§ 1.2 INDUCTION AND RECURSION

Induction

There is one special type of construction which occurs frequently both in logic and in other branches of mathematics. We may want to construct a certain subset of a set U by starting with some initial elements of U, and applying certain operations to them over and over again. The set we seek will be the smallest set containing the initial elements and closed under the operations. Its members will be those elements of U which can be built up from the initial elements by applying the operations a finite number of times.

In the special case of immediate interest to us, U is the set of expressions, the initial elements are the sentence symbols, and the operations are \mathcal{F}_e, \mathcal{F}_s, etc. The set to be constructed is the set of wfs. But we will encounter other special cases later, and it will be helpful to view the situation abstractly here.

To simplify our discussion, we will consider an initial set $B \subseteq U$ and a class \mathcal{F} of functions containing just two members f and g, where

$$f : U \times U \to U \quad \text{and} \quad g : U \to U.$$

Thus f is a binary operation on U and g is a unary operation. (Actually \mathcal{F} need not be finite; it will be seen that our simplified discussion here is, in fact, applicable to a more general situation. \mathcal{F} can be any set of relations on U, and in Chapter 2 this greater generality will be utilized. But the case discussed here is easier to visualize and is general enough to illustrate the ideas. For a less restricted version, see Exercise 3.)

If B contains points a and b, then the set C we wish to construct will contain, for example,

$$b, f(b, b), g(a), f(g(a), f(b, b)), g(f(g(a), f(b, b))).$$

Of course these might not all be distinct. The idea is that we are given certain bricks to work with, and certain types of mortar, and we want C to contain just the things we are able to build. In defining C more formally, we have our choice of two definitions. We can define it "from the top down" as follows: Say that a subset S of U is closed under f and g iff whenever elements x and y belong to S, then so do $f(x, y)$ and $g(x)$. Say that S is inductive iff $B \subseteq S$ and S is closed under f and g. Let C^* be the intersection of all the inductive subsets of U; thus

$$x \in C^* \iff x \text{ belongs to every inductive subset of } U.$$

It is not hard to see (and the reader should check) that C^* is itself inductive. Furthermore, C^* is the smallest such set, being included in all the other inductive sets.

The second (and equivalent) definition works "from the bottom up." We want C_\ast to contain the things which can be reached from B by applying f and g a finite number of times. Temporarily define a construction sequence to be a finite sequence $\langle x_0, \ldots, x_n \rangle$ of elements of U such that for each $i \leq n$ we have at least one of

$$x_i \in B,$$

$$x_i = f(x_j, x_k) \quad \text{for some } j < i, k < i,$$

$$x_i = g(x_j) \quad \text{for some } j < i.$$

Then let C_\ast be the set of all points x such that some construction sequence ends with x.

Let C_n be the set of points x such that some construction sequence of length n ends with x. Then $C_1 = B$,

$$C_1 \subseteq C_2 \subseteq C_3 \subseteq \cdots,$$

and $C_\ast = \bigcup_n C_n$. For example, $g(f(a, f(b, b)))$ is in C_3 and hence in C_\ast as can be seen by contemplating the tree shown:

$$g(f(a, f(b, b)))$$

$$f(a, f(b, b))$$

$$a \quad f(b, b)$$

$$b \quad b$$

We obtain a construction sequence for $g(f(a, f(b, b)))$ by squashing this tree into a linear ordering.

Examples 1. The natural numbers. Let U be the set of all real numbers, and let $B = \{0\}$. Take one operation S, where $S(x) = x + 1$. Then

$$C_\ast = \{0, 1, 2, \ldots\}.$$

The set C_\ast of natural numbers contains exactly those numbers obtainable from 0 by applying the successor operation repeatedly.
2. The integers. Let \(U \) be the set of all real numbers; let \(B = \{0\} \). This time take two operations, the successor operation \(S \) and the predecessor operation \(P \):

\[
S(x) = x + 1 \quad \text{and} \quad P(x) = x - 1.
\]

Now \(C_* \) contains all the integers,

\[
C_* = \{ \ldots, -2, -1, 0, 1, 2, \ldots \}.
\]

Notice that there is more than one way of obtaining 2 as a member of \(C_* \).
For 2 is \(S(S(0)) \), but it is also \(S(P(S(S(0)))) \).

