FORMAL LANGUAGES, AUTOMATA AND COMPUTATION

DFAs to Regular Expressions

DFA Minimization – Closure Properties

Carnegie Mellon University in Qatar
Summary

- Regular Expression (RE) define regular sets
- RE \Rightarrow NFA \Rightarrow DFA
Theorem

A language is regular if and only if some regular expression describes it.

Lemma – The only if part

If a language is regular then it is described by a regular expression.

Proof Idea

- Generalized transitions: label transitions with regular expressions
- Generalized NFAs (GNFA)
- Iteratively eliminate states of the GNFA one by one, until only two states and a single generalized transition is left.
Generalized Transitions

- DFAs have single symbols as transition labels

 ![Diagram of DFA transition](image)

 - If you are in state p and the next input symbol matches a, go to state q

- Now consider

 ![Diagram of DFA transition](image)

 - If you are in state p and a prefix of the remaining input matches the regular expression $ab^* \cup bc^*$ then go to state q
A generalized transition is a transition whose label is a regular expression.

In fact, all standard DFA transitions are generalized transitions with regular expressions of a single symbol!
Consider the 2-state DFA

- 0^*1 takes the DFA from state q_0 to q_1
- $(0 \cup 10^*1)^*$ takes the machine from q_1 back to q_1
- So $\Rightarrow 0^*1(0 \cup 10^*1)^*$ represents all strings that take the DFA from state q_0 to q_1
GENERALIZED NFAs

- Take any DFA and transform it into a GNFA
 - with only two states: one start and one accept
 - with one generalized transition
- then we can “read” the regular expression from the label of the generalized transition (as in the example above)
DFA to GNFA

- We will add two new states to a DFA:
 - A new start state with an ϵ-transition to the original start state, but with no transitions from any other state
 - A new final state with an ϵ-transition from all the original final states, but with no transitions to any other state

- The previous start and final states are no longer!
REDUCING A GNFA

- We eliminate all states of the GNFA one-by-one leaving only the start state and the final state.

When the GNFA is fully converted, the label of the only generalized transition is the regular expression for the language accepted by the original DFA.
Eliminating States

Suppose we want to eliminate state q_k, and q_i and q_j are two of the remaining states ($i = j$ is possible).

How can we modify the transition label between q_i and q_j to reflect the fact that q_k will no longer be there?

- There are two paths between q_i and q_j
 - Direct path with regular expression r_{ij}
 - Path via q_k with the regular expression $r_{ik}r_{kk}^*r_{kj}$
Eliminating States

- There are two paths between \(q_i \) and \(q_j \)
 - Direct path with regular expression \(r_{ij} \)
 - Path via \(q_k \) with the regular expression \(r_{ik}r_{kk}^*r_{kj} \)
- After removing \(q_k \), the new label would be
 \[
 r'_{ij} = r_{ij} \cup r_{ik}r_{kk}^*r_{kj}
 \]
DFA-to-GNFA-RE Conversion Example

- DFA for binary numbers divisible by 3
- Initial GNFA
DFA-TO-GNFA-RE CONVERSION EXAMPLE

Let's eliminate q_2

$q_i = q_1, q_j = q_1, q_k = q_2$
Let’s eliminate q_1

\[
\begin{align*}
&\text{S} \quad \epsilon \\
&q_0 \quad 0 \\
&q_1 \quad 1 \\
&01*0
\end{align*}
\]
Let’s eliminate q_0

$1(01*0)*1 \cup 0$

So the regular expression we are looking for is $(1(01*0)*1 \cup 0)^*$
The Story So Far

- Regular Expressions
- Define
- Can be converted to
- DFAs
- Recognize
- Regular Languages
The Story So Far

1. Regular Expressions
 - Regular Expression to N DFA-ε conversion

2. NFA with ε-transitions
 - Determinization

3. DFA
 - Minimization

4. Minimal DFA

5. DFA to Regular Expression conversion
DFA Minimization

- Every DFA defines a unique language
- But in general, there may be many DFAs for a given language.
- These DFAs accept the same language.
In practice, we are interested in the DFA with the minimal number of states

- Use less memory
- Use less hardware (flip-flops)
Indistinguishable States

- Two states \(p \) and \(q \) of a DFA are called indistinguishable if for all \(\omega \in \Sigma^* \),
 - \(\delta^*(p, \omega) \in F \iff \delta^*(q, \omega) \in F \), and
 - \(\delta^*(p, \omega) \notin F \iff \delta^*(q, \omega) \notin F \),

