VRayLightMtl examples

Example 1: Default Color and Multiplier values
Example 2: Higher Multipliers / 2-sided On and Off
Example 3: Texmap

Example 1: Default Color and Multiplier values

Here is a scene rendered with the default VRayLightMtl. These examples demonstrate how material behaves in V-Ray, and how its parameters influence the overlook of the final results.

The white plane is a default VRayLightMtl. The teapot is a default VRayMtl with Reflection. Rest is just VRayMtl with diffuse colors.

We are going to render this scene with Default Lights - Off till the end of the example and no lights will be used in it as well.

As you see the image is absolutely dark except the plane (self-illuminated) and the reflection on the teapot. Notice we have no GI and no lights at all here, so the dark part of the scene is totally expected and reasonable.

Notice that nothing changed in general, but the reflection on the teapot got stronger due to higher multiplier. Rest is still black: because we still have the GI off.

As you see turning on almost didn’t change the overlook. That is because of Multiplier value: 1.0. It acts mainly as self-illuminating object that has VRayLightMtl.

Example 2: Higher Multipliers / 2-sided On and Off

Multiplier: 5.0
GI on
2-sided off

Multiplier: 5.0
GI on
2-sided on

Multiplier: 10.0
GI on
2-sided off

Multiplier: 10.0
GI on
2-sided on
Now you can notice that increasing the **Multiplier** has influenced visibly the scene (shadows also appears).

Scene starting to gather more light because of the **2-sided - on**.

As you see the back is still dark, but you can already notice the blue wall receiving some **GI**, due to higher **Multiplier**. Shadow also appears more defined.

Scene starting to gather more light because the **2-sided - on**. we also start to see some burnt areas due **Linear** type of **C mapping**.

So, increasing the **Multiplier** affects the **GI** more (we have more light). But you can also notice that our render is quite splotchy.

Scene starting to gather more light because of the **2-sided - on**. Still splotchy **GI** solution.

Comparing this result to the previous is much better. **GI** solution is clearer and shadows are more precise. Of course this leads to higher render time.

Comparing this result to the previous is much better. **GI** solution is clearer and shadows are more precise. Of course this leads to higher render time.

Example 3: Texmap

This example shows using the **Texmap** slot and how the map determines the **Color** parameter.

Using a **Bitmap** in the **Texmap** Slot. **Multiplier** is quite low, so almost nothing happens.

Increasing the **Multiplier** leads to much lighter overlook of the assigned **Texmap** Slot.

Here is another **Bitmap** assigned to the **Texmap** Slot.

Increasing the **Multiplier** leads much lighter overlook...
the plane and the teapot reflection on the teapot are visible. Notice now the Bitmap is getting closer to white color for the surrounding walls, but the scene looks different from the previous one due to the new Bitmap.