3. The algebraic functions. Let \(U \) contain all functions whose domain and range are each sets of real numbers. Let \(B \) contain the identity function and all constant functions. Let \(F \) contain the operations (on functions) of addition, multiplication, division, and root extraction. Then \(C_* \) is the class of algebraic functions.

4. The well-formed formulas. Let \(U \) be the set of all expressions and let \(B \) be the set of sentence symbols. Let \(F \) contain the five formula-building operations on expressions: \(\land, \lor, \neg, \exists, \forall \). Then \(C_* \) is the set of all wffs.

At this point we should verify that our two definitions are actually equivalent, i.e., that \(C^* = C_* \).

To show that \(C^* \subseteq C_* \) we need only check that \(C_* \) is inductive, i.e.,
that \(B \subseteq C_* \) and \(C_* \) is closed under the functions. Clearly \(B = C_1 \subseteq C_* \).
If \(x \) and \(y \) are in \(C_* \), then we can concatenate their construction sequences and append \(f(x, y) \) to obtain a construction sequence placing \(f(x, y) \) in \(C_* \). Similarly, \(C_* \) is closed under \(f \).

Finally, to show that \(C_* \subseteq C^* \) we consider a point in \(C_* \) and a construction sequence \(\langle x_0, \ldots, x_n \rangle \) for it. By ordinary induction on \(i \), we can see that \(x_i \in C^* \), \(i \leq n \). First \(x_0 \in B \subseteq C^* \). For the inductive step we use the fact that \(C^* \) is closed under the functions. Thus we conclude that

\[
\bigcup_n C_n = C_* = C^* = \bigcap \{ S : S \text{ is inductive} \}.
\]

(A parenthetical remark: Suppose our present study is embedded in axiomatic set theory, where the natural numbers are usually defined from the top down. Then our definition of \(C_* \) (employing finiteness and hence natural numbers) is not really different from our definition of \(C^* \). But we are not working within axiomatic set theory; we are working within intuitive mathematics. And the notion of natural number seems to be a solid, well-understood intuitive concept.)

Since \(C^* = C_* \), we call the set simply \(C \) and refer to it as the set generated from \(B \) by the functions in \(F \). We will often want to prove theorems by using the following:

Induction Principle Assume that \(C \) is the set generated from \(B \) by the functions in \(F \). If \(S \) is a subset of \(C \) which includes \(B \) and is closed under the functions of \(F \), then \(S \subseteq C \).

Proof \(S \) is inductive, so \(C = C^* \subseteq S \). We are given the other inclusion.

The special case now of interest to us is, of course, Example 4. Here \(C \) is the class of wffs generated from the set of sentence symbols by the formula-building operations. This special case has interesting features of its own. Both \(\alpha \) and \(\beta \) are proper segments of \(F_2(\alpha, \beta) \), i.e., of \((\alpha \land \beta) \). More generally, if we look at the family tree of a wff, we see that each constituent is a proper segment of the end product.

\[
(A_3 \iff (A_1 \iff A_2))
\]

\[
\begin{align*}
A_3 & \quad (A_1 \iff A_2) \\
A_1 & \quad (A_0 \iff A_3)
\end{align*}
\]

Suppose, for example, that we temporarily call an expression special if the only sentence symbols in it are among \(\{A_2, A_3, A_0\} \) and the only connective symbols in it are among \(\{\land, \iff\} \). Then no special wff requires \(A_0 \) or \(A_3 \) for its construction. In fact, every special wff belongs to the set \(C \), generated from \(\{A_2, A_3, A_0\} \) by \(\land \) and \(\iff \). (For we can use the induction principle to show that every wff either belongs to \(C \) or is not special.)

Recursion

We return now to the more abstract case. There is a set \(U \) (such as the set of all expressions), a subset \(B \) of \(U \) (such as the set of sentence symbols),

\footnote{The reader not already familiar with recursion is advised to postpone reading this subsection until after reading Section 1.3, where a specific application is encountered.}
and two functions f and g, where

$$f : U \times U \rightarrow U \quad \text{and} \quad g : U \rightarrow U.$$

C is the set generated from B by f and g.

