1. Consider a triangular fin as shown in Figure 1. The fin extends infinitely into the page, and loses heat to the surroundings. This heat loss may be modeled as a convective heat transfer to a surroundings temperature of T_∞ through a heat transfer coefficient h. Show that the fin heat transfer equation for this geometry is given by:

$$\frac{\partial}{\partial x} \left(x \frac{\partial \theta}{\partial x} \right) - m^2 \theta = 0 \tag{1}$$

where

$$m^2 = \frac{2hL}{kb}$$

and $\theta = T - T_b$.

By using the transformation

$$z = 2mx^{\frac{1}{2}}$$

show that Equation 1 can be transformed into the modified Bessel’s equation

$$z^2 \frac{\partial^2 \theta}{\partial z^2} + z \frac{\partial \theta}{\partial z} - \theta z^2 = 0$$

Though you are not required to find the solution, it may interest you to know that it can be written in terms of modified Bessel’s functions as:

$$\theta = C_1 I_0(z) + C_2 K_0(z)$$

![Figure 1: Fin Geometry for Problem 1](image-url)
2. Let us explore to solution derived in class for steady two-dimensional conduction in the rectangular domain shown in Figure 2. For \(T_1 = 200 \, K \) and \(T_2 = 500 \, K \), \(L = 1 \, m \) and \(W = 2 \, m \)

(a) Find how many terms of the series must be summed to find the temperature at \((0.5, 1.0)\) to an accuracy of 1%.
(b) Plot the temperatures on lines \(x=0.25\,m \), \(x=0.5\,m \), and \(x=0.75\,m \).
(c) Show that the maximum and minimum temperatures lie on the boundaries of the domain.
(d) Find an expression for the heat flux on the top boundary, \(q' (x, 2.0) \).

\[
\begin{align*}
T_1 & \quad y \\
L & \quad x \\
W & \quad T_1
\end{align*}
\]

Figure 2: Conduction in a Rectangular Domain (Problem 2)

3. Let us explore the separation of variables technique which we are using extensively in class to study conduction problems. Consider steady 2-D conduction with constant properties. For each of the cases listed below, determine whether the separation of variables technique will work or not by repeating the derivation done in class.

\[
\begin{align*}
\text{(a)} & \quad T_2 (x) \\
\text{(b)} & \quad T_2 (x) \\
\text{(c)} & \quad h_0 \cdot T_0 \\
\text{(d)} & \quad y = ax + b
\end{align*}
\]

Figure 3: Boundary Conditions for Problem 3