- Basically, these two states behave the same for all possible strings!
- Hence, a state \(p \) is **distinguishable** from state \(q \)
 - If there is at least one string \(\omega \) such that either \(\delta^*(p, \omega) \in F \) or \(\delta^*(q, \omega) \in F \) and the other is **not**
Indistinguishability

- Indistinguishable states behave the same for all possible strings!
- So why have indistinguishable states? All but one can be eliminated!
- Indistinguishability is an equivalence relation
 - Reflexive: Each state is indistinguishable from itself
 - Symmetric: If p is indistinguishable from q, then q is indistinguishable from p
 - Transitive: If p is indistinguishable from q, and q is indistinguishable from r, then p is indistinguishable from r.
Indistinguishability and Partitions

- Indistinguishability is an equivalence relation
 - Reflexive: Each state is indistinguishable from itself
 - Symmetric: If p is indistinguishable from q, then q is indistinguishable from p
 - Transitive: If p is indistinguishable from q, and q is indistinguishable from r, then p is indistinguishable from r

- An equivalence relation on a set Q induces a partitioning $\pi = \{\pi_1, \pi_2, \cdots, \pi_k\}$ such that
 - For all i and j, $\pi_i \cap \pi_j = \emptyset$
 - $\bigcup_i \pi_i = Q$
Identifying Distinguishable States

- **Basis**: Any nonaccepting state is distinguishable from any accepting state ($\omega = \epsilon$).
- **Induction**: States p and q are distinguishable if there is some input symbol a such that $\delta(p, a)$ is distinguishable from $\delta(q, a)$.
- All other pairs of states are **indistinguishable**, and can be merged appropriately.
- p is distinguishable from q and r by basis
- Both q and r go to p with 0, so no string beginning with 0 will distinguish them
- Starting in either q and r, an input of 1 takes us to either, so they are indistinguishable.
The Procedure MARK

1. Remove all inaccessible states
2. Consider all pairs of states \((p, q)\)
 - if \(p \in F\) and \(q \notin F\) or \(p \notin F\) and \(q \in F\), mark \((p, q)\) as distinguishable
3. Repeat the following until no previously unmarked pairs are marked
 - \(\forall p, q \in Q\) and \(\forall a \in \Sigma\), find \(\delta(p, a) = p'\) and \(\delta(q, a) = q'\)
 - if \((p', q')\) is marked distinguishable then mark \((p, q)\) distinguishable.
Minimization Example

- q_1 and q_2 are equivalent
- q_3 and q_4 are equivalent
- q_5 and q_6 are equivalent

<table>
<thead>
<tr>
<th></th>
<th>q_0</th>
<th>q_1</th>
<th>q_2</th>
<th>q_3</th>
<th>q_4</th>
<th>q_5</th>
<th>q_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1</td>
<td>\times</td>
<td>\bullet</td>
<td>\bullet</td>
<td>\bullet</td>
<td>\bullet</td>
<td>\bullet</td>
<td>\bullet</td>
</tr>
<tr>
<td>q_2</td>
<td>\times</td>
<td>\checkmark</td>
<td>\bullet</td>
<td>\bullet</td>
<td>\bullet</td>
<td>\bullet</td>
<td>\bullet</td>
</tr>
<tr>
<td>q_3</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\bullet</td>
<td>\bullet</td>
<td>\bullet</td>
<td>\bullet</td>
</tr>
<tr>
<td>q_4</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\xmark</td>
<td>\checkmark</td>
<td>\bullet</td>
<td>\bullet</td>
</tr>
<tr>
<td>q_5</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\bullet</td>
</tr>
<tr>
<td>q_6</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\checkmark</td>
</tr>
</tbody>
</table>
The Minimized DFA

- q_1 and q_2 are equivalent
- q_3 and q_4 are equivalent
- q_5 and q_6 are equivalent

<table>
<thead>
<tr>
<th>q_1</th>
<th>q_2</th>
<th>q_3</th>
<th>q_4</th>
<th>q_5</th>
<th>q_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>✗</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>q_0</th>
<th>q_1</th>
<th>q_2</th>
<th>q_3</th>
<th>q_4</th>
<th>q_5</th>
<th>q_6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Let M be the DFA found by the previous procedure (with states $P = \{p_0, p_1, \ldots, p_m\}$).

Suppose there is an equivalent DFA M_1 with δ_1 but with fewer states ($Q = \{q_0, q_1 \ldots, q_n\} n < m$).