The problem we now want to consider is that of defining a function on C recursively. That is, we suppose we are given

1. Rules for computing $\overline{h}(x)$ for $x \in B$.
2a. Rules for computing $\overline{h}(f(x, y))$, making use of $\overline{h}(x)$ and $\overline{h}(y)$.
2b. Rules for computing $\overline{h}(g(x))$, making use of $\overline{h}(x)$.

(For example, this is the situation discussed in Section 1.3, where \overline{h} is the extension of a truth assignment for B.) It is not hard to see that there can be at most one function \overline{h} on C meeting all the given requirements.

But it is possible that no such \overline{h} exists; the rules may be contradictory. For example, let

$$U = \text{the set of real numbers},$$

$$B = \{0\},$$

$$f(x, y) = x \cdot y,$$

$$g(x) = x + 1.$$

Then C is the set of natural numbers. Suppose we impose the following requirements on \overline{h}:

1. $\overline{h}(0) = 0$.
2a. $\overline{h}(f(x, y)) = f(\overline{h}(x), \overline{h}(y))$.
2b. $\overline{h}(g(x)) = \overline{h}(x) + 2$.

Then no such function \overline{h} can exist. (Try computing $\overline{h}(1)$, noting that we have both $1 = g(0)$ and $1 = f(g(0), g(0))$).

A similar situation is encountered in algebra.\(^1\) Suppose that you have a group G which is generated from B by the group multiplication and inverse operation. Then an arbitrary map of B into a group H is not necessarily extendible to a homomorphism of the entire group G into H. But if G happens to be a free group with set B of independent generators, then any such map is extendible to a homomorphism of the entire group.

\(^1\) It is hoped that examples such as this will be useful to the reader with some algebraic experience. The other readers will be glad to know that these examples are merely illustrative and not essential to our development of the subject.

Say that C is freely generated from B by f and g iff in addition to the requirements for being generated we have

1. f_C and g_C are one-to-one, and
2. The range of f_C, the range of g_C, and the set B are pairwise disjoint. (Here f_C and g_C are the restrictions of f and g to C.)

Recursion Theorem Assume that the subset C of U is freely generated from B by f and g, where

$$f : U \times U \rightarrow U,$$

$$g : U \rightarrow U.$$

Further assume that V is a set and $F, G,$ and h functions such that

$$h : B \rightarrow V,$$

$$F : V \times V \rightarrow V,$$

$$G : V \rightarrow V.$$

Then there is a unique function

$$\overline{h} : C \rightarrow V$$

such that

(i) For x in B, $\overline{h}(x) = h(x)$.

(ii) For x, y in C,

$$\overline{h}(f(x, y)) = F(\overline{h}(x), \overline{h}(y)),$$

$$\overline{h}(g(x)) = G(\overline{h}(x)).$$

Viewed algebraically, the conclusion of this theorem says that any map h of B into V can be extended to a homomorphism \overline{h} from C (with operations f and g) into V (with operations F and G).

If the content of the recursion theorem is not immediately apparent, try looking at it chromatically. You want to have a function \overline{h} which paints each member of C some color. You have before you

1. h, telling you how to color the initial elements in B;
2. F, which tells you how to combine the color of x and y to obtain the color of $f(x, y)$ (i.e., it gives $\overline{h}(f(x, y))$ in terms of $\overline{h}(x)$ and $\overline{h}(y)$);
3. G, which similarly tells you how to convert the color of x into the color of $g(x)$.

The danger is that of a conflict in which, for example, F is saying "green" but G is saying "red" for the same point (unluckily enough to be equal both to $f(x, y)$ and $g(z)$ for some x, y, z). But if C is freely generated, then this danger is avoided.

Examples Consider again the examples of the preceding subsection.

1. $B = \{0\}$ with one operation, the successor operation S. Then C is the set N of natural numbers. Since the successor operation is one-to-one, C is freely generated from $\{0\}$ by S. Therefore, by the recursion theorem, for any set V, any $a \in V$, and any $F : V \rightarrow V$ there is a unique $h : N \rightarrow V$ such that $h(0) = a$ and $h(S(x)) = F(h(x))$ for each $x \in N$. For example, there is a unique $h : N \rightarrow N$ such that $h(0) = 0$ and $h(S(x)) = 1 - h(x)$. This function has the value 0 at even numbers and the value 1 at odd numbers.

