Objectives

- Options
 - basic strategies
 - introduction to some pricing restrictions
 - introduction to binomial model

Payoff Diagrams
Some strategies

- Naked
- Protective put
- Covered call
- Straddle

Protective put

- Purchase underlying security
- Purchase put option, exercise price X
Algebraically

<table>
<thead>
<tr>
<th>Position</th>
<th>$S_T < X$</th>
<th>$S_T > X$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underlying</td>
<td>S_T</td>
<td>S_T</td>
</tr>
<tr>
<td>Put</td>
<td>$X - S_T$</td>
<td>S_T</td>
</tr>
<tr>
<td>Net</td>
<td>X</td>
<td>S_T</td>
</tr>
</tbody>
</table>

Why do this?
Covered call

- Purchase underlying
- Write call option against it

Straddle

- Buy put and call, both at the same strike
Other spreads

• combination of 2+ calls or puts, same asset with differing exercise prices or times to expiration
 – Vertical or money spread
 • Same maturity and different exercise price
 – Horizontal or time spread
 • different maturities

Main Points

• Lots of strategies possible
• Options allow you to customize cash flows across states in the future...
Put call parity

- Relationship between price of European call and put
- Independent of assumptions about randomness in underlying
 - stocks
 - indexes
 - bonds, currencies, etc.

Final Payoffs: Long call and short put
Arbitrage relationship

Example

- Stock price = $10
- maturity 1 year, interest rate 10%
- exercise price = $9.90
 - Put price = $1
 - Call price ?
Call price < stock price

- Suppose stock price = 10, call price = 11, exercise price = 4
- Strategy:
 - purchase stock
 - short option

Payoffs on strategy

<table>
<thead>
<tr>
<th>Item</th>
<th>Today</th>
<th>Maturity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$S_T < 4$</td>
</tr>
<tr>
<td>Long stock</td>
<td>-$10</td>
<td>S_T</td>
</tr>
<tr>
<td>Short option</td>
<td>+$11</td>
<td>0</td>
</tr>
<tr>
<td>Net</td>
<td>+$1</td>
<td>S_T</td>
</tr>
</tbody>
</table>
American calls

• Don’t exercise early without dividends

Binomial Model

• Workhorse model for derivatives valuation
• Very flexible
• Basic Assumption about stock price moves
 – binomial process for stock price: either goes up or down next period
1 period example

- \(S_0 = 10 \), current stock price, \(r = 1.1 \) = riskfree rate
- probability stock increase = \(q = 0.5 \)
 - \(u \): multiplicative upward movement = 2
 - \(d \): downward movement = 0.5
 - \(u > r > d \)
- Why?

Stock price movements

\[
S_i = \begin{cases}
 uS_0 & \text{probability} = 0.5 \\
 dS_0 & \text{probability} = 0.5
\end{cases}
\]

\(S_0 = 10 \)

- \(uS_0 = 20 \), prob 0.5
- \(dS_0 = 5 \), prob 0.5
Call option, \(X=10, \) 1 period maturity

Valuation

- Basic idea: come up with strategy of stock and bonds with same payoff as option
 - arbitrage says: cost of strategy = cost of option
- \(\alpha \): number of shares, \(\beta \): number of bonds
 - ‘u’: \(\alpha 20 + \beta 1.05 = 10 \)
 - ‘d’: \(\alpha 5 + \beta 1.05 = 0 \)
 - Solving: \(\alpha = \frac{2}{3}, \ \beta = -\frac{2}{3}(\frac{5}{1.1}) \)
Call value

• Value of call=value of portfolio
 \[\alpha(10)+\beta+=(2/3)(10)-(2/3)(5/1.1)=3.64 \]

Implications

• 2 states in future: needed 2 securities (stock and bond) to hedge/price option
• Call = long stock and short bond: levered position in portfolio
• What happened to probability of u and d?
Recap

- Pricing via replication
- probabilities of up and down doesn’t matter!
- Steps:
 - check if #securities \geq # states
 - if so, match cash flows state by state

Summary

- Options
 - strategies
 - basic pricing restrictions
 - introduction to binomial model
Next Time

- Extend binomial model to deal with multiple periods
- Applying model to portfolio strategies
 – Sharpe and Perold in readings packet