7. ORDINARY DIFFERENTIAL EQUATION

7.1 Introduction

DE ⊂ ODE # of indep. var = 1
PDE ⊂ # of indep. var ≥ 2

(dependent variable
independent variable

Linear ODE ← we will deal with this type only in this class.

Non linear ODE

Def. of Linear ODE

\[a_n(x)y^{(n)} + \ldots + a_1(x)y' + a_0(x)y = f(x) \]

(linear combination of
\(y, y', y'', \ldots, y^{(n)} \))
Question: Which ones are linear ODE?

1. \(\frac{dy}{dx} = x + 1 \)
2. \(\frac{dy}{dx} = y + 1 \)
3. \(\frac{dy}{dx} = x^3 + 1 \)
4. \(\frac{dy}{dx} = (x^3 + 1)y \)
5. \(\frac{dy}{dx} = y^2 + 1 \)
6. \(\frac{dy}{dx} = \sin y \)

Answer: (1), (2), (3), (4)

e.g.) Mass-spring-damper system

\[m \ddot{x} + c \dot{x} + kx = F(t) \quad \text{linear} \]

e.g.) Swinging Pendulum

\[\frac{d^2 \theta}{dt^2} = -\frac{g}{l} \sin \theta \]

Nonlinear, but if \(\theta \approx 0 \)

\[\sin \theta = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \frac{\theta^7}{7!} + \cdots \]

Linearized version.

\[\frac{d^2 \theta}{dt^2} = -\frac{g}{l} \theta \]
Higher order linear ODE

\[\Rightarrow \quad \text{Coupled 1st order ODEs} \]

This conversion is necessary in order to apply Euler’s or Runge-Kutta methods to solving a higher order ODE.

\[a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = F(x) \]

\[\Rightarrow \quad n^\text{th order ODE} \]

\[y_0 = y, \]
\[y_1 = y', \]
\[y_2 = y'', \]
\[y_3 = y''' \]
\[\vdots \]
\[y_{n-1} = y^{(n-1)} \]

\[\Rightarrow \quad \text{Coupled 1st order ODEs} \]

\[\begin{cases}
 y_0' = y_1 \\
 y_1' = y_2 \\
 y_2' = y_3 \\
 \vdots \\
 y_{n-1}' = f(t) - a_0 y_0 - a_1 y_1 - \cdots - a_{n-1} y_{n-2} \end{cases} \]

Vector form \[y' = f(x, y) \]

\[
\begin{array}{c}
\text{indep. var.} \\
\uparrow \\
\text{dep. var.}
\end{array}
\]
2nd order ODE \rightarrow 1st order ODE

Original 2nd order ODE:

$$m x'' + c x' + k x = F(t)$$

State variables: y_0, y_1

$$\begin{cases}
y_0' = y_1 \\
y_1' = \frac{F(t) - ky_0 - cy_1}{m}
\end{cases}$$

This function is also a vector

$y = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}$, $f = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix} = \begin{bmatrix} y_1 \\ \frac{F(t) - ky_0 - cy_1}{m} \end{bmatrix}$
ODE Integration Scheme Summary

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Global Error</th>
<th>Exact Error</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euler's</td>
<td>$O(h)$</td>
<td>linear func.</td>
<td>1st</td>
</tr>
<tr>
<td>Heun's</td>
<td>$O(h^2)$</td>
<td>quadratic</td>
<td>2nd</td>
</tr>
<tr>
<td>Midpoint</td>
<td>$O(h^2)$</td>
<td>quadratic</td>
<td></td>
</tr>
<tr>
<td>Classical Runge-Kutta</td>
<td>$O(h^3)$</td>
<td>quartic</td>
<td>4th</td>
</tr>
</tbody>
</table>

Most popular RK method for practical applications.
7.3 Euler's Method

Input

\[y' = f(x, y) \]

vectors \(\rightarrow \) indep \(\rightarrow \) dep var.

The 1st order derivative (or slope) is a function of both \(x \) and \(y \).