2. The integers are generated from $\{0\}$ by the successor and predecessor operations but not freely generated.

3. Freeness fails also for the generation of the algebraic functions in the manner described.

4. The wffs are freely generated from the sentence symbols by the five formula-building operations. The purpose of Section 1.4 is to prove this fact. It follows, for example, that there is a unique function h defined on the set of wffs such that

 $h(A) = 1$ for a sentence symbol A,

 $h(\neg \alpha) = 3 + h(\alpha)$,

 $h(\alpha \land \beta) = 3 + h(\alpha) + h(\beta),

and similarly for \lor, \rightarrow, and \leftrightarrow. This function gives the length of each wff.

Proof of the recursion theorem The idea is to let h be the union of many approximating functions. Temporarily call a function ν (which maps part of C into V) acceptable if it meets the conditions imposed on h by (i) and (ii). More precisely, ν is acceptable iff the domain of ν is a subset of C, the range a subset of V, and for any x and y in C:

(i') If x belongs to B and to the domain of ν, then $\nu(x) = h(x)$.

(ii') If $f(x, y)$ belongs to the domain of ν, then so do x and y, and $\nu(f(x, y)) = F(\nu(x), \nu(y))$. If $g(x)$ belongs to the domain of ν, then so does x, and $\nu(g(x)) = G(\nu(x))$.

Let K be the collection of all acceptable functions, and let \bar{h} be the union of K. Thus

$\langle x, y \rangle \in \bar{h}$ \iff $\nu(x) = y$ for some $\nu \in K$.

We claim that \bar{h} meets our requirements. We will outline the procedure for checking this, leaving many details to the reader. (We feel that a detailed understanding of this set-theoretic proof, while nice, is not essential here. But some understanding of its outline should make the theorem itself more comprehensible.)

1. We claim that \bar{h} is a function. Let

 $S = \{x \in C : \text{For at most one } y, \langle x, y \rangle \in \bar{h}\}$.

 It is easy to verify that S is inductive, by using (i') and (ii'). Hence $S = C$ and \bar{h} is a function.

2. We claim that $\bar{h} \in K$; i.e., that \bar{h} is an acceptable function. This follows fairly easily from the definition of \bar{h} and the fact that it is a function.

3. We claim that \bar{h} is defined throughout C. It suffices to show that the domain of \bar{h} is inductive. It is here that the assumption of freeness is used. For example, one case is the following: Suppose that x is in the domain of \bar{h}. Then $\langle \langle x, \nu \rangle, G(\bar{h}(\nu)) \rangle$ is acceptable. (The freeness is required in showing that it is acceptable.) Consequently, $g(x)$ is in the domain of \bar{h}.

4. We claim that \bar{h} is unique. For given two such functions, let S be the set on which they agree. Then S is inductive, and so equals C.}

It is interesting to note that there is an alternative way of describing the proof of the recursion theorem, by presenting the desired function h as the set (of pairs) generated from a set by some operations. For let

$\bar{O} = U \times V$,

$\bar{B} = h$, a subset of \bar{O},

$\bar{f}(\langle x, u \rangle, \langle y, v \rangle) = \langle f(x, y), F(u, v) \rangle$,

$\bar{G}(\langle x, u \rangle) = \langle g(x), G(u) \rangle$.

Thus \bar{f} is the binary operation on \bar{O} obtained as the product of the operations f and F. Now let h be the subset of \bar{O} generated from \bar{B} by \bar{f} and \bar{G}. Then it can be checked that h has the desired properties. The freeness must be used in showing that h is a function.

One final comment on induction and recursion: The induction principle we have stated is not the only one possible. It is entirely possible to give
proofs by induction (and definitions by recursion) on the length of expressions, the number of places at which connective symbols occur, etc. Such methods are inherently less basic but may be necessary in some situations.

EXERCISES

1. Suppose that C is generated from a set $B = \{a, b\}$ by the binary operation f and unary operation g. List all the members of C_3. How many members might C_8 have? C_9?

2. Obviously $(A_2 \rightarrow A_3)$ is not a wff. But prove that it is not a wff.

3. We can generalize the discussion in this section by requiring of S only that it be a class of relations on U. C_* is defined as before, except that $\langle x_0, x_1, \ldots, x_n \rangle$ is now a construction sequence provided that for each $i \leq n$ we have either $x_i \in B$ or $\langle x_{j_1}, \ldots, x_{j_k}, x_i \rangle \in R$ for some $R \in S$ and some j_1, \ldots, j_k all less than i. Give the correct definition of C^* and show that $C^* = C_*$.

