PROBLEMS

From the textbook 7.3, 7.5

1. Use Laplace transforms to find \(y(t) \) where \(y(0) = 0 \), \(y'(0) = 0 \) and \(m y''(t) + k y(t) = f_o \delta(t) \)

2. Suppose \(y(t) \) satisfies the equation:
 \[y''(t) + y'(t) + 25 y(t) = f(t) \]
 subject to the initial conditions: \(y(0) = 0 \) and \(y'(0) = 0 \).
 Use Laplace transforms to do the following exercises

a. Find and plot the solution, \(y_i(t) \), when \(f(t) \) is the unit impulse \(\delta(t) \).

b. At what value of time \(t_0 \) is \(y_i \) first equal to zero? \((t_0 > 0) \).

c. Find and plot the solution, \(y_H(t) \), when \(f(t) \) is the unit step function \(H(t) \).

d. From the plot determine the time \(t_m \) at which \(y_H \) is maximum. What is the maximum value of \(y_H \)? How does \(t_m \) compare with \(t_0 \) from part b?

e. Explain the results that you got in part d.