Lecture 3
Finance Project
Somesh Jha
Maximum Likelihood estimation (MLE)

- Assume that we have N_t mortgages at time t in the mortgage pool.

- The number of pre-payments at time t (denoted by c_t) follows a Poisson distribution.
MLE (Contd)

• Formally, probability $P(c_t = k)$ that c_t is equal to k is:

$$e^{-\lambda(X_t, \beta)N_t}(\lambda(X_t, \beta)N_t)^k \frac{1}{k}$$

• Check that the following is true:

$$\sum_{k=0}^{\infty} kP(c_t = k) = \lambda(X_t, \beta)N_t$$
Form of $\lambda(X_t, \beta)$

- Recall that $\lambda(X_t, \beta)$ has the following form:
 \[
 \pi_0(t) \exp(\beta_1 \cdot rf7 + \beta_2 \cdot \ln(burnout) + \beta_3 \cdot season)
 \]

- Meaning of each covariate is given below:
 - $rf7$ (Refinancing opportunities)
 - $\pi_0(t)$ (Age)
 - $season$ (seasonal)
 - $burnout$ (burnout)
Problem

- Suppose we have a pool of mortgages that is similar to the pool underlying the MBS we are trying to price.

- We have historical data about this mortgage.
Problem (Contd)

- Want to find parameters $\beta_1, \beta_2, \beta_3$ that best fit this historical data.

- We will use a technique called Maximum Likelihood Estimation (or MLE) for this purpose.
Basic idea of MLE

- Assume a distribution (we assume Poisson distribution for the number of prepayments).

- Estimate the probability $f(\beta)$ of observing the historical data.
Basic idea of MLE (Contd)

• The log likelihood function (denoted by $\mathcal{L}(\theta)$) is $\log f(\beta)$.

• The parameters β are given by the solution to the following global-optimization problem:

$$\max_{\beta} \mathcal{L}(\beta)$$
MLE (Contd)

- Assume that we have historic pre-payment data for a pool of mortgages.

- Also assume that the number of prepayments at time t only depends on the number of mortgages in the pool at time t and is independent of the history.
MLE (Contd)

• History is given for times $1, 2, \cdots, T$, and the following things are given:

 $- c_t$ (Number of pre-payments at time t).

 $- N_t$ (number of mortgages remaining in the pool).

• T is the lifetime of the mortgage pool under consideration.
MLE (Contd)

• Probability $P(c_t)$ that the number of prepayments is c_t at time t is:

$$e^{-\lambda(X_t,\beta)N_t}(\lambda(X_t, \beta)N_t)^{c_t}$$

$$c_t!$$

• The probability of observing the entire history (using independence here) is:

$$f(\beta) = \prod_{t=1}^{T} P(c_t)$$

• Log likelihood function $\mathcal{L}(\beta)$ is:

$$\sum_{t=1}^{T} (c_t \ln(\lambda N_t) - \lambda N_t - \ln(c_t!))$$

• For notational convenience, In the expression for $\mathcal{L}(\beta)$ I have suppressed X_t and β.
MLE (contd)

- The factor $\ln(c_t!)$ is a constant so we ignore it in the maximization problem.

- We have to maximize the following function with respect to β (I have suppressed the X_t and β factors for notational convenience):

$$
\sum_{t=1}^{T} (c_t \ln(\lambda N_t) - \lambda N_t)
$$

- Next we discuss a method for maximization.
Steepest Ascent

• Let \(\mathcal{L}(\beta) \) be the log likelihood function.

• Recall that \(\beta \) is vector of three parameters \((\beta_1, \beta_2, \beta_3)\).