§ 1.3 TRUTH ASSIGNMENTS

We want to define what it means for one wff of our language to follow logically from other wffs. For example, A_2 should follow from $(A_1 \land A_2)$. For no matter how the parameters A_1 and A_2 are translated back into English, if the translation of $(A_1 \land A_2)$ is true, then the translation of A_2 must be true. But the notion of all possible translations back into English is unworkably vague. Luckily the spirit of this notion can be expressed in a simple and precise way.

Fix once and for all a set $\{T, F\}$ of truth values consisting of two distinct points:

T, called truth,

F, called falsity.

(It makes no difference what these points themselves are; they might as well be the numbers 1 and 0.) Then a truth assignment v for a set S of sentence symbols is a function

$v : S \rightarrow \{T, F\}$

assigning either T or F to each symbol in S. These truth assignments will be used in place of the translations into English mentioned in the preceding paragraph.

(At this point we have committed ourselves to two-valued logic. It is also possible to study three-valued logic, in which case one has a set of three possible truth values. And then, of course, it is a small additional step to allow 512 or \aleph_0 truth values; or to take as the set of truth values the unit interval [0, 1] or some other convenient space. A particularly interesting case is that for which the truth values form a complete Boolean algebra. But it is two-valued logic that has always had the greatest significance, and we will be content to confine ourselves to this case.)

Let T be the set of wffs generated from S by the five formula-building operations. (S can also be characterized as the set of wffs whose sentence symbols are all in T; see the remarks at the end of the subsection on induction in Section 1.2.) We want an extension \bar{v} of v,

$\bar{v} : T \rightarrow \{T, F\},$

which assigns the correct truth value to each wff in T. It should meet the following conditions:

- 0. For any $A \in T$, $\bar{v}(A) = v(A)$. (Thus \bar{v} is an extension of v.)
- For any a, β in T:
 1. $\bar{v}(\neg a) = \begin{cases} T & \text{if } \bar{v}(a) = F, \\ F & \text{otherwise.} \end{cases}$
 2. $\bar{v}(a \land \beta) = \begin{cases} T & \text{if } \bar{v}(a) = T \text{ and } \bar{v}(\beta) = T, \\ F & \text{otherwise.} \end{cases}$
 3. $\bar{v}(a \lor \beta) = \begin{cases} T & \text{if } \bar{v}(a) = T \text{ or } \bar{v}(\beta) = T \text{ (or both),} \\ F & \text{otherwise.} \end{cases}$
 4. $\bar{v}(a \rightarrow \beta) = \begin{cases} F & \text{if } \bar{v}(a) = T \text{ and } \bar{v}(\beta) = F, \\ T & \text{otherwise.} \end{cases}$
 5. $\bar{v}(a \leftrightarrow \beta) = \begin{cases} T & \text{if } \bar{v}(a) = \bar{v}(\beta), \\ F & \text{otherwise.} \end{cases}$

(Conditions 1–5 are given in tabular form in Table III. It is at this point that the intended meaning of, for example, the conjunction symbol enters into our formal proceedings. Note especially the intended meaning of \rightarrow. Whenever α is assigned F, then $(\alpha \rightarrow \beta)$ is considered "vacuously true" and is assigned the value T. For this and the other connectives, it is certainly possible to question how accurately we have reflected the common meaning in everyday speech of "if . . . then," "or," etc. But our ultimate concern lies more with mathematical statements than with the subtle nuances of everyday speech.)
2. Is \(((P \rightarrow Q) \rightarrow P) \rightarrow P\) a tautology?

3. Show that

 (a) \(\Sigma; \alpha \vdash \beta\) iff \(\Sigma \vdash (\alpha \rightarrow \beta)\).
 (b) \(\alpha \vdash \beta\) iff \(\vdash (\alpha \leftrightarrow \beta)\).
 (Recall that \(\Sigma; \alpha = \Sigma \cup \{\alpha\}\).)

4. Prove or refute each of the following assertions:

 (a) If either \(\Sigma \vdash \alpha\) or \(\Sigma \vdash \beta\), then \(\Sigma \vdash (\alpha \lor \beta)\).
 (b) If \(\Sigma \vdash (\alpha \lor \beta)\), then either \(\Sigma \vdash \alpha\) or \(\Sigma \vdash \beta\).

