Solution to: Quiz 2
September 22, 2000
Instructor: J. Murthy

Given: A closed rigid tank
Initial Pressure \(P_1 = 1 \) Mpa
Specific Volume \(v_1 = 0.23268 \) m\(^3\)/kg

Final temperature \(T_2 = 165 \) °C

Solution:

From Table B.1.2, at 1 Mpa, the saturation temperature is 179.91 °C and \(v_g \) is 0.19444, while the given \(v_1 \) is 0.23268 m\(^3\)/kg (\(> v_g \)). Hence it is in Superheated state.

From Table B.1.4, at 1 MPa and \(v_1 = 0.23268 \) m\(^3\)/kg, \(T = 250 \) °C --------------------(1)

It is cooled to 165 °C. At this temperature, the \(v_f \) is 0.001108 m\(^3\)/kg and \(v_g \) is 0.27269 m\(^3\)/kg. Since it is a closed rigid tank the specific volume is constant.

\(v_f < v_1 < v_g \). Therefore, it is saturated state.

Hence the pressure is the saturation pressure. From Table B.1.2, the saturation pressure at 165 °C is, \(P_2 = 700.5 \) kPa. --(2)

Quality,
\[x = \frac{(v_1 - v_f)}{v_{fg}} \]
\[x = \frac{(0.23268 - 0.001108)}{0.27158} \]

\[x = 0.853 \] --(3)