Iteration:
Sorting, Scalability, Big O Notation
Announcements

- Yesterday?
 - Lab 4

- Tonight
 - Lab 5

- Tomorrow
 - PS 4
 - PA 4
Yesterday

- Quick Review: Sieve of Eratosthenes
- Character Comparisons (Unicode)
- Linear Search
- Sorting
Today

- Review: Insertion Sort
- Scalability
- Big O Notation
Sorting
In-place Insertion Sort

- Idea: during sorting, a prefix of the list is already sorted. (This prefix might contain one, two, or more elements.)

- Each element that we process is inserted into the correct place in the sorted prefix of the list.

- Result: sorted part of the list gets bigger until the whole thing is sorted.
In-place Insertion Sort

sorted part
In-place Insertion Sort
In-place Insertion Sort

sorted part
In-place Insertion Sort
In-place Insertion Sort Algorithm

Given a list a of length n, $n > 0$.

1. Set $i = 1$.

2. While i is not equal to n, do the following:
 a. Insert $a[i]$ into its correct position in $a[0]$ to $a[i]$ (inclusive).
 b. Add 1 to i.

3. Return the list a (which is now sorted).
Example

\[a = [53, 26, 76, 30, 14, 91, 68, 42]\]
\[i = 1\]

Insert \(a[1]\) into its correct position in \(a[0..1]\) and then add 1 to \(i\):

53 moves to the right,
26 is inserted into the list at position 0

\[a = [26, 53, 76, 30, 14, 91, 68, 42]\]
\[i = 2\]
def isort(items):
 i = 1
 while i < len(items):
 move_left(items, i)
 i = i + 1
 return items

insert a[i] into a[0..i] in its correct sorted position
Moving left using search

To move the element x at index i “left” to its correct position, remove it, start at position i-1, and search **from right to left** until we find the first element that is less than or equal to x.

Then insert x back into the list to the right of that element.

(The Python insert operation does not overwrite. Think of it as “squeezing into the list”.)
Moving left (numbers)

76:

\[a = [26, 53, 76, 30, 14, 91, 68, 42] \]

Searching from right to left starting with 53, the first element less than 76 is 53. Insert 76 to the right of 53 (where it was before).

14:

\[a = [26, 30, 53, 76, 14, 91, 68, 42] \]

Searching from right to left starting with 76, all elements left of 14 are greater than 14. Insert 14 into position 0.

68:

\[a = [14, 26, 30, 53, 76, 91, 68, 42] \]

Searching from right to left starting with 91, the first element less than 68 is 53. Insert 68 to the right of 53.
The **move_left** algorithm

Given a list \(a \) of length \(n \), \(n > 0 \) and a value at index \(i \) to be moved left in the list.

1. Remove \(a[i] \) from the list and store in \(x \).
2. Set \(j = i-1 \).
3. While \(j \geq 0 \) and \(a[j] > x \), subtract 1 from \(j \).
4. (At this point, what do we know? Either \(j \) is ..., or \(a[j] \) is ...) Insert \(x \) into position \(a[j+1] \).
Removing a list element: pop

```python
>>> a = ["Wednesday", "Monday", "Tuesday"]
>>> day = a.pop(1)
>>> a
['Wednesday', 'Tuesday']
>>> day
'Monday'
>>> day = a.pop(0)
>>> day
'Wednesday'
>>> a
['Tuesday']
```
Inserting an element: insert

```python
>> a = [10, 20, 30]
=> [10, 20, 30]
>> a.insert(0, "foo")
=> ["foo", 10, 20, 30]
>> a.insert(2, "bar")
=> ["foo", 10, "bar", 20, 30]
>> a.insert(5, "baz")
=> ["foo", 10, "bar", 20, 30, "baz"]
```
move_left in Python

```python
def move_left(items, i):
    x = items.pop(i)
    j = i - 1
    while j >= 0 and items[j] > x:
        j = j - 1
    items.insert(j + 1, x)
```

- remove the item at position i in list and store it in x
- logical operator AND: both conditions must be true for the loop to continue
- insert x at position j+1 of list, shifting elements j+1 and beyond
Problems, Algorithms and Programs

- One problem: potentially many algorithms

- One algorithm: potentially many programs

- We can compare how efficient different programs are both analytically and empirically
Analytically: Which One is Faster?

```python
def contains1(items, key):
    index = 0
    while index < len(items):
        if items[index] == key:
            return True
        index = index + 1
    return False

def contains2(items, key):
    ln = len(items)
    index = 0
    while index < ln:
        if items[index] == key:
            return True
        index = index + 1
    return False
```

- `len(items)` is executed each time loop condition is checked.
- `len(items)` is executed only once and its value is stored in `ln`.

```python
# len(items) is executed each time loop condition is checked
```
Is a for-loop faster than a while-loop?