5. (a) Show that if \(\nu_1\) and \(\nu_2\) are truth assignments which agree on all the sentence symbols in the wff \(\alpha\), then \(\nu_1(\alpha) = \nu_2(\alpha)\).

 (b) Let \(S\) be a set of sentence symbols which includes those in \(\Sigma\) and \(\tau\) (and possibly more). Show that \(\Sigma \vdash \tau\) iff every truth assignment for \(S\), which satisfies every member of \(\Sigma\) also satisfies \(\tau\).

6. You are in a land inhabited by people who either always tell the truth or always tell falsehoods. You come to a fork in the road and you need to know which fork leads to the capital. There is a local resident there, but he has time only to reply to one yes-or-no question. What one question should you ask so as to learn which fork to take?

7. (Substitution) Consider a sequence \(\alpha_1, \alpha_2, \ldots\) of wffs. For a wff \(\varphi\), let \(\varphi^*\) be the result of replacing the sentence symbol \(A_n\) by \(\alpha_n\), for \(n = 1, 2, \ldots\).

 (a) Let \(\nu\) be a truth assignment for the set of all sentence symbols; define \(u\) to be the truth assignment for which \(u(A_n) = \nu(\alpha_n)\). Show that \(u(\varphi) = \nu(\varphi^*)\).

 (b) Show that if \(\varphi\) is a tautology, then so is \(\varphi^*\).

8. (Duality) Let \(\alpha\) be a wff whose only connective symbols are \(\land, \lor, \land\), and \(\lnot\). Let \(\alpha^*\) be the result of interchanging \(\land\) and \(\lor\) and replacing each sentence symbol by its negation. Show that \(\alpha^*\) is tautologically equivalent to \((\lnot \alpha)\).

9. Say that a set \(S_1\) of wffs is equivalent to a set \(S_2\) of wffs iff for any wff \(\alpha\), \(S_1 \vdash \alpha\) iff \(S_2 \vdash \alpha\). A set \(\Sigma\) is independent iff no member of \(\Sigma\) is tautologically implied by the remaining members in \(\Sigma\). Show that

 (a) A finite set of wffs has an independent equivalent subset.
 (b) An infinite set need not have an independent equivalent subset.

 * (c) Let \(\Sigma = \{\sigma_0, \sigma_1, \ldots\}\); show that there is an independent equivalent set \(\Sigma^*\).

10. Show that a truth assignment \(\nu\) satisfies the wff

 \((\cdots (A_1 \leftrightarrow A_2) \leftrightarrow \cdots \leftrightarrow A_n)\)

 iff \(\nu(A_i) = T\) for an even number of \(i\)'s, \(1 \leq i \leq n\).

11. There are three suspects for a murder: Adams, Brown, and Clark. Adams says "I didn't do it. The victim was an old acquaintance of Brown's. But Clark hated him." Brown states "I didn't do it. I didn't even know the guy. Besides I was out of town all that week." Clark says "I didn't do it. I saw both Adams and Brown downtown with the victim that day; one of them must have done it." Assume that the two innocent men are telling the truth, but that the guilty man might not be. Who did it?

§ 1.4 UNIQUE READABILITY

The purpose of this section is to prove that we have used enough parentheses to eliminate any ambiguity in analyzing wffs. (The existence of the extension \(\nu\) of a truth assignment \(\nu\) will hinge on this lack of ambiguity.)

It is instructive to consider the result of not having parentheses at all. The resulting ambiguity is illustrated by the wff

\[A_1 \lor A_2 \land A_3,\]

which can be formed in two ways, corresponding to \(((A_1 \lor A_2) \land A_3)\) and to \((A_1 \lor (A_2 \land A_3))\). If \(\nu(A_1) = T\) and \(\nu(A_3) = F\), then there is an unresolvable conflict which arises in trying to compute \(\nu(A_1 \lor A_2 \land A_3)\).

