FORMAL LANGUAGES, AUTOMATA AND COMPUTATION

PROVING PROBLEMS NP-COMPLETE
Complexity Classes: P and NP

Polynomial time reducibility

Satisfiability Problem (SAT)
 - CNF, 3CNF Forms
 - 3SAT Problem

NP-Completeness

NP-Completeness of the SAT problem
 - Reduction from accepting computation histories of nondeterministic TMs to a SAT formula such that
 - A polynomial time NTM accepts \(w \) iff the corresponding SAT formula has a satisfying assignment.

3SAT is NP-Complete.
Showing Problems NP-complete

- Remember that in order to show a language X to be NP-complete we need to show
 1. X is in NP, and
 2. Every Y in NP is polynomial time reducible to X,

- Part 1 is (usually) easy. You argue that there is polynomial time verifier for X, which, given a solution (certificate), will verify in polynomial time, that, it is a solution.

- For part 2, pick a known NP-complete problem Z
 1. We already know that all problems Y in NP reduce to Z in polynomial time.
 2. We produce a polynomial time algorithm that reduces all instances of Z to some instance of X.
 3. So $Y \leq_P Z$ and $Z \leq_P X$ then $Y \leq_P X$.
Theorem

CLIQUE is NP-complete.

Proof

1. We know 3SAT is NP-complete.
2. We know that $3SAT \leq_P CLIQUE$.
3. Hence $CLIQUE$ is NP-complete.
The Vertex Cover Problem

Definition – Vertex Cover
Given an undirected graph G, a vertex cover of G is a subset of the nodes where every edge of G touches one of those nodes.

$\text{VERTEX-COVER} = \{ \langle G, k \rangle \mid G \text{ is an undirected graph that has a } k\text{-node vertex cover} \}$.
THE VERTEX COVER PROBLEM

THEOREM

VERTEX-COVER is NP-complete.

PROOF IDEA

- Show VERTEX-COVER is in NP.
 - Easy, the certificate is the vertex cover of size \(k \).
- We reduce an instance of 3SAT, \(\phi \), to a graph \(G \) and an integer \(k \) so that \(\phi \) is satisfiable whenever \(G \) has a vertex cover of size \(k \).
- We employ a concept called gadgets, groups of nodes with specific functions, in the graph.
 - Variable gadgets – representing literals
 - Clause gadgets – representing clauses
The Vertex Cover Problem

- Let ϕ be a 3-cnf formula with m variables and l clauses.
- We construct in polynomial-time, an instance of $\langle G, k \rangle$ where $k = m + 2l$.
 - For each variable x in ϕ, we add two nodes to G labeled x and \overline{x}, connected by an edge (variable gadget).
 - For every clause $(\ell_1 \lor \ell_2 \lor \ell_3)$ in ϕ, we add 3 nodes labeled ℓ_1, ℓ_2 and ℓ_3, with edges between every pair so that they form a triangle (clause gadget).
 - We add an edge between any two identically labelled nodes, one from a variable gadget and one from a clause gadget.
The Vertex Cover Problem

\[(x_1 \lor x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_2)\]

Variables and negations of variables

#nodes = 2(#variables) + 3(#clauses)
THE VERTEX COVER PROBLEM

\[(x_1 \lor x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_2)\]

Variables and negations of variables

\[\phi \text{ satisfiable} \implies \text{put "true" literals on top in vertex cover}\]

For each clause, pick a true literal and put other 2 in vertex cover
THE VERTEX COVER PROBLEM

\[(x_1 \lor x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_2)\]

Variables and negations of variables

\[k = 2(\#\text{clauses}) + (\#\text{variables})\]
THE HAMILTONIAN PATH PROBLEM

DEFINITION - HAMILTONIAN PATH

(Recall that) A Hamiltonian path in a directed graph G is a directed path that goes through each node exactly once.

DEFINITION HAMILTONIAN PATH PROBLEM

$HAMPATH = \{ \langle G, s, t \rangle \mid G \text{ is a directed graph with a Hamiltonian path from } s \text{ to } t \}$.

![Diagram of directed graph with labeled nodes and edges]
The Hamiltonian Path Problem

Theorem

HAMPATH is NP-complete.

Proof Idea

- We show $3SAT \leq_P HAMPATH$.
- We again use gadgets to represent the variables and clauses.
- For a given 3-cnf formula with k clauses

$$\phi = (a_1 \lor b_1 \lor c_1) \land (a_2 \lor b_2 \lor c_2) \land \cdots \land (a_k \lor b_k \lor c_k)$$

where each a_i, b_i or c_i is a literal x or \overline{x}. We have l variables $x_1, x_2, \ldots x_l$.
The Hamiltonian Path Problem

- 1-node gadgets for clauses
- Diamond-shaped gadgets for variables
The Hamiltonian Path Problem

- The middle spine in each diamond has $3k + 3$ nodes.
 - 3 nodes per clause + 1 to isolate them from the two literal nodes and 2 nodes on each side for the literals x_i, \bar{x}_i.
The Hamiltonian Path Problem

- If x_i appears in clause c_j, we add two edges from j^{th} group in the spine to the j^{th} clause node in the i^{th} diamond.
The Hamiltonian Path Problem

- If \overline{x}_i appears in clause c_j, we add two edges from j^{th} group in the spine to the j^{th} clause node in the i^{th} diamond, but in the reverse direction.
The Hamiltonian Path Problem

Suppose ϕ is satisfiable.
Ignoring the clause nodes, we note that the Hamiltonian path
- starts at s
- goes through each diamond
- ends up at t.

