THE LANDSCAPE OF THE CHOMSKY HIERARCHY
A reduction is a way of converting one problem to another problem, so that the solution to the second problem can be used to solve the first problem.

- Finding the area of a rectangle, reduces to measuring its width and height
- Solving a set of linear equations, reduces to inverting a matrix.

Reducibility involves two problems A and B.

- If A reduces to B, you can use a solution to B to solve A
- When A is reducible to B solving A can not be “harder” than solving B.
- If A is reducible to B and B is decidable, then A is also decidable.
- If A is undecidable and reducible to B, then B is undecidable.
Theorem 5.1

\[\text{HALT}_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \} \text{ is undecidable.} \]

Proof

- Use the idea that “If A is undecidable and reducible to B, then B is undecidable.”
- Suppose R decides \(\text{HALT}_{TM} \). We construct S to decide \(A_{TM} \).
- \(S = \) “On input \(\langle M, w \rangle \)
 1. Run R on input \(\langle M, w \rangle \).
 2. If R rejects reject.
 3. If R accepts, simulate M on w until it halts.
 4. If M has accepted, accept; If M has rejected, reject.”
- Since \(A_{TM} \) is reduced to \(\text{HALT}_{TM} \), \(\text{HALT}_{TM} \) is undecidable.
Theorem 5.2

\[E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \Phi \} \text{ is undecidable.} \]

- Suppose \(R \) decides \(E_{TM} \). We try to construct \(S \) to decide \(A_{TM} \) using \(R \).
 - Note that \(S \) takes \(\langle M, w \rangle \) as input.
- One idea is to run \(R \) on \(\langle M \rangle \) to check if \(M \) accepts some string or not – but that that does not tell us if \(M \) accepts \(w \).
- Instead we modify \(M \) to \(M_1 \). \(M_1 \) rejects all strings other than \(w \) but on \(w \), it does what \(M \) does.
- Now we can check if \(L(M_1) = \Phi \).
Theorem 5.2

$E_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) = \Phi\}$ is undecidable.

Proof

- For any w define M_1 as

 $M_1 = "\text{On input } x:\n 1. \text{If } x \neq w, \text{ reject.}\n 2. \text{If } x = w, \text{ run } M \text{ on input } w \text{ and accept if } M \text{ does."}\n
- Note that M_1 either accepts w only or nothing!
Assume \(R \) decides \(E_{TM} \)

\(S \) defines below uses \(R \) to decide on \(A_{TM} \)
\(S = \text{“On input } \langle M, w \rangle \)

1. Use \(\langle M, w \rangle \) to construct \(M_1 \) above.
2. Run \(R \) on input \(\langle M_1 \rangle \)
3. If \(R \) accepts, reject, if \(R \) rejects, accept.

So, if \(R \) decides \(M_1 \) is empty,
- then \(M \) does NOT accept \(w \),
- else \(M \) accepts \(w \).

If \(R \) decides \(E_{TM} \) then \(S \) decides \(A_{TM} \) – Contradiction.
Can we find out if a language accepted by a Turing machine M is accepted by a simpler computational model?

- Is the language of a TM actually a regular language? (REGULAR_{TM})
- Is the language of a TM actually a CFL? (CFL_{TM})
- Does that language of a TM have an “interesting” property?
 - Rice’s Theorem.
Testing for Regularity

\[\text{REGULAR}_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language} \} \] is undecidable.

Proof Idea

- We assume \(\text{REGULAR}_{TM} \) is decidable by a TM \(R \) and use this assumption to construct a TM \(S \) that decides \(A_{TM} \).
- The basic idea is for \(S \) to take as input \(\langle M \rangle \) and modify \(M \) into \(M_2 \) so that the resulting TM recognizes a regular language if and only if \(M \) accepts \(w \).
- \(M_2 \)
 - accepts \(\{ 0^n1^n \mid n \geq 0 \} \) if \(M \) does not accept \(w \),
 - but recognizes \(\Sigma^* \) if \(M \) accepts \(w \).
PROOF IDEA – CONTINUED

- M_2 accepts $\{0^n1^n \mid n \geq 0\}$ if M does not accept w, but recognizes Σ^* if M accepts w.
- What does M_2 look like?
- $M_2 =$ “On input x
 1. If x has the form 0^n1^n, accept.
 2. If x does not have this form, run M on input w and accept if M accepts w.”
- All strings x (that is Σ^*) are accepted if M accepts w.
Testing for Regularity

\begin{align*}
S & \rightarrow \text{Build } M_2 \\
< M_2 > & \rightarrow \text{Is } L(M_2) \text{ Regular?} \\
R & \rightarrow M \text{ accepts } w \\
& \rightarrow M \text{ rejects } w
\end{align*}

\begin{align*}
\text{Is } x = a^n b^n \text{? } M_2 & \\
\text{Yes} & \rightarrow \text{Run } M \text{ on } w \\
& \rightarrow \text{Accept} \\
\text{No} & \rightarrow \text{Reject}
\end{align*}

So \(L(M_2) = \Sigma^* \) if \(M \) accepts \(w \)

\(L(M_2) = \{ a^n b^n \} \) otherwise
TESTING FOR REGULARITY

PROOF

- \(S = \text{“On input } \langle M, w \rangle \text{, where } M \text{ is a TM and } w \text{ is a string:} \)
- 1. Construct the following TM \(M_2 \).
- 2. \(M_2 = \text{“On input } x \text{”} \)
 1. If \(x \) has the form \(0^n1^n \), accept.
 2. If \(x \) does not have this form, run \(M \) on input \(w \) and accept if \(M \) accepts \(w \).”
- 3. Run \(R \) on \(\langle M_2 \rangle \)
- 4. If \(R \) accepts, accept, if \(R \) rejects, reject.

