Reputation and Persistence of Adverse Selection in Secondary Loan Markets

V.V. Chari
UMN, FRB Mpls

Ali Shourideh
Wharton

Ariel Zetlin-Jones
CMU

November 25, 2013
Introduction

• Volume of new issues in Secondary loan markets
 ○ Reallocate loans from originators to other institutions

• New issuances in such markets sometimes collapse

• Collapses associated with fall in underlying loan value
Illustration of Abrupt Collapses

New Issuances of ABSs in 2000s

- Similar pattern for syndicated loans; real estate bonds in the great depression

Source: Morganmarkets, JP Morgan Chase

No reliable data for Non-US RMBS after Q3 '08

Chari, Shourideh & Zetlin-Jones() Reputation and Persistence in S.L. Markets
Economic Importance of Secondary Loan Markets

- From 1986 to 2012, average of $500 bn of new loans syndicated and sold in secondary loan markets

- In 2007, $1.3 trillion dollars of new loans syndicated

- Volume of new loans to corporations, almost all syndicated, declined by 37% from Aug. 2007 to Aug. 2008 (Ivashina and Scharfstein (2010))
What We Do

- Develop model of volume of new issues in secondary loan markets
- Show model generates fluctuations in volume when asset values fall
- Use model to evaluate policies intended to restore volume
Ingredients of Our Model

• Adverse Selection
 ◦ Standard story of trade volume
 ○ Generates fluctuations in trade volume

• Reputation
 ◦ Show necessary and sufficient:
 - Necessity: Absent reputational concerns, adverse selection does not persist
 - Sufficiency: With reputational concerns, adverse selection does persist
Characteristics of Equilibrium

- Absent reputational concerns, equilibrium always separating

- With reputational concerns, equilibrium must have pooling
 - Complete Pooling: no information revelation (high values of reputation)
 - Partial Pooling: partial information revelation (low values of reputation)
Policy Implications

- Adverse selection typically implies inefficiency (Prescott and Townsend (1984))

- With reputational concerns
 - Equilibrium is efficient unless...
 - Asset values are low and reputation is low

- Efficiency dictates low degree of separation across types

- Buyers have incentives to cream-skim when allocation has low separation; in dynamic model, these incentives are strongest when asset values are low and reputation is low

- Role for policy targeted at low reputation banks when asset values are low
Other Policy Implications

- Our reputational model has multiple equilibria

- In some models, policy can implement unique equilibrium without external resources

- Conventional asset purchase policies cannot do this in our model

- Unconventional policies which limit private trade are needed
Related Literature

- Policy Analysis: Phillipon and Skreta (2009); Tirole (2011)

Outline

- Static Model of Adverse Selection in Secondary Loan Markets

- Dynamic Model of Adverse Selection in Secondary Loan Markets - Illustrative Two Period Model
 - Without Reputational Concerns
 - With Reputational Concerns

- Infinite Horizon Model with Stochastic Asset Values

- Implications for Policy
Static Model of Adverse Selection in Secondary Loan Markets
Model Environment

- Large number of loan originators, or banks

- Banks endowed with a portfolio of risky loans, size 1
 - Loan pays v with prob. π, 0 with prob $1 - \pi$
 \[v = \bar{v} - v \text{ is spread, } v \text{ is collateral value} \]
 - Probability of no default same for all loans in a bank’s portfolio
 - Two types of banks, $\pi \in \{\bar{\pi}, \bar{\pi}\}, \pi < \bar{\pi}$
 - Two buyers (Bertrand-style price competition)
• Each bank chooses how much of its loan portfolio to sell, x

• Let t denote payment bank receives for selling x loans, p is price per loan

• Buyers have comparative advantage in holding loans $c > 0$

• Bank payoff from selling x loans for payment t:

$$t + (1 - x)(\pi v - c)$$

• Buyer profits from (x, t)

$$x\pi v - t$$
Model Environment (cont.)

- Adverse selection: bank knows type of loans, potential buyers do not

- Buyers believe given bank is high-quality with probability μ

- Distribution of Banks $H_2(\mu)$

- Call μ the *reputation* of the bank
Timing in Static Model

- Buyers simultaneously propose contracts consisting of offers to a given bank:

 \[z = (x_h, t_h, x_l, t_l) \in Z \]

- Bank chooses whether to accept a contract or reject both

- If bank accepts a contract, then chooses which offer to accept

- Restrict to pure strategies for banks, possibly mixed strategies for buyers, \(F(z) \) for \(z \in Z \)

- Equilibrium is standard
Equilibrium Conditions in Static Model

- Incentive Constraints

\[t_h + (1 - x_h)(\bar{\pi}v - c) \geq t_l + (1 - x_l)(\bar{\pi}v - c) \]

\[t_l + (1 - x_l)(\pi v - c) \geq t_h + (1 - x_h)(\pi v - c) \]

- Zero Profits for Buyers (at each point in support of \(F \))

\[\mu(x_h\bar{\pi}v - t_h) + (1 - \mu)(x_l\pi v - t_l) = 0 \]
Equilibrium Characterization in Static Model

Proposition

The static model has a (unique) separating equilibrium.