Euler's method (1st order Taylor approx)

\[y_{i+1} = y_i + f(x_i, y_i)h + O(h^2) \]

\[\text{local truncation error} \]

in one step, \(x_i \to x_{i+1} \)

\[\text{global truncation error} \quad \text{(always greater than local)} \]

\[\# \text{ of steps} \times O(h^2) \]

(local)

\[= O\left(\frac{1}{h}\right) \times O(h^2) \]

\[= O(h) \]

\(O(h^2) \) is better than \(O(h) \)
Heun's Method
(predictor-corrector approach)

\[y_{i+1} = y_i + \frac{f(x_i, y_i) + f(x_{i+1}, y_{i+1}^\circ)}{2} \]

Heun's method:

\[y_{i+1}^\circ = y_i + f(x_i, y_i)h \]

\[y_{i+1} = y_i + \frac{f(x_i, y_i) + f(x_{i+1}, y_{i+1}^\circ)}{2} h \]

corrector

predictor
Midpoint Method

\[f(x_i, y_i) \]

Midpoint: \(x_i \), \(x_i + \frac{h}{2} \), \(x_{i+1} \)

\[
\begin{align*}
 y_{i+\frac{1}{2}} &= y_i + f(x_i, y_i) \cdot \frac{h}{2} \\
 y_{i+1} &= y_i + f(x_{i+\frac{1}{2}}, y_{i+\frac{1}{2}}) \cdot h \\
 x_{i+\frac{1}{2}} &= x_i + \frac{h}{2}
\end{align*}
\]

Both Heun's and midpoint methods are examples of the 2nd order Runge-Kutta method.
7.3 Runge-Kutta Methods

- Higher order linear ODE
 \[y' = f(x, y) \]

 - Independent variable
 - Dependent variable

\[\frac{dy}{dx} = x^2 + y \quad \text{(linear)} \]
\[\frac{dy}{dx} = y^2 + x \quad \text{(non-linear)} \]

- Euler
- Heun
- Mid-Point

Examples of R-K methods (one step methods)
- Weighted average
- Sub-steps

To estimate a representative slope more accurately
Generalized form of RK solutions:

\[y_{i+1} = y_i + \phi(x_i, y_i, h) h. \]

\[\phi = a_1 k_1 + a_2 k_2 + \cdots + a_n k_n \]

- RK-1st

\[k_1 = f(x_i, y_i) \]

- RK-2nd

\[k_2 = f(x_i + 0.5h, y_i + 0.5h k_1) \]

- RK-3rd

\[k_3 = f(x_i + 0.5h, y_i + 0.5h + k_2) \]

- RK-4th

\[k_4 = f(x_i + h, y_i + h k_1 + \frac{h^2}{2} k_2 + \frac{h^3}{3} k_3) \]

\[\phi = \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4) \]

\[\text{Note:} \]

- k's are recurrence relationships.

- That is, k_1 appears in the \(f \) for k_2, which appears in the \(f \) for k_3, and so forth.
RK-1st

$y_{i+1} = y_i + (a_1 k_1 + a_2 k_2) h$

where $k_1 = f(x_i, y_i)$
$k_2 = f(x_i + p_i h, y_i + g_{11} k_1 h)$

End

RK-2nd

$y_{i+1} = y_i + (a_1 k_1 + a_2 k_2) h$

where $k_1 = f(x_i, y_i)$
$k_2 = f(x_i + p_i h, y_i + g_{11} k_1 h)$

4 unknowns: a_1, a_2, p_1, g_{11}

Read textbook p.497
Box 25.1

\[\begin{align*}
 a_1 + a_2 &= 1 \\
 a_2 p_1 &= \frac{1}{2} \\
 a_2 g_{11} &= \frac{1}{2}.
\end{align*}\]

\[\begin{align*}
 a_1 &= 1 - a_2 \\
 p_1 &= \frac{1}{2} a_2 \\
 g_{11} &= \frac{1}{2} a_2
\end{align*}\]

Third Edition

\times typo in the textbook

\times equivalent to the 2nd order Taylor series approx.