• Add the following function to our collection of contains functions from the previous page:

```python
def contains3(items, key):
    for index in range(len(items)):
        if items[index] == key:
            return True
    return False
```
Three programs for the same algorithm; let’s measure which is faster:

Define `time2` and `time3` similarly to call `contains2` and `contains`.

```python
import time
def time1(items, key):
    start = time.time()
    contains1(items, key)
    runtime = time.time() - start
    print("contains1:", runtime)
```
Doing the measurement

```python
>>> items = [None] * 1000000

>>> time1(items1, 1)
contains1: 0.1731700897216797

>>> time2(items1, 1)
contains2: 0.1145467758178711

>>> time3(items1, 1)
contains3: 0.07184195518493652

Conclusion: using `for` and `range()` is faster than using `while` and addition when doing an unsuccessful search. Why?
```
A Different Measurement

- What if we want to know how the different loops perform when the key matches the first element?

```python
>>> time1(items1, None)
contains1: 4.0531158447265625e-06
```

```python
>>> time2(items1, None)
contains2: 4.291534423828125e-06
```

```python
>>> time3(items1, None)
contains3: 1.0013580322265625e-05
```

Now the relationship is different; `contains3` is slowest! Why?
Thinking like a computer scientist

Code Analysis
A computer program should be correct, but it should also
- execute as quickly as possible (time-efficiency)
- use memory wisely (storage-efficiency)

How do we compare programs (or algorithms in general) with respect to execution time?
- various computers run at different speeds due to different processors
- compilers optimize code before execution
- the same algorithm can be written differently depending on the programming paradigm
Counting Operations

- We measure time efficiency by considering “work” done.
 - Counting the number of operations performed by the algorithm.

- But what is an “operation”?
 - Assignment statements
 - Comparisons
 - Function calls
 - Return statements

- We think of an operation as any computation that is independent of the size of our input.
let n = the length of list.
def search(list, key):
 index = 0
 while index < len(list):
 if list[index] == key:
 return index
 index = index + 1
 return None

Best case: the key is the first element in the list
let n = the length of list.

def search(list, key):
 index = 0
 while index < len(list):
 if list[index] == key:
 return index
 index = index + 1
 return None

Total: 4
Linear Search: Worst Case

let n = the length of list.

def search(list, key):
 index = 0
 while index < len(list):
 if list[index] == key:
 return index
 index = index + 1
 return None

Worst case: the key is not an element in the list
let n = the length of list.

def search(list, key):
 index = 0
 while index < len(list):
 if list[index] == key:
 return index
 index = index + 1
 return None

Total: 3n+3
Asymptotic Analysis

- How do we know that each operation we count takes the same amount of time?
 - We don’t.

- So generally, we look at the process more abstractly
 - We care about the behavior of a program in the long run (on large input sizes)
 - We don’t care about constant factors (we care about how many iterations we make, not how many operations we have to do in each iteration)
What Do We Gain?

- Show important characteristics in terms of resource requirements
- Suppress tedious details
- Matches the outcomes in practice quite well
- As long as operations are faster than some constant (1 ns? 1 μs? 1 year?), it does not matter
Linear Search: Best Case Simplified

let n = the length of list.
def search(list, key):
 index = 0
 while index < len(list): # 1 iteration
 if list[index] == key:
 return index
 index = index + 1
 return None
let n = the length of list.

def search(list, key):
 index = 0
 while index < len(list):
 n iterations
 if list[index] == key:
 return index
 index = index + 1
 return None
Order of Complexity

- For very large n, we express the number of operations as the (time) order of complexity.

- For asymptotic upper bound, order of complexity is often expressed using Big-O notation:

<table>
<thead>
<tr>
<th>Number of operations</th>
<th>Order of Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>$3n+3$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>$2n+8$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

Usually doesn't matter what the constants are... we are only concerned about the highest power of n.
Why don’t constants matter?

(n=1) \[45n^3 + 20n^2 + 19 = 84 \]

(n=2) \[45n^3 + 20n^2 + 19 = 459 \]

(n=3) \[45n^3 + 20n^2 + 19 = 1414 \]
O(n) ("Linear")

Number of Operations

n (amount of data)

2n + 8
3n + 3
n
For a linear algorithm, if you double the amount of data, the amount of work you do doubles (approximately).
O(1) ("Constant-Time")

For a constant-time algorithm, if you double the amount of data, the amount of work you do stays the same.
Linear Search

- **Best Case:** $O(1)$
- **Worst Case:** $O(n)$
- **Average Case:**?
 - Depends on the distribution of queries
 - But can’t be worse than $O(n)$
def isort(list):
 i = 1
 while i != len(list):
 move_left(list, i)
 i = i + 1
 return list
let \(n \) = the length of list.