• The gradient vector of the log likelihood function is (denoted by \(\frac{\partial \mathcal{L}(\beta)}{\partial \beta} \)) is:

\[
\begin{bmatrix}
\frac{\partial \mathcal{L}}{\partial \beta_1} \\
\frac{\partial \mathcal{L}}{\partial \beta_2} \\
\frac{\partial \mathcal{L}}{\partial \beta_3}
\end{bmatrix}
\]

• Intuitively, the gradient vector at \(\beta \) (denoted by \(g(\beta) \)) is the direction in which
the log likelihood function increases most steeply (at the point β).
Steepest Ascent (Contd)

- Choose an initial vector β_0.
- Let β_{i-1} be the old estimate. The new estimate β_i is given by the following equations:
 \[
 \begin{align*}
 \beta_i - \beta_{i-1} &= cg(\beta_{i-1}) \\
 \|\beta_i - \beta_{i-1}\| &= k
 \end{align*}
 \]
- k is the step size. Notice that c is determined by the equations given above. Norm of the vector $\beta_i - \beta_{i-1}$ is denoted by $\|\beta_i - \beta_{i-1}\|$.
Problems with Steepest Ascent

- Convergence very slow near a local maximum.

- Variety of methods for numerical optimization.

Interesting exercise

- Assume that stock prices follow the geometric brownian motion.

- Using MLE estimate the drift and volatility of the stock.

- Historical prices for many stocks are available on numerous web-sites.
Interesting exercise (Contd)

- Using prices of various options on the stock find the *implied volatility curve*.

- How far is the *implied volatility curve* away from the MLE estimate?

- Let me know if you try this exercise.
Summary of MBS cash-flows

- MP_t (mortgage payment at time t)
- I_t (interest payment at time t)
- P_t (principal payment at time t)
- PP_t (prepayment at time t)
- S_t (service charge at time t)
- NI_t (net interest rate at time t)
- MB_t (mortgage balance at time t)
- CF_t (cash-flow at time t)
- SMM_t (Single Monthly Mortality Rate at time t)
Summary (Contd)

- MP_t is equal to

$$MB_{t-1} \frac{c(1+c)^{n-t+1}}{(1+c)^{n-t+1} - 1}$$

- I_t, S_t, P_t, and NI_t follow the equations given below:

$$I_t = cMB_{t-1}$$
$$S_t = sMB_{t-1}$$
$$P_t = MP_t - I_t$$
$$NI_t = I_t - S_t$$

- MB_t is given by the following expression:

$$MB_{t-1} - P_t - PP_t$$
Summary (Contd)

- CF_t is given by the following formula:
 \[NI_t + P_t + PP_t \]

- SMM_t is obtained from the pre-payment model.

- Prepayment PP_t at time t is given by the following equation:
 \[SMM_t(MB_{t-1} - S_t) \]
Pass-throughs

- Suppose a pass-through owns \(x \) percent of the mortgage pool.

- Cash flow of the pass-through at time \(t \) is given by the following equation:

\[
\frac{CF_{tx}}{100}
\]
Suppose there are m tranches T_1, \ldots, T_m with par-values P_1, \ldots, P_m.

At time t let the remaining par-value of tranch T_i be P_i^t.

Let j be the least number such that T_j is not retired.

The cash-flow of that tranch is:

$$\frac{P_j^{t-1}}{MB_{t-1}}I_t + P_t + PP_{t}$$
The new par-value P_j^t of tranche T_j is:

$$P_j^{t-1} - P_t - PP_t$$

If P_j^{t-1} is equal to zero, retire the tranche T_j.

For all tranches T_i such that $i > j$ the cash-flow is

$$\frac{P_i^{t-1}}{MB_{t-1}}I_t$$

P_i^t is equal to P_i^{t-1} (Why?)
Stripped MBSs

- The PO class gets $P_t + PP_t$ minus the servicing fee.

- The IO class gets I_t minus the servicing fee.
High-Level Design Document

- **Query Phase**
 Describes the steps in which the user interacts with the system. User chooses what instrument he/she wants to price and the various parameters.

- **Computation Phase**
 High-level procedure to price these instruments. Provide a description of the general technique you are using (induction on lattices, simulation, finite-difference schemes).

- **Presentation Phase**
 What is the result presented to the user.
How is the result presented to the user.
Query Phase

• Ask the user what kind of MBS they need to price.

• Pass-throughs, CMOs, or Stripped MBSs.

• Ask the parameters of the mortgage pool associated with the MBS (for description of parameters please see Lecture 1).

• In case of CMOs ask the following questions:
 – Number of tranches.
 – Par-value of each tranche.
Query Phase (Contd)

- Ask user about prepayment models. Support two kind of prepayment models.

