1. Read section 1.4 of the Enderton handout, which discusses unique readability for propositional formulas. Start reading section 1.3 of van Dalen.

2. Consider the following inductive definition of the set of all “AB-strings”:
 - ∅, the empty string, is an ab-string
 - if s is an AB-string, so is \(f_1(s) \)
 - if s is an AB-string, so is \(f_2(s) \).

 In the “correct” interpretation, the underlying set \(U \) is a set of strings, and \(f_1 \) and \(f_2 \) are functions that prepend the letters “A” and “B” respectively. However, if instead we take \(U' \) to be the set of strings of stars (e.g. “*****”), let \(f_1 \) be a function that prepends one star, and let \(f_2 \) be the function that prepends two stars, then the smallest subset of \(U' \) that contains \(∅ \) and is closed under \(f_1 \) and \(f_2 \) is not freely generated.

 Come up with better functions \(f_1 \) and \(f_2 \), so that they still act on the underlying set \(U' \), but make the resulting set of “ab-strings” freely generated.

3. Recall the definition of “arithmetic expressions” I gave in class:
 - any string of digits that doesn’t start with “0” is an arithmetic expression
 - if s and t are arithmetic expressions, so is “(s + t)” (more precisely, “(ˆsµ+ˆtν)”)
 - if s and t are arithmetic expressions, so is “(s \times t)”.

 Let \(length(s) \) denote the length of s, and let \(val(s) \) denote the evaluation function I defined in class. Prove by induction that for every expression s, the inequality \(val(s) \leq 10^{length(s)} \) holds.

4. What would happen to the previous theorem if we were to add exponentiation, \(a \uparrow b \)?

5. The set of propositional formulas in prenex form is defined inductively, as follows (the underlying set consists of strings of variables and logical symbols):
\begin{itemize}
 \item \bot is a prenex formula
 \item any variable p_i is a prenex formula
 \item if φ is a prenex formula, so is $\neg \varphi$
 \item if φ and ψ are prenex formulas, so is $\varphi \land \psi$
 \item if φ and ψ are prenex formulas, so is $\varphi \lor \psi$
 \item if φ and ψ are prenex formulas, so is $\varphi \rightarrow \psi$
\end{itemize}

Intuitively, this is just another notation for propositional formulas in which the connectives come \textit{in front} of the arguments, instead of \textit{in between} them. For example, one writes $\land p_1 p_2$ instead of $(p_1 \land p_2)$. Notice, however, that in this representation no parentheses are used.

\begin{enumerate}
 \item Convert $\lor \neg \rightarrow \land p_1 p_2 p_3 \land p_4 p_5$ to a regular propositional formula.
 \item Convert $(p_1 \land p_2) \rightarrow p_3$ to a prenex formula.
 \item Define a function recursively that maps prenex propositional formulas to regular ones (you can assume that the set of prenex formulas is freely generated).
 \item Define a function recursively that maps regular propositional formulas to prenex ones.
\end{enumerate}

6. Do problems 1 and 2 on page 14 of van Dalen.

\begin{itemize}
 \item \textbullet Do problem 3 on page 14. In other words, show that if φ is a subformula of ψ, and ψ is a subformula of θ, then φ is a subformula of θ. (Hint: say that a subset A of $PROP$ is “closed under subformulas” if whenever a formula φ is in A, every subformula of φ is also in A. Show by induction formulas θ, that the set of subformulas of θ is closed under subformulas.)
\end{itemize}

7. Do problem 4 on page 14. In other words, show that if φ is a subformula of ψ and $\theta_0, \theta_1, \ldots, \theta_k$ is a formation sequence for ψ, then for some $i \leq k$, $\varphi = \theta_i$. Be precise: use the definitions of $PROP$, formation sequences, and subformulas presented in class.

13. Definition 2.3.1 says that C is freely generated (as a subset of U), if, \textit{when restricted to} C, each f_i is injective and the ranges of the f_i’s are disjoint from each other and from B. Certainly, if the functions f_i have
these properties on U, they also have it on C; but give an example where the functions do not have these properties on U, but C is still freely generated.

- 14. Generalize the recursion theorem (2.3.2) so that in defining $F(s)$ one can use all elements of C that are “shorter” than s (for a given “length” function).

- 15. Prove unique readability for prenex formulas, i.e. that the set of prenex formulas is freely generated. This amounts to showing that there is only one way to “parse” a given formula.

- 16. In the programming language of your choice, define a data structure to represent propositional formulas as trees. (That is, a propositional formula is either a variable, or an operation with pointers to its arguments). Write a parser for propositional formulas, that is, a program that takes a string as input and turns it into a parse tree. The routine should print “ok” if successful, or “error” if the string is not a formula.

Now write routines that convert a formula to prenex form; that take an assignment of truth values to the variables as input and determine whether or not the resulting formula is true; and that determine whether there is any assignment that makes the formula true.