We must show that with our parentheses this type of ambiguity does not arise but that on the contrary each wff is formed in a unique way. There is one sense in which this fact is unimportant: If it failed, we would simply change notation until it was true. For example, instead of building formulas by means of concatenation, we could have used ordered pairs and triples: \((\lnot, \alpha), (\alpha, \land, \beta), \text{etc.}\) (This is, in fact, a tidy, but untraditional, method.) The unique readability theorem would then be immediate. But we do not have to resort to this device, and we will now prove that we do not.

Lemma 14A Every wff has the same number of left as right parentheses.

Proof This was done as an example at the end of Section 1.1.

\[1\] If the reader has already accepted the existence of \(\nu\), then he may omit almost all of this section. The final subsection, on omitting parentheses, should still be read.
Lemma 14B Any proper initial segment of a wff contains an excess of left parentheses. Thus no proper initial segment of a wff can itself be a wff.

Proof We show that the set S of wffs possessing the desired property (that proper initial segments are left-heavy) is inductive. A wff consisting of a sentence symbol alone has no proper initial segments and hence is in S vacuously. To verify that S is closed under \mathcal{R}_\wedge, consider α and β in S. The proper initial segments are

1. (\cdot).
2. (α_0), where α_0 is a proper initial segment of α.
3. (α).
4. $(\alpha \wedge)$.
5. $(\alpha \wedge \beta_0)$, where β_0 is a proper initial segment of β.
6. $(\alpha \wedge \beta)$.

By applying the inductive hypothesis that α and β are in S (in cases 2 and 5), we obtain the desired conclusion.

Unique Readability Theorem The five formula-building operations, when restricted to the set of wffs,

(a) have ranges which are disjoint from each other and from the set of sentence symbols, and
(b) are one-to-one.

In the language of Section 1.2, this asserts that the set of wffs is freely generated from the set of sentence symbols by the five operations.

Proof To show that the restriction of \mathcal{R}_\wedge is one-to-one, suppose that

$$(\alpha \wedge \beta) = (\gamma \wedge \delta),$$

where α, β, γ, and δ are wffs. Delete the first symbol of each sequence, obtaining

$$\alpha \wedge \beta = \gamma \wedge \delta.$$

Then we must have $\alpha = \gamma$, lest one be a proper initial segment of the other (in contradiction with the preceding lemma). And then it follows at once that $\beta = \delta$. The same argument applies to \mathcal{R}_\vee, \mathcal{R}_\rightarrow, and \mathcal{R}_\neg; for \mathcal{R}_\exists a simpler argument suffices.

A similar line of reasoning tells us that the operations have disjoint ranges. For example, if

$$(\alpha \wedge \beta) = (\gamma \rightarrow \delta),$$

where α, β, γ, and δ are wffs, then as in the above paragraph we have $\alpha = \gamma$. But that implies that $\wedge = \rightarrow$, contradicting the fact that our symbols are distinct. Hence \mathcal{S}_\wedge and \mathcal{S}_\rightarrow (when restricted to wffs) have disjoint ranges. Similarly for any two binary connectives.

The remaining cases are simple. If $(\neg \alpha) = (\beta \wedge \gamma)$, then β begins with \neg, which no wff does. No sentence symbol is a sequence of symbols beginning with \neg.

Now let us return to the question of extending a truth assignment ν to $\bar{\nu}$. First consider the special case where ν is a truth assignment for the set of all sentence symbols. Then by applying the unique readability theorem and the recursion theorem (of Section 1.2) we conclude that there is a unique extension $\bar{\nu}$ to the set of all wffs with the desired properties.

Next take the general case where ν is a truth assignment for a set \mathcal{S} of sentence symbols. The set \mathcal{P} generated from \mathcal{S} by the five formula-building operations is freely generated, as a consequence of the unique readability theorem. So by the recursion theorem there is a unique extension $\bar{\nu}$ of ν to that set, having the desired properties.

An algorithm

Our proof of the unique readability theorem can be converted from a proof-by-contradiction into an algorithm which, given a wff, will produce its unique family tree. The algorithm has the further advantage that if it is given an expression which is not a wff, it will detect that fact.

Assume that we are given an expression. Initially it is the only vertex in the tree (and so is the minimum one), but as the procedure progresses the tree will grow downward from the given expression.

1. If all minimal vertices have sentence symbols, then the procedure is completed. Otherwise, select a minimal vertex which has an expression which is not a sentence symbol.