- **Prepayment Option A**
 Vector of PSA speeds (see page 41 Lecture 2).

- **Prepayment Option B**
 Poisson process based model (see page 46 Lecture 2).
 Assumption: Assume that the model has been calibrated.
Points to notice

- Notice that I haven’t mentioned many details (like how the interface will look to the user).

- Details belong in the low-level design document.

- Low-level design document will refine each step in the high-level design document.
Points to notice (Contd)

- Haven’t committed to technology or methodology.
- I haven’t said whether we are going to use JAVA, C++.
- Technology choice made after the high-level design document.
- Haven’t even said whether we are going to use object-oriented, imperative, or functional programming.
- These decisions will be made after the high-level design document.
Check for completeness

- Check that all the parameters you need to price the instruments are there.

- Nothing should be missing.
Computation phase

- We will split this phase into two phases.

- Determine which prepayment option the user has given.

- Depending on the prepayment option the algorithm is very different.
Why the splitting?

- There is a much more efficient algorithm to price MBSs in case of prepayment option A.

- For example, you would not use Hull-White method (paper 1) to price a lookback option.

- The lattice for pricing a lookback option is small (refer back to data-structures notes).
Pricing pass-throughs (Option A)

- Notice that the cash-flow of the pass-through in this case is deterministic.

- Let CF_t be the cash-flow of the pass-through at time t.

- No randomness in CF_t.
Pass-throughs (Option A)

• The price of the pass-through at time t is given by the following equations:

$$
\sum_{t=1}^{T} E[CF_t \prod_{j=0}^{t-1} \frac{1}{1+r_j}]
$$

$$
\sum_{t=1}^{T} CF_t E[\prod_{j=0}^{t-1} \frac{1}{1+r_j}]
$$

• Expectation taken with respect to the risk-neutral or martingale measure. T is the lifetime of the mortgage pool underlying the pass-through.

• Do you recognize the following quantity?

$$
E[\prod_{j=0}^{t-1} \frac{1}{1 + r_j}]
$$
Pass-through (Option A)

- The mystery expression is the price at time 0 of a zero-coupon bond paying one dollar at time t.

- So we have the following formula for valuing the pass-through security in case of option A:
 $$\sum_{t=1}^{T} C F_t P(0, t)$$

- $P(0, t)$ is the price of a zero-coupon bond (at time 0) paying one dollar at time t.
Pass-through (Option A)

- Assuming prices $P(0, 1), P(0, 2), \ldots, P(0, T)$ are observable from the market we are done.

- Suppose the prices are only known for some times t_1, t_2, \ldots, t_k.

- Find the missing prices using interpolation.

- Notice how fast the algorithm is. No simulation required.
CMOs (option A)

- Price each tranche separately.

- Find out the lifetime τ_i of each tranche T_i (when it retires).

- Use the formula given below for tranche T_i

$$\sum_{t=1}^{\tau_i} CF_{t,i} P(0, t)$$

- $CF_{t,i}$ is the cash-flow of tranche T_i at time t.

39
Stripped MBS (option A)

- Price PO and IO classes separately.

- Use the equation given before.
Pass-throughs (option B)

- Use Monte-Carlo simulation to price the MBSs.

- Assume that we have a procedure called `nextPath()` which generates a random path.

- Notice that nothing is said about the specific interest-rate model. That belongs in the low-level design document.

- High-level design document only describes high-level algorithms and techniques. Very little detail about the actual
implementation.
Pass-throughs (option B)

• Determine how many paths to generate (say N).

• Let π_i be the i-th path and $r_{t,i}$ be the short-rate at time t on path i.

• Let $CF_{t,i}$ be the cash-flow on path π_i at time t.

• Let V_i be the value of this cash-flow at time 0 (given by the following equation)

$$
\sum_{t=1}^{T} CF_{t,i} \frac{t-1}{\prod_{j=0}^{t-1} \frac{1}{1 + r_{t,i}}}
$$
Pass-throughs (option B)

- Recall that the i-th path is π_i.