- With low reputation, pure strategies by buyers, least-cost separating outcome (Rothschild and Stiglitz (1976))

- With high reputation, mixed strategies by buyers, cross-subsidization across types
 - Follow Dasgupta and Maskin (1986) and Rosenthal and Weiss (1984) to prove existence and characterize equilibrium in mixed strategies
Equilibrium Characterization in Static Model

- Three general properties (Dasgupta & Maskin (1986))
 - $x_l = 1$
 - Buyers make zero profits
 - Incentive constraint for low-quality bank holds with equality:
 \[t_l = t_h + (1 - x_h)(\pi v - c) \]

- Implies for each t_l, can uniquely determine x_h and t_h

- For reputation below a threshold, $\tilde{\mu}$, least cost separating outcome has
 \[t_l = \pi v, \quad t_h = x_h \bar{\pi} v \]
Equilibrium Characterization in Static Model

- Low prior(reputation): Least Cost Separating Equilibrium

Chari, Shourideh & Zetlin-Jones() Reputation and Persistence in S.L. Markets
Equilibrium Characterization in Static Model

- At $\tilde{\mu}$, high-quality bank indifferent between pooling and Least Cost Separating outcome

- For reputation above threshold, $\tilde{\mu}$, no pure strategy equilibrium

- So focus on mixed strategy equilibrium

- Let F denote the distribution over t_l

- Idea: deviations attract low-quality banks with disproportionate probability
High reputation: pooling (C) beats A and B
Equilibrium Characterization in Static Model

- Offer D to low-quality banks

Chari, Shourideh & Zetlin-Jones() Reputation and Persistence in S.L. Markets
Equilibrium Characterization in Static Model

- Ride along low-quality bank’s indifference curve to zero profits; Cross-subsidization.
Equilibrium Characterization in Static Model

- Mixed Strategy Equilibrium

Chari, Shourideh & Zetlin-Jones() Reputation and Persistence in S.L. Markets
Equilibrium Characterization in Static Model

- Mixed Strategy Equilibrium

Why deviation involving F is not profitable
Equilibrium Characterization in Static Model

- Why deviation F-G is not profitable
Equilibrium Characterization in Static Model

- Why deviation F-G is not profitable

Chari, Shourideh & Zetlin-Jones() Reputation and Persistence in S.L. Markets
Comparative Statics: Collateral Value Shocks and Volume

• How does an increase in v affect volume?

• Suppose μ is low:
 Incentive compatibility:

 $$\pi_v = \bar{\pi}vx_h + (1 - x_h)(\pi_v - c)$$

• An increase in v, increases RHS more than LHS
 Low quality bank more tempted to lie; lower fraction sold by high quality bank

• Similar argument for high μ

Proposition

An decrease in collateral value leads to a decline in total volume of trade.
Main take-away

- Static separating equilibrium; Volume decreasing in spread
- Value function implied by static model - strictly sub-modular.

![Graph](image-url)

Dynamic Model of Adverse Selection in Secondary Loan Markets
Dynamic Environment

- In each $t = 1, 2$, banks originate loan portfolio

- Buyers offer 1 period contracts z

- Banks discount future payoffs at rate β

- Buyers observe contracts chosen by bank in previous periods

- Simplifications (abstract from other sources of learning):
 - Bank type is fully persistent
 - Buyers do not observe returns on loans in previous periods
Without Reputational Concerns

Proposition

Suppose $\beta = 0$ (or small). The equilibrium features full separation and complete learning in the first period. Trade volume in second period is independent of collateral values.

- Persistence issue: trade volume not linked to collateral values in second period
- Correlation issue: volume across bank types not correlated
- Same with more periods
- Why reputation is necessary
Findings With Reputational Concerns

- When β is large enough, no equilibrium features full separation
 - Implies Adverse Selection persists
 - Why reputation is sufficient

- Equilibrium has complete pooling for high reputations

- Equilibrium has partial pooling for low reputations

- Volume of trade in both periods declines when collateral values fall
Proposition

Suppose $\beta \geq \beta_1$. Then no equilibrium has complete separation of high- and low-quality banks in the first period.

