, exponent is a binary integer, and the base of the exponent is always 2.

101.11 has mantissa 1.0111 and exponent 10.
Some Floating Point Anomalies

- Rounding error
 - remember, floating point with a fixed number of digits is an approximation, no matter what base is used!
 - in addition, there is no finite base two representation for 1/10

- Resolution

- Accumulation of errors: repeated operations may get further and further from the “true” value
Rounding in any base

- Floating point works with a finite fixed number of digits

- No matter what the base, some numbers can only be approximated
 - \(\pi, e, \) other irrationals
 - but also rationals needing more digits than we have in a machine word
Rounding in binary

>>> x = 1/10
>>> x
0.1
>>> y = 2/10
>>> y
0.2
>>> x + y
0.30000000000000004

>>> from decimal import Decimal
>>> Decimal(x)
Decimal('0.1000000000000000055511151231257827021181583404541015625')
>>> Decimal(y)
Decimal('0.200000000000000011102230246251565404236316680908203125')
>>> Decimal(x+y)
Decimal('0.3000000000000000444089209850062616169452667236328125')

Ack! Whyyyy?

Python prints a rounded value

The actual value looks like this (in decimal)!
Why is $1/10$ not exactly 0.1?

Let’s compute $1/10$ using binary long division:

\[
\begin{array}{c}
1010 \\
\underline{\times 1.000000000...} \\
1010 \\
\underline{+1100} \\
1010 \\
\underline{+10000} \\
\vdots
\end{array}
\]

we get a repeating series of digits 11001100...

same
Tiny example: suppose we use a binary floating point notation like this (4 bits):
\[d_1.d_2d_3 \times 2^e, \text{ where } -1 \leq e \leq 2 \text{ and } d_1 = 1 \text{ unless } e=0\]

- Representable values get sparser as we go to bigger and bigger numbers!

Floating point: the bottom line

For serious work like simulating the weather or the economy, hire an expert! (or be an expert)
You should be able to

- Count in unsigned binary
 0, 1, 10, 11, 100, ...

- Add in binary and know what overflow is

- Determine the sign and magnitude of an integer represented in two’s complement binary

- Determine the two’s complement binary representation of a positive or negative integer
Some Helpful Python functions

```python
>>> bin(10)
'0b1010'

>>> hex(10)
'0xa'

>>> from decimal import Decimal

>>> Decimal(.2)
Decimal('0.200000000000000011102230246251565404236316680908203125')
```
Survey

Will post to piazza

http://goo.gl/forms/9dXigCNsqqyKwHFLQ2