48-747 Shape Grammars

HISTORICAL

WHAT IS A GRAMMAR? A LANGUAGE?
Language is the method of ‘human’ communication, either spoken or written, consisting of the use of ‘words’ in an agreed way.

Language is the style or faculty of expression.

Language is the system of symbols and rules for writing algorithms.
The happy little boy ran quickly

underlying language is the notion of a sentence
The happy little boy ran quickly.
we recognize parts of a sentence

<table>
<thead>
<tr>
<th>entities:</th>
</tr>
</thead>
<tbody>
<tr>
<td>things like <code><SENTENCE></code> <code><NOUN PHRASE></code></td>
</tr>
<tr>
<td>things like <code>the, little, boy, quickly</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>relationships between parts (of the sentence):</th>
</tr>
</thead>
<tbody>
<tr>
<td>a <code><SENTENCE></code> is a <code><NOUN PHRASE></code> followed by a <code><VERB></code></td>
</tr>
<tr>
<td>a <code><NOUN PHRASE></code> is a <code><ADJ PHRASE></code> followed by a <code><NOUN PHRASE></code></td>
</tr>
<tr>
<td>a <code><ADJ PHRASE></code> is a <code><DET></code> followed by a <code><ADJ ective></code></td>
</tr>
<tr>
<td>a <code><NOUN PHRASE></code> is an <code><ADJ ective></code> followed by a <code><NOUN></code></td>
</tr>
<tr>
<td>a <code><VERB PHRASE></code> is a <code><VERB></code> followed by a <code><ADV ert></code></td>
</tr>
<tr>
<td><code>boy</code> is a <code><NOUN></code> and <code>ran</code> is a <code><VERB></code></td>
</tr>
</tbody>
</table>
relationships specify rules
Building blocks

vocabulary or alphabet symbols
• TERMINAL
• NON TERMINAL

terminal

entities
• strings of symbols juxtapositioned together

sentence
• string made up of terminal vocabulary symbols

production
• RULES made up of strings expressing a relationship between two such entities and expressed as $a \rightarrow b$

initial string or seed
made up of vocabulary elements

grammar
The *language*, L, of a grammar, G, is the set of all sentences (i.e., without non-terminals) that are produced from the initial string

$$L(G) = \{ \text{sentence} \mid \text{initial-string} \Rightarrow^* \text{sentence} \}$$
A rule is *applicable* to the *current* string which is either the initial string or a string produced from the initial string whenever the *left hand side* of the rule ‘*occurs*’ in the object in which case it can be replaced by the *right hand side* of the rule under rule application

rule application
A formal definition of a grammar $G = (N, T, P, S)$ is:

- **Seed**: The seed belongs to the universe of strings made of symbols in N and T.

- **Production**: The production rules contain rules of the form $a \rightarrow b$ where a and b belong to the universe of strings made of symbols in $T(terminal)$ and $N(onterminal)$, with a not being empty.
VOCABULARY is a limited set of symbols no two of which are similar or identical.

If we are given a set of symbols V, then we can create a set V^* called the **UNIVERSE** (or **LEAST SET**) of V in the following manner:

- The empty string e is in V^*.
- Every symbol in V is in V^*.
- If a and b are strings in V^*, so too is their juxtaposition (concatenation) ab in V^*.
- V^* is closed under concatenation.

We denote the set $V^* - \{e\}$ by V^+.

For any production $a \rightarrow b$, we have $a \in V^+$ and $b \in V^*$.

vocabulary and **universe**
\(V = \{0, 1\} \)
\(V^* = \{e, 0, 1, 00, 01, 10, 11, 000, 001, \ldots\} \)
\(V^+= \{0, 1, 00, 01, 10, 11, 000, 001, \ldots\} \)

example - binary sequences
From S by applying rule $S \rightarrow 0S1$ we get $0S1$

That is, substitute the occurrence of the left hand side of the current rule in the current string by the right hand side. That is, $S \Rightarrow 0S1$

By applying rule $S \rightarrow 0S1$ again we get $00S11$.

That is, $S \Rightarrow 0S1 \Rightarrow 00S11$. Or, $S \Rightarrow^* 00S11$

If we apply rule $S \rightarrow 01$ we get $S \Rightarrow 0S1 \Rightarrow 00S11 \Rightarrow 000111$

$G = (N= \{S\}, T= \{0, 1\}, P= \{ S \rightarrow 0S1, S \rightarrow 01\}, S)$

What can we do with this grammar?

example of a grammar
PHRASE STRUCTURE GRAMMARS
productions of the form $\alpha \rightarrow \beta$

CONTEXT SENSITIVE GRAMMARS
productions of the form $\alpha_1 A \alpha_2 \rightarrow \beta_1 B \beta_2$ equivalently, $|\alpha| \leq |\beta|$

CONTEXT FREE GRAMMARS
productions of the form $A \rightarrow \beta$ where A is a single variable

REGULAR GRAMMARS
productions of the form $A \rightarrow aB$ or $A \rightarrow a$ where A is a single variable

types of grammars
What is the language \(L(G) \)?

A **CFG** example
Note that if we can recognize whether a sentence is in a language then we can always generate the language simply by generating each element in the universe and checking whether the element is in the language.

example:

given an integer \(i > 1 \), is it prime?

1. set \(j \) to 2
2. if \(j \geq i \), then halt. \(i \) is prime.
3. if \(i/j \) is an integer, then halt. \(i \) is not prime.
4. set \(j \) to \(j+1 \) and go to 2.

grammars, **procedures** and **algorithms**
another example:

given an integer $i > 1$, is there a perfect integer greater than i?

1. set $k = i$
2. set $k = k+1$, sum= 0, $j = 1$
3. if $j < k$, go to 6
4. if sum $| k$, go to 2
5. Halt. There is a perfect integer.
6. if k/j is not an integer, go to 8.
7. set sum=sum+j
8. set j to $j+1$ and go to 3.
A set is **recursively enumerable** (r.e) if it can be generated by a *procedure*

Another way of looking at this is that there is a 1-1 correspondence between elements of the set and the natural numbers. In other words, we can “*index*” the elements of the set.

A set is **recursive** if it can be generated by an *algorithm*

Languages of grammars are **recursively enumerable**

 psl are recursively enumerable
 csl, cfl, rl are recursive

Equivalently, a set that is recursively enumerable is the language of some grammar

recursively enumerable and **recursive**
“the search for rigorous formulation in linguistics has a much more serious motivation than mere concern for logical niceties or the desire to purify well-established methods for language analysis

precisely constructed models for linguistic structure can play an important role, both negative and positive, in the process of discovery itself

by pushing a precise but inadequate formulation to an unacceptable conclusion, we can often expose the exact source of this inadequacy and, consequently, gain a deeper understanding of the linguistic data”

noam chomsky – syntactic structures