def move_left(a, i):
 x = a.pop(i)
 j = i - 1
 while j >= 0 and a[j] > x:
 j = j - 1
 a.insert(j + 1, x)

but how long do \texttt{pop} and \texttt{insert} take?
Measuring pop and insert

<table>
<thead>
<tr>
<th>List Size</th>
<th>Insert Time</th>
<th>Pop Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 million elements in list</td>
<td>0.7548720836639404 s</td>
<td>0.7548720836639404 s</td>
</tr>
<tr>
<td>4 million elements in list</td>
<td>1.6343820095062256 s</td>
<td>1.6343820095062256 s</td>
</tr>
<tr>
<td>8 million elements in list</td>
<td>3.327040195465088 s</td>
<td>3.327040195465088 s</td>
</tr>
<tr>
<td>8 million elements in list</td>
<td>2.031071901321411 s</td>
<td>2.031071901321411 s</td>
</tr>
<tr>
<td>16 million elements in list</td>
<td>4.03380031585693 s</td>
<td>4.03380031585693 s</td>
</tr>
<tr>
<td>32 million elements in list</td>
<td>8.06456995010376 s</td>
<td>8.06456995010376 s</td>
</tr>
</tbody>
</table>

Doubling the size of the list doubles the cost (time) of insert or pop. These functions take **linear time**.
let n = the length of list.

def move_left(a, i):
 x = a.pop(i)
 j = i - 1
 while j >= 0 and a[j] > x:
 j = j - 1
 a.insert(j + 1, x)
let n = the length of list.
def move_left(a, i):
 x = a.pop(i)
 j = i - 1
 while j >= 0 and a[j] > x:
 j = j - 1
 a.insert(j + 1, x)

Total cost (at most): \(n + i + n \)

But what is \(i \)? To find out, look at isort, which calls move_left, supplying a value for \(i \)
Insertion Sort: what is the cost of the whole thing?

```python
# let n = the length of list.
def isort(list):
    i = 1
    while i != len(list):
        move_left(list,i)  #n-1 iterations
        i = i + 1
    return list

Total cost: cost of move_left as i goes from 1 to n-1

Cost of all the move_lefts: n + 1 + n
+ n + 2 + n
+ n + 3 + n
...
+ n + n-1 + n
```
On iteration i, we need to examine j elements and then shift $i-j$ elements to the right, so we have to do $j + (i-j) = i$ units of work.
Figuring out the sum

- $n + 1 + n$
- $n + 2 + n$
- $n + 3 + n$
- ...
- $n + n-1 + n$

- $(n-1) \times 2n$
- + 1
- + 2
- + 3
- ...
- + n-1
Adding 1 through n

\[
\frac{6 \times 7}{2}
\]

blue circles
Adding 1 through n-1

- We saw $1 + 2 + ... + 6 = (6 * 7) / 2$

- Generalizing, $1 + 2 + ... + n-1 = (n-1)(n) / 2$

- So our whole cost is:

 - $(n-1)*2n + 1 + 2 + 3 ... + n-1$

 - $= (n-1)*2n + (n-1)(n) / 2$

 - $= 2n^2 - 2n + (n^2 - n) / 2$

 - $= (5n^2 - 5n) / 2 = (5/2)n^2 - (5/2)n$

- Observe that the highest-order term is n^2
A different way...

- When $i=1$, we have 1 unit of work.
- When $i=2$, we have 2 units of work.
- ...
- When $i = n-1$, we have $n-1$ units of work.
- The total amount of work done is:

 \[
 1 + 2 + \ldots + (n-1) \\
 = \frac{n(n-1)}{2} \\
 = \frac{n^2 - n}{2} \quad (\text{a quadratic function}) \\
 = \Theta(n^2)
 \]
<table>
<thead>
<tr>
<th>Number of operations</th>
<th>Order of Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>n^2</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>$(5/2)n^2 - (1/2)n$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>$2n^2 + 7$</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Usually doesn’t matter what the constants are… we are only concerned about the highest power of n.

$f(n)$ is $O(g(n))$ means $f(n) < g(n) \cdot k$ for some positive k.
“Big O” notation expresses an upper bound: $f(n) \text{ is } O(g(n)) \text{ means } f(n) < g(n) \cdot k$
(whenever n is large enough)

So if $f(x) \text{ is } O(n^2)$, then $f(x) \text{ is } O(n^3)$ too!

But we always use the smallest possible function, and the simplest possible.

We say $3n^2 + 4n + 1 \text{ is } O(n^2)$, not $O(n^3)$

We say $3n^2 + 4n + 1 \text{ is } O(n^2)$, not $O(3n^2 + 4n)$

...even though all of the above are true
$O(n^2)$ (“Quadratic”)

- $2n^2 + 7$
- n^2
- $\frac{n^2}{2} + \frac{3n}{2} - 1$

Number of Operations vs. n (amount of data)
For a quadratic algorithm, if you double the amount of data, the amount of work you do quadruples (approximately).
Insertion Sort

- Worst Case: \(O(n^2) \)
- Best Case: ?
- Average Case: ?

We’ll compare these algorithms with others soon to see how scalable they really are based on their order of complexities.
Big O

- $O(1)$: constant
- $O(\log n)$: logarithmic
- $O(n)$: linear
- $O(n \log n)$: log linear
- $O(n^2)$: quadratic
- $O(n^3)$: cubic
- $O(2^n)$: exponential