- In a separating equilibrium, static loss from mimicking the high type, but dynamic gain. For β sufficiently large, dynamic gain dominates.

- Implies any equilibrium features at best partial revelation of information over time.

- Implies adverse selection must persist so changes in collateral value induce changes in volume in the long-run.
No Fully Separating Equilibrium Exists

Proof:

- In a separating equilibrium, incentive compatibility:

\[th + (1 - x_h)(\bar{\pi}v - c) + \beta V(1; \bar{\pi}) \geq tl + (1 - x_l)(\bar{\pi}v - c) + \beta V(0; \bar{\pi}) \]

\[tl + (1 - x_l)(\bar{\pi}v - c) + \beta V(0; \bar{\pi}) \geq th + (1 - x_h)(\bar{\pi}v - c) + \beta V(1; \bar{\pi}) \]

- Add them up:

\[(x_l - x_h)(\bar{\pi} - \bar{\pi})v \geq \beta[(V(1; \bar{\pi}) - V(0; \bar{\pi})) - (V(1; \bar{\pi}) - V(0; \bar{\pi}))] \]

- When \(\beta \) is large enough, impossible to satisfy
Equilibrium Characterization in Dynamic Model

- Proposition above implies outcomes must have some pooling

- Signaling model with lots of equilibria: focus on the maximal-trade equilibrium
 - Maximal trade equilibrium pareto dominates other equilibria – more on this later

Proposition

If β is larger than β_1, the maximal trade equilibrium in the first period has the form:

- When reputation is high, equilibrium has complete pooling: both types sell all their loans

- When reputation is low, equilibrium has partial pooling: low types randomize
Characterization for High Reputation

- Look for equilibrium with full trade

- At threshold μ^*, high-quality bank indifferent between pooling outcome and holding its loan

- When $\mu \geq \mu^*$, equilibrium has *complete pooling* with full trade
 - High- and low-quality banks sell all their loans

- Equilibrium features:
 - Both banks sell all loans at pooling price
 - Reputation levels do not change
 - Off-path beliefs:

 $$
 \mu'(\hat{x}, \hat{t}) = \begin{cases}
 1 & \text{if } \hat{t} + (1 - \hat{x})(\bar{\pi}v - c) \geq \hat{p}(\mu) \\
 0 & \text{otherwise}
 \end{cases}
 $$
Logic of Proof for High Reputation

- Consider cream-skimming contracts with lower number of loans sold and payment attractive only to high-quality banks
 - Such cream-skimming profitable deviation in static model

 - In dynamic model, reputational gains imply low-quality can earn future profits by accepting cream-skimming contracts

 - So such deviation not profitable

- We show logic of argument extends to deviations where buyer proposes contracts with different offers
Off-Path Beliefs Prevent Cream-Skimming

Complete Pooling with $x=1$

- High Quality Break-Even line
- Pooled Break-Even line
- Low Quality Break-Even line

$$\mu'(x,t) = 1$$

$$\mu'(x,t) = 0$$
Characterization for Low Reputation

- When $\mu < \mu^*$, full trade not an equilibrium; instead we have *partial pooling*

- Any symmetric equilibrium is of the following form:
 - Buyers offer $z = (x_h, t_h, x_l, t_l)$
 - High quality bank: choose (x_h, t_h)
 - Low quality bank: randomize
Characterization for Low Reputation

- Properties induced by equilibrium:
 - IC:
 \[t_h + (1 - x_h)(\bar{\pi}v - c) + \beta V(\mu'_h; \bar{\pi}) \geq t_l + (1 - x_l)(\bar{\pi}v - c) + \beta V(0; \bar{\pi}) \]
 \[t_l + (1 - x_l)(\bar{\pi}v - c) + \beta V(0; \bar{\pi}) = t_h + (1 - x_h)(\bar{\pi}v - c) + \beta V(\mu'_h; \bar{\pi}) \]
 - zero profits
 - Participation for high quality bank
 \[t_h + (1 - x_h)(\bar{\pi}v - c) + \beta V(\mu'_h; \bar{\pi}) \geq \bar{\pi}v - c + \beta V(0; \bar{\pi}) \]
 - Betrand Competition:
 \[\frac{1}{2} \mu(x_h \bar{\pi}v - t_h) + (1 - \mu)(\bar{\pi}v - t_l - (1 - x_l)(\bar{\pi}v - c)) \leq 0 \]
Characterization for Low Reputation

Proposition

A contract \(z = (x_h, t_h, x_l, t_l) \) is a partial pooling symmetric equilibrium if and only if it satisfies the above.

