Iteration:
Sorting, Scalability, Big O Notation
Announcements

- Yesterday?
 - Lab 4
 - PA 3
 - OLI

- Tonight
 - PS 4
 - Lab 5
 - Extension on PA 4, now due tomorrow

- Tomorrow
 - PS 5
 - PA 4
Yesterday

- Sieve of Eratosthenes
- Character Comparisons (Unicode)
- Linear Search
- Sorting
Today

- Insertion Sort
- Scalability
- Big O Notation
Sorting
In-place Insertion Sort

- **Idea:** during sorting, a *prefix* of the list is *already sorted.* (This prefix might contain one, two, or more elements.)

- Each element that we process is inserted into the correct place in the sorted prefix of the list.

- Result: sorted part of the list gets bigger until the whole thing is sorted.
In-place Insertion Sort

sorted part
In-place Insertion Sort Algorithm

Given a list a of length n, $n > 0$.

1. Set $i = 1$.

2. While i is not equal to n, do the following:
 a. Insert $a[i]$ into its correct position in $a[0]$ to $a[i]$ (inclusive).
 b. Add 1 to i.

3. Return the list a (which is now sorted).
Example

\[a = [53, 26, 76, 30, 14, 91, 68, 42] \]

\[i = 1 \]

Insert \(a[1] \) into its correct position in \(a[0..1] \) and then add 1 to \(i \):

53 moves to the right,
26 is inserted into the list at position 0

\[a = [26, 53, 76, 30, 14, 91, 68, 42] \]

\[i = 2 \]
def isort(items):
 i = 1
 while i < len(items):
 move_left(items, i)
 i = i + 1
 return items

insert a[i] into a[0..i] in its correct sorted position
But now we have to write the `move_left` function!
Moving left using search

To move the element x at index i “left” to its correct position, remove it, start at position i-1, and search from right to left until we find the first element that is less than or equal to x.

Then insert x back into the list to the right of that element.

(The Python insert operation does not overwrite. Think of it as “squeezing into the list”.)
move_left via linear search

sorted part
move_left via linear search
move_left via linear search

sorted part
In-place Insertion Sort

sorted part
76:

\[a = [26, \underline{53}, \underline{76}, 30, 14, 91, 68, 42] \]

Searching from right to left starting with 53, the first element less than 76 is 53. Insert 76 to the right of 53 (where it was before).

14:

\[a = [26, 30, \underline{53}, \underline{76}, 14, 91, 68, 42] \]

Searching from right to left starting with 76, all elements left of 14 are greater than 14. Insert 14 into position 0.

68:

\[a = [14, 26, 30, 53, 76, 91, \underline{68}, 42] \]

Searching from right to left starting with 91, the first element less than 68 is 53. Insert 68 to the right of 53.
The move_left algorithm

Given a list a of length n, $n > 0$ and a value at index i to be moved left in the list.

1. Remove $a[i]$ from the list and store in x.
2. Set $j = i-1$.
3. While $j \geq 0$ and $a[j] > x$, subtract 1 from j.
4. (At this point, what do we know? Either j is ..., or $a[j]$ is ...) Insert x into position $a[j+1]$.
Our algorithm says to “remove” and “insert” elements of a list.

But how do we do that?

Fortunately there are built-in Python operations for that.
Removing a list element: pop

```python
>>> a = ["Wednesday", "Monday", "Tuesday"]
>>> day = a.pop(1)
>>> a
['Wednesday', 'Tuesday']
>>> day
'Monday'
>>> day = a.pop(0)
>>> day
'Wednesday'
>>> a
['Tuesday']
```
Inserting an element: insert

```python
>> a = [10, 20, 30]
=> [10, 20, 30]
>> a.insert(0, "foo")
=> ["foo", 10, 20, 30]
>> a.insert(2, "bar")
=> ["foo", 10, "bar", 20, 30]
>> a.insert(5, "baz")
=> ["foo", 10, "bar", 20, 30, "baz"]
```
def move_left(items, i):
 x = items.pop(i)
 j = i - 1
 while j >= 0 and items[j] > x:
 j = j - 1
 items.insert(j + 1, x)
def move_left(items, i):
 # Insert the element at items[i] into its place
 x = items.pop(i)
 j = i - 1
 while j > 0 and items[j] > x:
 j = j - 1
 items.insert(j + 1, x)

def isort(items):
 # In-place insertion sort
 i = 1
 while i < len(items):
 move_left(items, i)
 i = i + 1
 return items
Why should we believe our code works?

- We can test it:

```python
>>> data = [13, 78, 18, 25, 100, 89, 12]
>>> isort(data)
[13, 12, 18, 25, 78, 89, 100]

>>> 
```

- Hmmmm. What went wrong?
Using assert to debug

- What do we know has to be true for move_left to do the right thing?