Also (25.32) on p.696 is a typo.

This is why the 2nd order RK is exact to quadratic func.

The common basic strategy underlying all the Runge-Kutta methods
Three simultaneous eqs for four unknowns
(one more unknown than the # of eqs)
→ no unique set of solutions.
→ by assuming a value for one
we can determine the other three

\[a_2 = \frac{1}{2} \text{ (Heun's)} \]
\[a_1 = \frac{1}{2}, \quad p_1 = \frac{3}{4} \quad n = 1 \]
\[y_{i+1} = y_i + \left(\frac{1}{2} k_1 + \frac{1}{2} k_2 \right) h \]

where
\[k_1 = f(x_i, y_i) \]
\[k_2 = f(x_i + h, y_i + k_1 h) \]

\[a_2 = 1 \text{ (Mid point)} \]
\[a_1 = 0, \quad p_1 = \frac{3}{4} \quad n = 1 \]
\[y_{i+1} = y_i + k_2 h \]

where
\[k_1 = f(x_i, y_i) \]
\[k_2 = f(x_i + \frac{h}{2}, y_i + k_1 \frac{h}{2}) \]

\[a_2 = \frac{2}{3} \text{ (Ralston) ← minimum trunc. error} \]
\[a_1 = \frac{1}{3}, \quad p_1 = \frac{3}{4} \quad n = 3/4 \]
\[y_{i+1} = y_i + \left(\frac{1}{3} k_1 + \frac{2}{3} k_2 \right) h \]

where
\[k_1 = f(x_i, y_i) \]
\[k_2 = f(x_i + \frac{3}{4} h, y_i + k_1 \frac{3}{4} h) \]
\[f(x, y) \]

ex.) \(y' = 2x \quad \rightarrow \quad y = x^2 \).

\[y' = 6. \]

\[y' = 4. \quad \text{exact solution to the slope} \]

\[y' = 3 \]

\[\phi = 3 \]

\[\chi_i = 0 \quad \chi_{i+1} = 3 \quad h = 3. \]

Heun's

\[k_1 = f(0, 0) = 0 \]

\[k_2 = f(3, 0) = 6 \]

\[\phi = \frac{1}{2} k_1 + \frac{1}{2} k_2 = 3 \]

Mid point

\[k_1 = f(0, 0) = 0 \]

\[k_2 = f\left(\frac{3}{2}, 0\right) = 3 \]

\[\phi = k_2 = 3 \]

Ralston

\[k_1 = f(0, 0) = 0 \]

\[k_2 = f\left(\frac{9}{4}, 0\right) = \frac{9}{2} \]

\[\phi = \frac{1}{3} k_1 + \frac{2}{3} k_2 = \frac{3}{3} \cdot \frac{9}{2} = 3 \]
RK-1st

\[k_1 \rightarrow \phi \rightarrow k_2 \]

\[x_i, x_{i+1} \]

RK-2nd

- **Heun**
 \[a_1 = a_2 = \frac{1}{2} \]

- **Mid-point**
 \[a_1 = 0, a_2 = 1 \]

- **Ralston**
 \[a_1 = \frac{1}{3}, a_2 = \frac{2}{3} \]
\[y_{i+1} = y_i + \frac{k_1 + 2k_1 + 2k_3 + k_4}{6} h \]

where \[k_1 = f(x_i, y_i) \]
\[k_2 = f(x_i + \frac{h}{2}, y_i + k_1 \frac{h}{2}) \]
\[k_3 = f(x_i + \frac{h}{2}, y_i + k_2 \frac{h}{2}) \]
\[k_4 = f(x_i + h, y_i + k_3 h) \]

\[a_1 = \frac{1}{6}, a_2 = \frac{1}{3}, a_3 = \frac{1}{3}, a_4 = \frac{1}{6} \]

This formula is equivalent to the 4th order Taylor series approximation.

Local error (per step) \(O(h^5) \)

Global error (per \(\frac{1}{h} \) steps) \(O(h^4) \)

Exact to the quintic function.