- Maximal Trade Equilibrium: Maximize trade volume subject to above
Logic of Proof for Low Reputation

- As when reputation high, reputational gains ensure buyers cannot profitably cream-skim.

- Buyers also have incentive to induce better sorting by low-quality types by adjusting \((x_l, t_l)\).

- Such a deviation
 - may increase profits per low-quality bank
 - attracts low-quality banks with greater probability.

- Bertrand Competition constraint ensures deviation attracts disproportionate number of low-quality banks so deviation is unprofitable.
Off-Path Beliefs Prevent Cream-Skimming

Partial Pooling with \(x_l=1 \)

- High Quality Break-Even line
- Pooled Break-Even line
- Low Quality Break-Even line

\[
\mu'(x,t) = \begin{cases}
1 & \text{for } (1, t_l) \\
0 & \text{for } (x_h, t_h)
\end{cases}
\]

Chari, Shourideh & Zetlin-Jones() Reputation and Persistence in S.L. Markets
Off-Path Beliefs Prevent Cream-Skimming

Partial Pooling with $x_l=1$

- High Quality Break-Even line
- Pooled Break-Even line
- Low Quality Break-Even line

$\mu'(x,t) = 0$

$\mu'(x,t) = 1$

Chari, Shourideh & Zetlin-Jones() Reputation and Persistence in S.L. Markets
Off-Path Beliefs Prevent Cream-Skimming

Partial Pooling with $x_l=1$

- High Quality Break-Even line
- Pooled Break-Even line
- Low Quality Break-Even line

$\mu'(x,t) = 1$

$\mu'(x,t) = 0$

(x_h, t_h)

$(1, t_l')$

$(1, t_l)$

• Explaining Bertrand Constraint

Chari, Shourideh & Zetlin-Jones() Reputation and Persistence in S.L. Markets
Properties of Maximal Trade Equilibria

- **High \(\mu \)**
 - Both bank types sell
 - No learning \((\mu' = \mu) \)

- **Low \(\mu \):**
 - Cross-subsidization
 - Some learning
 - Can show participation constraint for high-quality bank binds
 - Can show Bertrand constraint binds only when \(v \) is high and \(\mu \) is low
Comparison Statics on Collateral Value

- x_h in maximal trade equilibrium

Chari, Shourideh, & Zetlin-Jones (2020) - Reputation and Persistence in S.L. Markets
• Increase in v lowers x_h and so volume in maximal trade equilibrium
Volume of Trade and Collateral Values

Proposition

Temporary reduction in collateral values in first period reduces expected trade volume for both types

- If $H_1(\mu)$ has mass at or below μ^*: trade volume falls
- Infinite horizon: endogenize distribution of reputation
Dynamic Model of Adverse Selection in Secondary Loan Markets:

Infinite Horizon With Reputational Concerns
Infinite Horizon with Stochastic Collateral Value

- Assume \(v_t \sim G(v_t), v_t \in [v_{min}, v_{max}] \)

- Quality of banks not fully persistent:
 - Each period, bank draws new quality with prob. \(\lambda \) (observable)
 - If new draw, becomes high-quality with prob. \(\mu_0 \sim H(\mu_0) \)
 - \(H(\cdot) \): continuous distribution; support = \([0, 1]\)
The Model with Stochastic Loan Spreads

- If banks patient, then no separating equilibrium exists

- Equilibrium:
 - For each \(v_t \), low reputation has partial-pooling, high reputation has complete pooling
 - For each \(\mu_t \), low spread has both types selling, high spread has at least high-quality bank holding

- Partial Pooling
 - high-quality bank holds loans, low-quality bank mixes between holding and selling

- Complete Pooling:
 - For low spreads, both types sell
 - For high spreads, both types hold
The Model with Stochastic Loan Spreads

Chari, Shourideh & Zetlin-Jones() Reputation and Persistence in S.L. Markets
The Model with Stochastic Loan Spreads

- Why Complete Pooling, Both Types Hold?
 - Low-quality banks hold to maintain reputation
 - Sell at favorable prices in future when spreads fall
 - Expected future aggregate shocks imply maintaining reputation has value

- Would not be consistent with equilibrium in deterministic model

- Implies anticipation of future shocks to v affects nature of equilibrium
 - Greater value to maintaining a reputation
Anticipated Shocks to Collateral Values

- Invariant distribution:
 - Mass at 0, μ_h
 - Continuous everywhere else

- Mass points at 0, μ_h: discontinuous change in volume

Proposition

If $\beta \geq \overline{\beta}$ and shocks to collateral values are independent over time, aggregate volume is declining in the spread, v, and declines are discontinuous.
A Simulation