- We have a loop that decreases j and checks for an element at index j smaller than or equal to x. **When should it stop looping?**
 - When the value of j is -1,
 - or when the item at index j is <= x
 - j == -1 or items[j] <= x
def move_left(items, i):
 # Insert the element at items[i] into its place
 x = items.pop(i)
 j = i - 1
 while j > 0 and items[j] > x:
 j = j - 1
 assert(j == -1 or items[j] <= x)
 items.insert(j + 1, x)

def isort(items):
 # In-place insertion sort
 i = 1
 while i < len(items):
 move_left(items, i)
 i = i + 1
 return items
Run the same test again

```python
>>> data = [13, 78, 18, 25, 100, 89, 12]
>>> isort(data)
[13, 12, 18, 25, 78, 89, 100]
Traceback (most recent call last):
  File "<stdin>"", line 1, in <module>
  File "isort.py", line 16, in isort
      move_left(items, i)
  File "isort.py", line 7, in move_left
    assert(j == -1 or items[j] <= x)
AssertionError
```

This tells us we did something wrong with the loop!
Where’s the bug?

```python
def move_left(items, i):
    # Insert the element at items[i] into its place
    x = items.pop(i)
    j = i - 1
    while j > 0 and items[j] > x:
        j = j - 1
    assert(j == -1 or items[j] <= x)
    items.insert(j + 1, x)

def isort(items):
    # In-place insertion sort
    i = 1
    while i < len(items):
        move_left(items, i)
        i = i + 1
    return items
```

FALSE!
Why??????
The fix

def move_left(items, i):
 # Insert the element at items[i] into its place
 x = items.pop(i)
 j = i - 1
 while j >= 0 and items[j] > x:
 j = j - 1
 assert(j == -1 or items[j] <= x)
 items.insert(j + 1, x)

def isort(items):
 # In-place insertion sort
 i = 1
 while i < len(items):
 move_left(items, i)
 i = i + 1
 return items
Run the same test again

```python
>>> data = [13, 78, 18, 25, 100, 89, 12]
>>> isort(data)
[12, 13, 18, 25, 78, 89, 100]
```

Hurray!

Do we know for sure that the program will always do the right thing now?
Thinking like a computer scientist

Code Analysis
A computer program should be correct, but it should also:
- execute as quickly as possible (time-efficiency)
- use memory wisely (storage-efficiency)

How do we compare programs (or algorithms in general) with respect to execution time?
- various computers run at different speeds due to different processors
- compilers optimize code before execution
- the same algorithm can be written differently depending on the programming paradigm
Counting Operations

- We measure time efficiency by considering “work” done
 - Counting the number of operations performed by the algorithm.

- But what is an “operation”?
 - assignment statements
 - comparisons
 - function calls
 - return statements

- We think of an operation as any computation that is independent of the size of our input.
Linear Search

let n = the length of list.

def search(list, key):
 index = 0
 while index < len(list):
 if list[index] == key:
 return index
 index = index + 1
 return None

Best case: the key is the first element in the list
Linear Search: Best Case

let n = the length of list.

def search(list, key):
 index = 0
 while index < len(list):
 if list[index] == key:
 return index
 index = index + 1
 return None

Total: 4
let n = the length of list.

def search(list, key):
 index = 0
 while index < len(list):
 if list[index] == key:
 return index
 index = index + 1
 return None

Worst case: the key is not an element in the list
let n = the length of list.

def search(list, key):
 index = 0
 while index < len(list):
 if list[index] == key:
 return index
 index = index + 1
 return None

Total: 3n+3
Asymptotic Analysis

- How do we know that each operation we count takes the same amount of time?
 - We don’t.

- So generally, we look at the process more abstractly
 - We care about the behavior of a program in the long run (on large input sizes)
 - We don’t care about constant factors (we care about how many iterations we make, not how many operations we have to do in each iteration)
What Do We Gain?

- Show important characteristics in terms of resource requirements
- Suppress tedious details
- Matches the outcomes in practice quite well
- As long as operations are faster than some constant (1 ns? 1 μs? 1 year?), it does not matter
let n = the length of list.
def search(list, key):
 index = 0
 while index < len(list):
 if list[index] == key:
 return index
 index = index + 1
 return None
let n = the length of list.

def search(list, key):
 index = 0
 while index < len(list):
 n iterations
 if list[index] == key:
 return index
 return None
For very large n, we express the number of operations as the (time) order of complexity.

For asymptotic upper bound, order of complexity is often expressed using Big-O notation:

<table>
<thead>
<tr>
<th>Number of operations</th>
<th>Order of Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>$3n+3$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>$2n+8$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

Usually doesn't matter what the constants are... we are only concerned about the highest power of n.
Why don’t constants matter?

\[(n=1) \quad 45n^3 + 20n^2 + 19 = 84\]

\[(n=2) \quad 45n^3 + 20n^2 + 19 = 459\]

\[(n=3) \quad 45n^3 + 20n^2 + 19 = 1414\]
O(n) ("Linear")

\[\text{Number of Operations} \]

\[2n + 8 \quad 3n + 3 \quad n \]

\[n \] (amount of data)
For a linear algorithm, if you double the amount of data, the amount of work you do doubles (approximately).
For a constant-time algorithm, if you double the amount of data, the amount of work you do stays the same.