- Value of the pass-through at time 0 (denoted it by V_{PT}) is given by the following equation (averaging the values):

$$\frac{1}{N} \sum_{i=1}^{N} V_i$$
CMOs and Stripped MBSs

- Only the expression for cash-flows change.

- Everything remains the same.
Monte-Carlo (Contd)

• Suppose we generate N paths in the Monte-Carlo simulation.

• Let σ be the standard deviation of the value of the financial instrument calculated from the simulation runs.

• The error of the estimate calculated from the simulation runs is approximately $\frac{\sigma}{\sqrt{N}}$.
Variance reduction

- There are techniques to *speed up* the convergence of the Monte-carlo simulations.

- One of such class of techniques is called *variance reduction*.

- We will consider a special case of variance reduction called *control variate technique*.
Control variate technique

- Security A is the security to be priced.

- Consider a similar security B, which you can price by other means (say lattice based or analytical techniques).

- In the simulation runs estimate the quantity $V(A) - V(B)$.

- $V(A)$ and $V(B)$ are the values of securities A and B respectively.
Control-variate technique (Contd)

• Let V^* be the estimate of $V(A) - V(B)$ calculated from the simulation.

• Let $V_{true}(B)$ be the value of security B calculated using other means (lattice based or analytical).

• The estimate for value of security A is $V^* + V_{true}(B)$.
Interesting exercise

- This is an interesting exercise (especially for students doing Paper 1).
- Suppose we are interested in pricing an \textit{European asian option} with maturity T and strike price K.
- European asian option is the primary security A in this case.
- Take your secondary security B as the \textit{European geometric asian option} with exactly the same parameters.
- Recall that geometric asian option depends upon the geometric average of the stock price.
Interesting Exercise (Contd)

- Price the european geometric option using lattice based techniques. Call this price $V(G)_{true}$.
- Recall that the lattice for pricing european geometric option was cubic in the number of periods.
- Estimate the difference of the asian option and the geometric option. Call this estimate V^*.
- The value of the asian option is $V^* + V(G)_{true}$.
MBS and variance reduction

- What is a security similar to an MBS? *Another MBS.*

- Let us say we want to price an MBS A.

- We will pick a similar MBS B.

- MBS B will have *deterministic cash-flows* and hence can be priced using the closed-form formula given before. No simulation required.
Next we describe how to pick MBS B.
In search of MBS B

- Suppose the mortgages in the mortgage pool are for T months.

- Pick r times
 \[t_0 = 1 \leq t_1 < t_2 < \cdots < t_r = T. \]

- Let SMM_i (for $0 \leq i < r$) be the SMM for the period $[t_i, t_{i+1})$.

- **Goal:** To pick SMM_0, \cdots, SMM_{r-1} so that the prepayment structure of MBS B is close to the prepayment structure of MBS A (our original MBS).
Search continues

- Generate M random paths.

- For path i let $SMM_{1,i}, SMM_{2,i}, \cdots, SMM_{T,i}$ be the sequence of SMMs for the original MBS (security A).

- Calculate the distance between the sequence of SMMs and the SMMs of the security B.
Search continues

• The distance is given by the following equation:

\[d_i = \sum_{t=1}^{T} |SMM_{t,i} - SMM_{t,B}| \]

• \(SMM_{t,B} \) is the \(SMM \) for the security \(B \) we are trying to construct.

• \(d_i \) is a function of the variables \(SMM_0, \ldots, SMM_{r-1} \).
• Add the distances over all the M paths

\[D = \sum_{i=1}^{M} d_i \]

• Find variables SMM_0, \ldots, SMM_{r-1} by solving the following global optimization problem:

\[
\max_{SMM_0, \ldots, SMM_{r-1}} D(SMM_0, \ldots, SMM_{r-1})
\]
Presentation Phase

- Present the price of the pass-through to the user.

- In case of CMOs present the price of each tranch.

- In case of stripped MBS present the price of PO and IO classes.

- Report any convergence problems, i.e., Monte-carlo simulation didn’t converge in the required number of steps.
Schedule

• High-level document due date: Feb 3, 1999, Wednesday.

• No need to divide into sub-teams for this document.

• Pay close attention to the points suggested.