Chari, Shourideh & Zetlin-Jones() Reputation and Persistence in S.L. Markets
Implications for Policy
Implications for Policy

• End of 2007, policymakers implemented programs intended to re-start volume of trade in secondary loan markets

• Optimal Policies in this environment? Two period model

• Our notion of constrained efficiency with commitment
 ○ Maximize ex-ante payoff of banks
 ○ Respect incentives
 ○ Do nothing in the second period
 ○ Bester and Strausz (2001): direct mechanisms with mixed strategies
First period bank payoffs equal to $\hat{p}(\mu) - c(1 - T)$, so that

$$\max \hat{p}(\mu) - c\mathbb{E}_\mu [(1 - x_i)] + \beta \mathbb{E}_\mu V(\mu'_i; \pi_i)$$

subject to

- Incentive compatibility
- Banks’ participation constraints
- Buyers’ participation constraints
- Note: equilibrium has Bertrand constraint in addition
Efficiency with High Reputation

Proposition

Pooling with full volume of trade is constrained efficient.

- Complete pooling maximizes first period payoffs
- Separation could increase second period continuation values
- Separation tightens IC, has lower trade trade in first period and so lower first period payoffs
- Show separation cannot increase welfare because value functions satisfy decreasing differences (sub-modularity)
Efficiency with Low Reputation

Proposition

Maximal Trade equilibrium is inefficient if and only if reputation is low and \(v \) is high. When inefficient, there is too much separation in equilibrium.

• Basic logic:
 ◦ Planner’s allocation: partial pooling allocation
 ◦ Recall the maximal trade equilibrium
 ◦ Extra Constraint: imposed by Bertrand competition
 ◦ Works as an externality
Efficiency with Low Reputation

- Efficiency pushes outcomes towards minimal separation

- Also requires $\mu'_h = \tilde{\mu}$

- As v rises, more cross-subsidization at x_h, t_h (rather than at x_l, t_l)

- Implies subsidy to low-quality bank at x_l, t_l decreasing in v

- Bertrand constraint (in equilibrium) requires higher subsidies to low-quality bank at x_l, t_l
Implications for Policy to Weakly Implement Efficient Allocations

- Intervene when adverse selection is severe
- Target low reputation banks
Asset Purchase Policies and Strict Implementation

- Possible motivation for asset purchase policies:
 - Strict implementation of high volume equilibrium

- Policies that work require outside revenues or limits to private trade
Asset Purchase Policies that Do Not Work

- Consider version of our model without strategic interaction of buyers

- Banks and buyers take price $p(\mu)$ as given

- Banks choose x_h, x_l loans to sell

- Buyers choose y loans to buy
 - Buyers payoffs:
 $$y \left[\mu 1_{[x_h>0]}(\pi v - p(\mu)) + (1 - \mu) 1_{[x_l>0]}(\pi v - p(\mu)) \right]$$

- Model has a competitive equilibrium with externalities
Static Model with Price Taking Behavior

- When $\mu \geq \mu^*$, multiple equilibria

- High-trade: $p(\mu) = \hat{p}(\mu) = \mu \bar{\pi}v + (1 - \mu)\pi v$
 - Both banks sell their loans

- Low-trade: $p(\mu) = \pi v$
 - Only low-quality banks sell their loans

- Good policy: Offer to buy at $\hat{p}(\mu)$
 - Eliminates low-trade equilibrium
 - Does not require resources by Gov’t
 - Similar to deposit insurance in bank run models
Asset Purchase Policies in Dynamic Model

• Why we prefer our equilibrium concept
 ◦ Buyers have strong incentives to cream-skim, use nonlinear contracts
 ◦ Restricting to linear contracts, have strong incentives to offer pooling price near $\hat{p}(\mu)$

• Our model has multiple equilibria:
 ◦ Suppose equilibrium switches from maximal volume to zero volume in our dynamic model
Asset Purchase Policies That Do Work

- Gov’t offers to buy \((1, \hat{p}(\mu))\) in first period

- Policy at best ineffective
 - Either nobody sells to government or only low-quality banks sell to government

- Reason:
 - An individual buyer could have offered this contract
 - Did not do so because was not profitable
 - So policy does not work

- For price \(p > \hat{p}(\mu)\) can attract high-quality banks but also attract low-quality banks
 - Implies policy requires outside resources

Chari, Shourideh & Zetlin-Jones() Reputation and Persistence in S.L. Markets
Conclusions

• Adverse selection is a promising candidate for fluctuations

• Lack of anonymity implies those who think adverse selection is promising should take reputation seriously

• We have developed a tractable model of adverse selection and reputation; useful for other applications as well