- So, \(R \) will say \(M_2 \) is a regular language, if \(M \) accepts \(w \).
- \(S \) says “\(M \) accepts \(w \)” if \(R \) decides \(M_2 \) is regular – Contradiction!
Testing for Language Equality

Theorem 5.4

\[EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \] is undecidable.

Proof Idea

- We reduce \(E_{TM} \) (the emptiness problem) to this problem.
- If one of the languages is empty, determining equality is the same as determining if the second language is empty!
- In fact, the \(E_{TM} \) is a special case of the \(EQ_{TM} \) problem!!
Theorem 5.4

\[EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \text{ is undecidable.} \]

Proof

- Assume \(R \) decides \(EQ_{TM} \)
- \(S = \) “On input \(\langle M \rangle \) where \(M \) is a TM:
 1. Run \(R \) on input \(\langle M, M_1 \rangle \) where \(M_1 \) is a TM that rejects all inputs.
 2. If \(R \) accepts, accept; if \(R \) rejects reject”

- Thus, if \(R \) decides \(EQ_{TM} \), then \(S \) decides \(E_{TM} \)
- But \(E_{TM} \) is undecidable, so \(EQ_{TM} \), must be undecidable.
An accepting computation history for a TM is a sequence of configurations

\[C_1, C_2, \ldots, C_l \]

such that
- \(C_1 \) is the start configuration for input \(w \)
- \(C_l \) is an accepting configuration, and
- each \(C_i \) follows legally from the preceding configuration.

A rejecting computation history is defined similarly.

Computation histories are finite sequences – if \(M \) does not halt on \(w \), there is no computation history.

Deterministic v.s nondeterministic computation histories.
Suppose we cripple a TM so that the head never moves outside the boundaries of the input string. Such a TM is called a linear bounded automaton (LBA). Despite their memory limitation, LBAs are quite powerful.

Lemma

Let M be a LBA with q states, g symbols in the tape alphabet. There are exactly qng^n distinct configurations for a tape of length n.

Proof.

- The machine can be in one of q states.
- The head can be on one of the n cells.
- At most g^n distinct strings can occur on the tape.
Decidability of LBA Problems

Theorem 5.9

\[A_{LBA} = \{ \langle M, w \rangle \mid M \text{ is an LBA that accepts string } w \} \text{ is decidable.} \]

Proof Idea

- We simulate LBA \(M \) on \(w \) with a TM \(L \) (which is NOT an LBA!)
- If during simulation \(M \) accepts or rejects, we accept or reject accordingly.
- What happens if the LBA \(M \) loops?
 - Can we detect if it loops?
- \(M \) has a finite number of configurations.
 - If it repeats any configuration during simulation, it is in a loop.
 - If \(M \) is in a loop, we will know this after a finite number of steps.
 - So if the LBA \(M \) has not halted by then, it is looping.
Theorem 5.9

\[A_{LBA} = \{ \langle M, w \rangle \mid M \text{ is an LBA that accepts string } w \} \] is decidable.

Proof

- The following TM decides \(A_{LBA} \).
 - \(L = "\text{On input } \langle M, w \rangle" \)
 - 1. Simulate \(M \) on for \(qng^n \) steps or until it halts.
 - 2. If \(M \) has halted, *accept* if it has accepted, and *reject* if it has rejected. If it has NOT halted, *reject*.

LBAs and TMs differ in one important way. \(A_{LBA} \) is decidable.
Now for a really wild and crazy idea!
Consider an accepting computation history of a TM M, C_1, C_2, \ldots, C_l
Note that each C_i is a string.
Consider the string

$$\# C_1 \# C_2 \# C_3 \# \cdots \# C_l \#$$

The set of all valid accepting histories is also a language!!
This string has length m and an LBA B can check if this is a valid computation history for a TM M accepting w.
Check if $C_1 = q_0 w_1 w_2 \cdots w_n$
Check if $C_i = \cdots q_{\text{accept}} \cdots$
Check if each C_{i+1} follows from C_i legally.
Note that B is not constructed for the purpose of running it on any input!
If $L(B) \neq \emptyset$ then M accepts w
Decidability of LBA Problems

Theorem 5.10

\[E_{LBA} = \{ \langle M \rangle \mid M \text{ is an LBA and } L(M) = \Phi \} \text{ is undecidable.} \]

Proof.

1. Suppose TM \(R \) decides \(E_{LBA} \), we can construct a TM \(S \) which decides \(A_{TM} \).
2. \(S = “ \text{On input } \langle M, w \rangle, \text{ where } M \text{ is a TM and } w \text{ is a string} \)
 1. Construct LBA \(B \) from \(M \) and \(w \) as described earlier.
 2. Run \(R \) on \(\langle B \rangle \).
 3. If \(R \) rejects, accept; if \(R \) accepts, reject.”
3. So if \(R \) says \(L(B) = \Phi \), the \(M \) does NOT accept \(w \).
4. If \(R \) says \(L(B) \neq \Phi \), the \(M \) accepts \(w \).
5. But, \(A_{TM} \) is undecidable – contradiction.