
Programming review, July 14
Matthew Meisel

Significant portions of this material are modified from Surverying the Field of
Computing, 4th ed., by Carl Burch, 2002.

Arrays

An array holds a sequence of values of the same type. Arrays are useful to use when
storing related data. Each individual value in the array is called an array element or,
informally, a component.

An array is declared similarly to a single variable. An array declaration uses the
following format.

<typeOfElement>[] <variableToDefine>;

For example, the following creates a variable score of type double that can name an array
of numbers.

double[] score;

We need an extra step when we declare arrays to reserve a chunk of memory for our
array, and we do this with the new keyword.

score = new double[3];

Sometimes, it is convenient to combine the above two statements into one. This allows
us to declare an array and reserve memory for it in the same step.

double[] score = new double[3];

To work with an array, we must refer to individual elements using their array indices.
When an array is created with the code above, the array elements are automatically
numbered from 0 up to one less than the array length.

If you declare an array of length 3 (like in the above example), the indices of the
array will be 0, 1, and 2. If you try to access an undefined array index, there will
be a run-time error called and ArrayIndexOutOfBounds Exception and your
program will crash.

You can assign a value to an array element using a simple declaration statement.

score[0] = 23.4;

Alternatively, any kind of numerical expression can be coded inside the brackets.

Std.out.println(“How long to you want your array to be?”);
int length;
length = Std.in.readInt();

double[] testArray;
testArray = new double[length];

Std.out.println(“Enter a number 0 through” + (length-1));
int index;
index = Std.in.readInt();

Std.out.println(“Enter an int to be placed in that index of the array”);
testArray[index] = Std.in.readInt();

Finally, Java provides a useful technique for finding the length of an array. The
statement array.length, where array is the name of your array, will return the length of
your array.

Std.out.println(“The length of your array is ” + testArray.length);

Notice that the length is always an integer.

The for loop

A for loop is a type of loop in Java. It is meant for executing a sequence of statements
for every value in a set, especially for iterating over some statements for every integer in
a range. A for loop in Java has the following format.

for (<initialAssignment>; <conditionalStatement>; <updateAssignment>) {
 <statementsToRepeat>;
}

The first time through the loop, the initial assignment is executed. Then, the conditional
statement is evaluated. If the conditional statement is true, the statements to repeat are
executed, and then the update assignment is, too. The conditional statement is rechecked,
and the loop is repeated as long as the conditional is true. If it is false, the loop “breaks,”
and the program continues with the code after the loop.

Remember that when we test equality inside a conditional statement, we must use
the double equals sign (==). The single equals sign is used to assign a variable a
value, not to test equality.

The following code prints out the first ten perfect squares.

for (int x=1; x<11; x++) {
 Std.out.println((x*x));
}

Notice that we declare and assign the counter variable x inside the loop itself.
Because we defined it inside the loop, the variable is destroyed as soon as the loop
is finished, and we cannot access it again.

The symbol x++ means “add 1 to the value of x.” Similarly, x-- means “subtract 1
from the value of x.” The addition of the ++ and -- operators to the language C
was one of the more minor changes in the creation of C++, but, nevertheless, that
is how C++ got its name.

Exercise: Using a for loop, write a program that prints the first ten powers of 2. Recall
that the Java method Math.pow(a,b) returns the value of (ab).

Using for loops and arrays together

Often times, programmers use for loops and arrays together do perform the following
functions: 1) assign a value to each element of an array, or 2) read each value of an
array. In the following example, we read each value of an array using a for loop.

Example: Write a method that takes an array and prints out every array element.
Solution:

private static void printArray (double[] array) {

 for (int c=0; c<array.length; c++) {
 Std.out.println(array[c]);
 }

 return;

}

Notice that our method is void: it does something, but it doesn’t return anything.
Therefore, when we write return at the end of our method, we don’t write
anything after it. The keyword return only signifies that it is the end of the
method. Void methods are called using a single statement, whereas methods that
return a value must be called as part of a large statement.

printArray(a); // void method: does not return a value, so it is
 // written as a statement alone

int m = max(a,b); // non-void method: returns a value, so is part of

// another statement (in this case, a variable
// declaration)

Now we will write a program that performs the other function of a for loop with an array:
to assign a value to each element of an array.

Exercise: Write a program that creates an array of the first n even numbers. Asks the user
how large they want their array to be. Then, fill the array using a for loop.

Searching through an array

Sometimes, it might be useful to find the location of a certain element in an array. The
simplest way of doing this is to look through the array, element by element, and check to
see if the given element is the same as the one we are looking for. The following method
takes as a parameter two things: an array of type int and an integer in the array that we
wish to find. It returns, as an integer: the first index where we find that value. If we
don’t find that value, it returns -1 (which obviously cannot be an index).

private static int findNum (int[] array, int numToFind) {

 for (int c==0; c<array.lenth; c++) {
 if (array[c] = numToFind) {
 return c;
 }
 }
 return -1;

}

It is important that your methods always return some value. In this case, our
method needs to return a value even if it doesn’t find the given number. Your
methods should always return a default value if the method doesn’t do what it’s
supposed to, and that value—a negative number, in this case—should make it
clear to the program that something in the method went wrong.

Notice that our method uses multiple return statements. Because the method can only
return one value, the first time it encounters a return statement, that value is returned and
the entire method—along with the for loop—is terminated.

Exercise: Write a method that takes as its parameters an integer array and an integer to
find (just like above). However, this method should return the number of times the given
number appears in the array. You will need to create a variable inside the method to
count how many times the number appears. Set it to 0 to begin with, and add one to it
each time you come across the given number! (What value will the method return if it
doesn’t find the given number?)

Tricks with while loops

We have already seen the basic format of a while loop.

while (<conditionalStatement>) {
 <statementsToRepeat>

}

The first time through the loop, the conditional statement is evaluated. If it is true, then
the statements to repeat are executed. Then, the conditional statement is checked again,
and, if it is still true, the statements to repeat are executed again. The loop continues until
one of two things happens: 1) the conditional statement becomes false, or 2) the keyword
break; is reached. (You can also use the keyword break; inside a for loop).

Consider the following code.

int c = 2;
while (c<2000) {
 Std.out.println(c);
 c = c*2;
}

The first time through the loop, the conditional statement is true: c, which equals 2, is less
than 2000. The program prints c, then multiplies c by 2. We have reached the end of the
statements to repeat, so the conditional is evaluated again. This time, c equals 4, which is
still less than 2000, so the statements inside the loop are again repeated. This will
continue as c grows, but eventually c will become greater than 2000, and at the point the
loop will stop.

There are a number of tricks you can use with while loops. For example, if you want a
program to loop for ever, you can use code like this.

while (true) {
 <statementsToRepeat>
}

Because the conditional statement will always be true (the keyword true always
evaluates as true!), the loop will repeat forever (unless, of course, it comes across the
break; statement in the loop).

You can also use a while loop to guarantee that your user’s input has some special
property. For example, suppose you want to the user to input an integer that is at least 1,
and if the user doesn’t input an integer greater than 1, you want to ask them again.

int number = 0;
while (number<=0) {
 Std.out.println(“Please input an integer greater than 0”);
 number = Std.in.readInt();
}

We assign number a default value that violates our own condition, and then we write the
conditional statement of the while loop that is the opposite of the condition we are
looking for. Therefore, the loop will execute the first time through, and it will continue
to execute as long as the input is illegal. As soon is the input is legal, the loop will end—
and we have legal input!

Exercise: Write a program that asks a user for an odd integer and continues to ask them
for an odd integer until they input one.