2. The first symbol must be (\cdot). If the second symbol is the negation symbol, skip to step 4.

3. Scan the expression from the left until first reaching (α), where α is an expression having a balance between left and right parentheses. Then α is the first constituent. The next symbol must1 be \wedge, \vee, \rightarrow, or \leftrightarrow and is the principal connective. The remainder of the expression, β, must1

1 If not, then the original expression was not a wff.

2 If the end of the expression is reached before finding such an α, then the original expression is not a wff.
consist of an expression β and a right parenthesis. The second constituent is β. This completes the decomposition of selected expression; return to step 1.

4. If the second symbol is the negation symbol, then that is the principal connective. The remainder of the expression, β, must consist of an expression β and a right parenthesis. β is the constituent. This completes the decomposition of the selected expression; return to step 1.

Now for some comments about the algorithm. First we claim that given any expression, the procedure halts after a finite number of steps. This is because any vertex contains a shorter expression than the one above it, so the depth of the tree is bounded by the length of the given expression.

Second, we should remark on the uniqueness of the procedure. For example, in step 3 we arrive at an expression α. We could not use less than α for a constituent, for it would not have a balance between left and right parentheses. We could not use more than α, for that would have the proper initial segment α that was balanced. Thus α is forced upon us. And then the choice of the principal connective is inevitable.

It is clear that if our algorithm is given a wff, it will not use the footnotes requiring the expression to be rejected. Conversely, suppose the expression given is such that the procedure does not reject it. Then, by working our way up the resulting tree, we discover inductively that every vertex has a wff, including the top vertex (which has the given expression).

We can also use the tree to see how $\theta(\alpha)$ is obtained. For any wff α there is a unique tree constructing it. By working our way up this tree, we can unambiguously arrive at a value for $\theta(\alpha)$.

Polish notation

It is possible to avoid both ambiguity and parentheses. This can be done by a very simple device. Instead of, for example, $(\alpha \land \beta)$ we use $\land \alpha \beta$. Let the set of P-wffs be the set generated from the sentence symbols by the five operations:

- $\neg \alpha$, $\neg \neg \alpha = \alpha$
- $\land \alpha \beta$
- $\land \neg \alpha \beta$
- $\lor \alpha \beta$
- $\lor \neg \alpha \beta$

For example, one P-wff is

$$\rightarrow \land \neg A \lor \neg C \land \neg B \lor C B.$$

1 If not, then the original expression was not a wff.

Here the need for an algorithm to analyze the structure is quite apparent. Even for the short example above, it requires some thought to see how it was built up. We will give a unique readability theorem for such expressions in Section 2.3.

This way of writing formulas (but with $N, K, A, C,$ and E in place of \neg, \land, \lor, and \rightarrow, respectively) was introduced by the Polish logician Łukasiewicz. The notation is well suited to automatic processing. Computer compiler programs often begin by converting the formulas given them into Polish notation.

Omitting parentheses

Hereafter when naming wffs, we will not feel compelled to mention explicitly every parenthesis. To establish a more compact notation, we now adopt the following conventions:

1. The outermost parentheses need not be explicitly mentioned. For example, when we write "$A \land B$" we are referring to $(A \land B)$.
2. The negation symbol applies to as little as possible. For example, $\neg A \land B$ is $(\neg A) \land B$, i.e., $(\neg(A \land B))$. It is not the same as $(\neg(A \land B))$.
3. The conjunction and disjunction symbols apply to as little as possible, given that convention 2 is to be observed. For example,

$$A \land B \rightarrow \neg C \lor D \leftrightarrow ((A \land B) \rightarrow ((\neg C) \lor D)).$$

4. Where one connective symbol is used repeatedly, grouping is to the right:

$$\alpha \land \beta \land \gamma \equiv \alpha \land (\beta \land \gamma),$$

$$\alpha \lor \beta \lor \gamma \equiv \alpha \lor (\beta \lor \gamma).$$

It must be admitted that these conventions violate what was said on page 18 about naming expressions. We can get away with this only because we no longer have any interest in naming expressions which are not wffs.

EXERCISES

1. Rewrite the tautologies in the "selected list" at the end of Section 1.3, but using the conventions of the present section to minimize the number of parentheses.

2. Give an example of wffs α and β and expressions γ and δ such that $(\alpha \land \beta) = (\gamma \land \delta)$ but $\alpha \neq \gamma$.