Sample Solution for HW 2

Constructive Logic

Oct. 05, 2001

Problem 1 Use truth tables to decide whether the following arguments are classically valid:

(a) Bush will resign or America will go to war if there is a catastrophe. America is going to war with Bush as president. There was a catastrophe.

Proof. We can denote the following propositions as follows:

“Bush will resign” $\rightarrow B$ (we will interpret “Bush is a president” and “Bush will NOT resign” ($\neg B$)

“America will go to war” $\rightarrow A$

“There is a catastrophe” $\rightarrow C$

Then the argument can be expressed as:

$$C \rightarrow (B \lor A)$$

$$\begin{array}{c|c|c|c|c|}
A & B & C & C \rightarrow (B \lor A) & A \land \neg B & C \\
T & T & T & T & F & T \\
T & T & F & T & F & F \\
T & F & T & T & T & T \\
T & F & F & T & T & F \\
F & T & T & T & F & T \\
F & T & F & T & F & F \\
F & F & T & F & F & T \\
F & F & F & T & F & F \\
\end{array}$$

The the bold row of the following truth table shows that the argument is *invalid*.

(b) Bush will resign or America will go to war if there is a catastrophe. If there is a catastrophe while Bush is president, then America will go to war.

Proof. We can denote the following propositions as follows:
“Bush will resign” — \(B \) (we will interpret “Bush is a president” and “Bush will NOT resign” \(\neg B \))

“America will go to war” — \(A \)

“There is a catastrophe” — \(C \)

Then the argument can be expressed as:

\[
\frac{C \rightarrow (B \lor A)}{\left(C \land \neg B \right) \rightarrow A}
\]

The bold rows of the following truth table shows that the argument is **valid**.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>(C \rightarrow (B \lor A))</th>
<th>((C \land \neg B) \rightarrow A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

Problem 2 Use Kripke models to prove the following:

(a) \(\models \neg \neg (A \lor \neg A) \)

(b) \(\neg \neg A \Rightarrow B \models A \Rightarrow \neg B \)

Proof. (a) We want to show that for every Kripke model \(K \), \(K \models \neg \neg (A \lor \neg A) \). This is an abbreviated way of saying that \(\forall i \in K \ i \models \neg \neg (A \lor \neg A) \).

Fix \(K \) and let \(i \) be any world of \(K \). We want to show that \(i \models \neg \neg (A \lor \neg A) \). By the definition of forcing, this is equivalent to saying that \(\forall j \geq i \), \(j \not\models \neg \neg (A \lor \neg A) \), which is equivalent to saying that \(\exists k \geq j \geq i \), \(k \models A \lor \neg A \). In other words, to show that \(i \models \neg \neg (A \lor \neg A) \) it suffices to show that for \(\forall j \geq j \) we can find a \(k \geq j \) such that \(k \models A \lor \neg A \). Now let us prove that.

Fix arbitrary \(j \geq i \). Now, either there exit a world \(l \geq j \) such that \(l \models A \) or there is none. (Note that here we use a classical argument — law of excluded middle — to reason about what is true at a world of the model.)

Case 1: There is such \(l \models A \). Then, let \(k = l \), and we have that \(k \models A \), which implies that \(k \models A \lor \neg A \) by the definition of forcing.

Case 2: There is no such \(l \). Then \(j \models \neg A \), so of \(k = j \), \(k \models \neg A \), which
again implies that \(k \models A \lor \neg A \) by the definition of forcing.

Therefore, we can always find \(k \geq j \) such that \(k \models A \lor \neg A \). This completes the proof. \(\blacksquare \)

Proof. (b) We want to show that of \(K \) is a model such that \(K \models \neg A \Rightarrow B \), then also \(K \models A \Rightarrow \neg B \).

Fix \(K \models \neg A \Rightarrow B \). We want to show that \(K \models A \Rightarrow \neg B \), i.e. \(\forall i \in K, i \models A \Rightarrow \neg B \). The statement \(i \models A \Rightarrow \neg B \) is equivalent to statement
\(\forall j \geq i, j \models A \Rightarrow \neg B \). As above, the statement \(j \models \neg B \) is equivalent to the statement \(\forall k \geq j \exists l \geq k, l \models B \). Therefore, it suffices to show for \(j \in K \), if \(j \models A \) then \(\forall k \geq j \exists l \geq k, l \models B \).

Fix \(j \models A \) (if no such \(j \) exist we are trivially done). We claim that \(j \models \neg A \). Indeed, by monotonicity \(\forall n \geq j, n \models A \), but than \(\forall n \geq j \exists m \geq n \) (e.g., \(n \) itself) such that \(m \models A \). As we saw in the previous proof this is equivalent to \(j \models \neg A \).

Now we use that fact that \(K \models \neg A \Rightarrow B \), and conclude that \(j \models B \), by the definition of forcing. By monotonicity, we conclude that \(\forall k \geq j \exists l \geq k, l \models B \)

as desired. This concludes that proof. \(\blacksquare \)

Problem 3 Show that the following sequent is not derivable in constructive logic:

\[A \Rightarrow B \vdash \neg A \lor B \]

Proof. The Soundness Theorem for Kripke semantics states that \(A \Rightarrow B \vdash \neg A \lor B \) implies \(A \Rightarrow B \models \neg A \lor B \). The counter-positive of this statement is \(A \Rightarrow B \not\models \neg A \lor B \) implies \(A \Rightarrow B \not\models \neg A \lor B \). Thus, to show that the sequent \(A \Rightarrow B \vdash \neg A \lor B \) is not derivable it suffices to show that there exist a Kripke model \(K \) such that \(K \not\models \neg A \lor B \) but \(K \models A \Rightarrow B \). The following model has that property:

\[
\begin{array}{c|c}
\sigma_2 & A, B \\
\hline
\sigma_1 & \emptyset
\end{array}
\]

\(\sigma_1 \not\models \neg A \) and \(1 \not\models B \) so \(1 \not\models \neg A \lor B \). However, \(1, 2 \models A \Rightarrow B \). \(\blacksquare \)