In diamond i, it either goes left-to-right or right-to-left depending on the truth value of variable x_i.
The clause nodes can be incorporated into the path using the detours we provided.

So if x_i is true and is in clause c_j, we can take a detour to node for c_j and back to the spine in the right direction.

Note that each detour is **optional** but we have to incorporate c_j only once.
The Hamiltonian Path Problem

- The clause nodes can be incorporated into the path using the detours we provided.
- So if $\overline{x_i}$ is true and is in clause c_j, we can take a detour to node for c_j and back to the spine in the reverse direction.
How about the reverse direction? If \(G \) has a Hamiltonian path then \(\phi \) has a satisfying assignment?

If the path is normal, that is, it goes through from \(s \) zigzagging through the diamonds, then clearly there is a satisfying assignment.

The following case can not happen!
The Undirected Hamiltonian Path

Definition Hamiltonian Path Problem

\[UHAMPATH = \{ \langle G, s, t \rangle \mid G \text{ is an undirected graph with a Hamiltonian path from } s \text{ to } t \} \].

Theorem

UHAMPATH is NP-complete.

Proof Idea

- We reduce *HAMPATH* to *UHAMPATH*.
- All nodes except *s* and *t* in the directed graph *G*, map to 3 nodes in the undirected graph *G′*.
- *G* has a Hamiltonian path \(\Leftrightarrow *G′* has an undirected Hamiltonian path.
The Undirected Hamiltonian Path

Theorem

$UHAMPATH$ is NP-complete.

Proof

- s in G maps to s^{out} in G'.
- t in G maps to t^{in} in G'.
- Any other node u_i maps to $u_i^{\text{in}}, u_i^{\text{mid}}, u_i^{\text{out}}$ in G'.
 - All arcs coming to u_i in G become edges incident on u_i^{in} in G'.
 - All arcs going out from u_i in G become edges incident on u_i^{out} in G'.
Note that if \(s, u_1, u_2, \ldots, u_k, t \) is a Hamiltonian path in \(G \) then

\[
\begin{align*}
&\quad s^{\text{out}}, u_1^{\text{in}}, u_1^{\text{mid}}, u_1^{\text{out}}, u_2^{\text{in}}, u_2^{\text{mid}}, u_2^{\text{out}}, \ldots, u_k^{\text{out}}, t^{\text{in}}
\end{align*}
\]

is a Hamiltonian path in \(G' \).

Any Hamiltonian path between \(s^{\text{out}} \) and \(t^{\text{in}} \), must go through the triple of nodes except for the start and end nodes.
The Subset Sum Problem

\[\text{SUBSET-SUM} = \{ \langle S, t \rangle \mid S = \{ x_1, \ldots, x_m \} \text{ and for some } \{ y_1, \ldots, y_n \} \subseteq S, \sum y_i = t \} \]

Theorem

\text{SUBSET-SUM} is NP-complete.

Proof Idea

- We reduce 3SAT to an instance of the \text{SUBSET-SUM} problem with a set \(S \) and a bound \(t \),
 - so that if a formula \(\phi \) has a satisfying assignment,
 - then \(S \) has a subset \(T \) that adds to \(t \)
- We already know that \text{SUBSET-SUM} is in NP.
The Subset Sum Problem

Let ϕ be a formula with variables x_1, x_2, \ldots, x_l and clauses c_1, \ldots, c_k.

We compute $m = 2 \times l + 2 \times k$ (large) numbers from ϕ and a bound t

Such that when we choose the numbers corresponding to the literals in the satisfying assignment, they add to t.

The Subset Sum Problem

For \(\phi = (x_1 \lor \overline{x_2} \lor x_3) \land (x_2 \lor x_3 \lor \cdots) \land \cdots \land (\overline{x_3} \lor \cdots \lor \cdots) \)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>\ldots</th>
<th>l</th>
<th>c_1</th>
<th>c_2</th>
<th>\ldots</th>
<th>c_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_1)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
</tr>
<tr>
<td>(z_1)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
</tr>
<tr>
<td>(y_2)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>\ldots</td>
<td>0</td>
</tr>
<tr>
<td>(z_2)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
</tr>
<tr>
<td>(y_3)</td>
<td>1</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(z_3)</td>
<td>1</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>\ldots</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(\vdots)</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td></td>
</tr>
<tr>
<td>(y_l)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
</tr>
<tr>
<td>(z_l)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
</tr>
<tr>
<td>(g_1)</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td></td>
</tr>
<tr>
<td>(h_1)</td>
<td>1</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
<td>1</td>
<td>\ldots</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g_2)</td>
<td>1</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
<td>1</td>
<td>\ldots</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(h_2)</td>
<td>1</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
<td>1</td>
<td>\ldots</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g_k)</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td></td>
</tr>
<tr>
<td>(h_k)</td>
<td>1</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
<td>1</td>
<td>\ldots</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>\ldots</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>\ldots</td>
<td>3</td>
</tr>
</tbody>
</table>
The Subset Sum Problem

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>...</th>
<th>i</th>
<th>c_1</th>
<th>c_2</th>
<th>...</th>
<th>c_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>z_1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>y_2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>z_2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>y_3</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>z_3</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>...</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>y_l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>z_l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>g_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>h_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>g_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>h_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>g_k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>h_k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>t</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>...</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>...</td>
</tr>
</tbody>
</table>

- We choose one of the numbers \(y_i \) if \(x_i = 1 \), or \(z_i \) if \(x_i = 0 \).
- The left part of \(t \) will add up the right number.
- The right side columns will at least be 1 each.
- We take enough of the \(g \) and \(h \)'s to make them add up to 3.