4 = O(1)

1 = O(1)
Linear Search

- Best Case: $O(1)$
- Worst Case: $O(n)$
- Average Case: ?
 - Depends on the distribution of queries
 - But can’t be worse than $O(n)$
let n = the length of list.

def isort(list):
 i = 1
 while i != len(list):
 move_left(list, i)
 i = i + 1

 return list
let n = the length of list.
def move_left(a, i):
 x = a.pop(i)
 j = i - 1
 while j >= 0 and a[j] > x: # i iterations
 j = j - 1
 a.insert(j + 1, x)

but how long do pop and insert take?
Doubling the size of the list doubles the cost (time) of insert or pop. These functions take linear time.
let n = the length of list.

def move_left(a, i):
 x = a.pop(i) # n iterations
 j = i - 1
 while j >= 0 and a[j] > x: # i iterations
 j = j - 1
 a.insert(j + 1, x) # n iterations
Insertion Sort: what is the cost of move_left?

let n = the length of list.

```python
def move_left(a, i):
    x = a.pop(i)                      # n iterations
    j = i - 1
    while j >= 0 and a[j] > x:        # i iterations
        j = j - 1
    a.insert(j + 1, x)               # n iterations
```

Total cost (at most): $n + i + n$

But what is i? To find out, look at isort, which calls move_left, supplying a value for i
Insertion Sort: what is the cost of the whole thing?

```python
# let n = the length of list.
def isort(list):
    i = 1
    while i != len(list):
        move_left(list,i)  # i goes from 1 to n-1
        i = i + 1
    return list

Total cost: cost of move_left as i goes from 1 to n-1

Cost of all the move_lefts:
    n + 1 + n
    + n + 2 + n
    + n + 3 + n
    ...
    + n + n-1 + n
```

Total cost: cost of move_left as i goes from 1 to n-1

Cost of all the move_lefts:
 n + 1 + n
 + n + 2 + n
 + n + 3 + n
 ...
 + n + n-1 + n
Figuring out the sum

- \(n + 1 + n \)
- \(+ n + 2 + n \)
- \(+ n + 3 + n \)
- ...
- \(+ n + n-1 + n \)

\[(n-1) \times 2n + 1 + 2 + 3 + \ldots + n-1\]
Adding 1 through n-1

\[(6 \times 7) / 2\] blue circles
Adding 1 through n-1

- We saw $1 + 2 + ... + 6 = (6 * 7) / 2$

- Generalizing, $1 + 2 + ... + n-1 = (n-1)(n) / 2$

- So our whole cost is:
 - $(n-1)*2n + 1 + 2 + 3 ... + n-1$
 - $= (n-1)*2n + (n-1)(n) / 2$
 - $= 2n^2 - 2n + (n^2 - n) / 2$
 - $= (5n^2 - 5n) / 2 = (5/2)n^2 - (5/2)n$

- Observe that the highest-order term is n^2
Order of Complexity

<table>
<thead>
<tr>
<th>Number of operations</th>
<th>Order of Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>n^2</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>$(5/2)n^2 - (1/2)n$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>$2n^2 + 7$</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Usually doesn’t matter what the constants are… we are only concerned about the highest power of n.

$f(n)$ is $O(g(n))$ means $f(n) < g(n) \cdot k$ for some positive k.
“Big O” notation expresses an upper bound:
\[f(n) \text{ is } O(g(n)) \text{ means } f(n) < g(n) \cdot k \]
(whenever \(n \) is large enough)

So if \(f(x) \) is \(O(n^2) \), then \(f(x) \) is \(O(n^3) \) too!

But we always use the smallest possible function, and the simplest possible.

We say \(3n^2 + 4n + 1 \) is \(O(n^2) \), not \(O(n^3) \)

We say \(3n^2 + 4n + 1 \) is \(O(n^2) \), not \(O(3n^2 + 4n) \)

...even though all of the above are true
$O(n^2)$ ("Quadratic")

Number of Operations vs. n (amount of data):
- $2n^2 + 7$
- n^2
- $n^2/2 + 3n/2 - 1$
For a quadratic algorithm, if you double the amount of data, the amount of work you do quadruples (approximately).
Insertion Sort

- Worst Case: $O(n^2)$
- Best Case: ?
- Average Case: ?

We’ll compare these algorithms with others soon to see how scalable they really are based on their order of complexities.
Big O

- $O(1)$: constant
- $O(\log n)$: logarithmic
- $O(n)$: linear
- $O(n \log n)$: log linear
- $O(n^2)$: quadratic
- $O(n^3)$: cubic
- $O(2^n)$: exponential