Supply Curve Review

- Height of the demand curve represented the marginal benefit or willingness to pay for a good
- Height of the supply curve will represent the price that producers must receive to be willing to produce another unit
 - Supply measures MC (more on this later)
 - For all but the last unit, the price received is greater than the minimum price needed to produce the good so there is a gain (PS)
 - PS is the area above S and below P and left of the quantity suppliers are selling
 - EXAMPLE: Binding price floor when govt. buys up excess supply

Efficiency

- Pareto efficient: a situation in which it is not possible to make someone better off without making someone else worse off
 - Contrast with equity: $1 for each student vs. $35 for one – both Pareto efficient
 - Pareto inefficient: show that removing a tax makes both consumer and producer better off in terms of surplus
- First Welfare Theorem: a competitive market results in a Pareto efficient outcome (under some assumptions that are not always true in real life or later in the course).
- Second Welfare Theorem: Any Pareto efficient outcome can be achieved via a competitive market given the ability to transfer wealth between agents.

Production and Firm behavior

- Production Function
 - Function machine: inputs (labor, capital(machines, buildings)) \(\rightarrow \) outputs (goods)
 - Definitions
 - Total Product TP = Q given some amount of input, X
 - Average Product AP = Q/X
 - Marginal Product MP = \(\Delta Q/\Delta X \)
 - Law of diminishing returns (Law of diminishing marginal product)
 - As the quantity produced increases, at some point the MP will be decreasing (note it can be increasing in the beginning, for small Q)
 - EXAMPLE: Homework 5 #1
 - Calculate AP and MP
 - Note that MP is put between the rows
 - Graph numbers
 - MP in between points
 - Note assuming can produce fractional units so smooth lines
 - MP crosses AP at max of AP
 - Story about relationships between MP and AP
 - Basic profit maximization
 - Define TR, MR, TC, and MC
 - MR = \(\Delta TR/\Delta Q \)
 - MC = \(\Delta TC/\Delta Q \)
 - Marginal Analysis
 - If can produce fractional units, equate MR = MC
 - If can’t produce fractional units then keep producing more as long as P >= MC and don’t produce if P < MC
 - EXAMPLE: Homework 5, #2
 - Focus on basic procedure – do optimal and producer surplus
• Cost function analysis
 • Define FC and VC
 ▪ FC: must pay these costs (in the short run) regardless of how many units are produced
 ▪ Long run: in long run can avoid paying FC – this is definition of long run.
 ▪ VC: usually labor costs, usually only incur them when producing something
 ▪ TC = FC + VC
 • Define ATC, AVC, and AFC
 ▪ ATC = AFC + AVC
 • EXAMPLE: Homework 5, #3
 ▪ Produce even if profits are negative
 ▪ Fixed costs don’t affect optimal production level, but to affect profit
 • Cost Graphs

 • Draw Graph
 ▪ Discuss AFC as dist btw ATC and AVC curves
 ▪ AFC falls with Q so gap between ATC and AVC shrinks
 ▪ ATC falling when MC below it and rising when MC above
 ▪ ATC is at a minimum when at Q such that MC = ATC
 ▪ Same applies to AVC
 ▪ Show optimal quantity choice on graph (P=MC), note graphs assume can produce fractional units, so this holds
 ▪ Show TC and VC areas on graph

 • Short-Run
 ▪ Firms are stuck in the business – can’t escape paying FC
 ▪ We’ve already seen that in the short-run it can be optimal to produce even when receiving a negative profit, since we will lose less than we will if we stop producing (“shut down”)
 ▪ When produce even though making a negative profit?
 ▪ \(\Pi_0 = -FC \) when producing nothing
 ▪ \(\Pi_1 = TR - TC = TR - FC - VC \) when producing a positive Q
 ▪ \(\Pi_1 \geq \Pi_0 \) (note indifference) \(\Rightarrow TR - FC - VC \geq FC \Rightarrow TR \geq VC \Rightarrow P \geq AVC \)
 ▪ So… in Short-Run, produce if \(P \geq AVC \), shut down if \(P < AVC \)
 ▪ Conclusion: supply curve (in short run) is upward sloping portion of supply curve above AVC
 ▪ Downward sloping portion would actually minimize profits (bad)

 • Long-Run
 ▪ In the long run, the firm has the option of quitting the business and avoiding FC
 ▪ When would we stay in an industry? \(\Rightarrow \) when profits are positive – making money
 ▪ \(\Pi \geq 0 \Rightarrow TR - TC \geq 0 \Rightarrow TR > TC \Rightarrow P \geq ATC \)
 ▪ So… in Long-Run, produce if \(P \geq ATC \), exit industry if \(P < ATC \)
Consultant Problems – implementing all of this stuff
1. Is profit being maximized? Is \(P = MC \)?
 a. If \(P > MC \) \(\Rightarrow \) produce more
 b. If \(P < MC \) \(\Rightarrow \) produce less
 c. If \(P = MC \) \(\Rightarrow \) producing the right amount, go to step 2…
2. Should the firm produce in the Short-Run? Is \(P \geq AVC \)?
 a. If \(P < AVC \) \(\Rightarrow \) shut down in the short-run (produce zero)
 b. If \(P \geq AVC \) \(\Rightarrow \) produce in the short-run, go to step 3…
3. Should the firm produce in the Long-Run? Is \(P \geq ATC \)?
 a. If \(P \geq ATC \) \(\Rightarrow \) produce in the long-run
 b. If \(P < ATC \) \(\Rightarrow \) exit the industry in the long-run

EXAMPLES

- Possible answers are: correct, inc \(P \), dec \(P \), inc \(Q \), dec \(Q \), shut down SR, ok SR exit LR
- Gerson notes: \(P=4 \), \(Q=20,000 \), \(TC=32000 \), \(ATC \) @ min, \(MC \) rising (ans. increase \(Q \))
- Gerson notes: \(TR=1800 \), \(TC=1200 \), \(VC=900 \), \(AVC=1.50 \), \(MC=3 \) rising (correct)
- Gerson notes: \(TR=200 \), \(FC=400 \), \(ATC=8 \), \(AVC=6 \), \(MC=12 \) rising (ans. Decrease \(Q \))
- Gerson notes: \(P=5 \), \(Q=1000 \), \(FC=400 \), \(AVC=6 \), \(MC=5 \) rising (ans. Shut down)

Relationships

- Relating Product discussion to Cost discussion
 - \(MC = \frac{w}{MP_L} \)
 - \(AVC = \frac{w}{AP_L} \)
- \(VC = \sum MC \)
 - Give example from HW6 Q3 (new problem sets HW6 PI Q1)
- Producer Surplus – this is the hardest thing to deal with (for me at least)
 - \(TR = PS + VC \) (show it on graph, note how \(VC = \sum MC \) is involved)
 - \(\Delta \Pi = \Delta PS \)
 - \(\Pi = TR – TC = TR – VC – FC = PS – FC \)
- Go over entire Production Relationships Handout