Since all states of M are distinguishable, there must be distinct strings, $\omega_1, \omega_2, \ldots, \omega_m$ such that $\delta^*(p_0, \omega_i) = p_i$ for all i.

(CARNEGIE MELLON UNIVERSITY IN QATAR) Slides for 15-453 Lecture 5 Spring 2011 28 / 39
Since M_1 has fewer states than M, then there must be strings ω_k and ω_l (among the previous ω'_is) such that $\delta_1^*(q_0, \omega_k) = \delta_1^*(q_0, \omega_l)$ (Pigeonhole principle-see later)

Since p_k and p_l are distinguishable, there must be some string x such that

$\delta^*(p_0, \omega_k \cdot x) = \delta^*(p_k, x)$ is a final state and
$\delta^*(p_0, \omega_l \cdot x) = \delta^*(p_l, x)$ is NOT a final state, or vice versa.

So $\omega_k \cdot x$ is accepted and $\omega_l \cdot x$ is not (or vice versa)
But

\[\delta_1^*(q_0, \omega_k \cdot x) = \delta_1^*(\delta_1^*(q_0, \omega_k), x) = \delta_1^*(\delta_1^*(q_0, \omega_l), x) = \delta_1^*(q_0, \omega_l \cdot x) \]

So \(M_1 \) either accepts both \(\omega_k \cdot x \) and \(\omega_l \cdot x \) or rejects both. So \(M_1 \) and \(M \) can not be equivalent.

So \(M_1 \) can not exist.
DFA minimization is not covered in the textbook.

See

Introduction to Automata Theory, Languages and Computation, by Hopcroft, Motwani and Ullman, Addison Wesley, 3rd edition, Section 4.4

for more formal details.
CLOSURE PROPERTIES OF REGULAR LANGUAGES

- Regular languages are closed under
 - Union
 - Intersection
 - Difference
 - Concatenation
 - Star Closure
 - Complementation
 - Reversal

operations
Suppose Σ and Γ are alphabets, the function $h : \Sigma \rightarrow \Gamma^*$ is called a homomorphism.

It is a substitution in which a single symbol $a \in \Sigma$ is replaced by a string $x \in \Gamma^*$, that is. $h(a) = x$.

Extend to strings: $h(\omega) = h(a_1) \ldots, h(a_n)$ where $\omega \in \Sigma^*$ and $a_i \in \Sigma$.

Extend to languages $h(L) = \{ h(\omega) | \omega \in L \}$.

$h(L)$ is called the homomorphic image of L.
HOMOMORPHISM EXAMPLE

- Let $\Sigma = \{a, b\}$ and $\Gamma = \{a, b, c\}$
 - $h(a) = ab$ and $h(b) = bbc$
 - $h(aba) = abbbcab$

THEOREM

Let h be a homomorphism. If L is regular then $h(L)$ is also regular.

PROOF

Obvious: Modify the DFA transitions
Theorem

Given a standard representation (DFA, NFA, RE) of any regular language \(L \) on \(\Sigma \) and any \(\omega \) in \(\Sigma^* \), there exists an algorithm to determine if \(\omega \) is in \(L \) or not.

Proof.

Represent the language with a DFA and test if \(\omega \) is accepted or not.
Theorem

There exist algorithms for determining whether a regular language in standard representation is empty or not.

Proof.

Represent the language with a DFA. If there is a path from the start state to some final state, the language is not empty.
Theorem

There exist algorithms for determining whether a regular language in standard representation is finite or infinite.

Proof.

Find all states that form a cycle. If any of these are on path from the start state to a final state, then the language is infinite.

Proof.

If DFA with n states accepts some string of length between n and $2n - 1$ then it accepts an infinite set of strings. (needs Pumping Lemma)
Theorem

Given standard representations of two regular languages L_1 and L_2, there exists an algorithm to determine if $L_1 = L_2$.

Proof.

Compute $L_3 = (L_1 - L_2) \cup (L_2 - L_1)$ which has to be regular. If $L_3 = \emptyset$ then $L_1 = L_2$.
More Decision Problems

- To decide if $L_1 \subseteq L_2$, check if $L_1 - L_2 = \emptyset$
- To decide if $\epsilon \in L$, check if $q_0 \in F$
- To decide if L contains ω such that $\omega = \omega^R$
 - Let M be the DFA for L. Construct M^R.
 - Construct $M \cap M^R$ using the cross-product construction
 - Check if $L(M \cap M^R) \neq \emptyset$.