
Explorations in chaos 
 

An iterated function system is any system where the output of a function is immediately 
placed back into the input of a function.  For example, a simple system might be defined 
as follows. 
 

Fn+1 = (Fn)2 
 
This means that to find the next value of the sequence, one needs to square the current 
value.  The subsequent value would be found by, again, squaring the result. 
 
When we study iterated function systems, we don’t usually care what the result of the 
function is.  Instead, we care about how many times we have to run some initial value 
through the system for the result to have some property. 
 
In the example above, if F0 = 2, then F1 = 4, F2, = 16, F3 = 256, etc.  We might be 
interested in, say, how long it takes for F to be greater than 100 (in this case, three 
iterations), but we don’t care what the actual value is at this point. 
 
You might have noticed that this system is rather boring.  Fn grows very quickly, as long 
as F0 > 1.  It doesn’t matter what your F0 is: it can be 3, it can be 3.01, or it can be 
3.0000001, the end result is the same: the value of the system becomes very large very 
fast. 
 
However, when one studies complex numbers in an iterated function systems, the game 
changes.  Systems of iterated functions involving complex numbers are significantly 
more interesting than those with real numbers, and the results are significantly more 
striking.  The next few paragraphs give a primer on complex numbers—skip them if you 
are already familiar with complex numbers. 
 
For centuries, mathematicians struggled with the idea of the non-real roots of some 
quadratic equations.  For example, what are the roots of x2 + 1 = 0?  According to the Dr. 
Math web site1, it was the Italian mathematician Girolamo Cardano, who, in the 16th 
century, first formulated the idea of complex and imaginary numbers as non-real roots to 
quadratic equations.  Carl Gauss is largely credited with the use of i the square root of 
one. 
 
So what is an imaginary number?  An imaginary number tackles the problem of taking 
the square root of a negative number.  The square root of -1, for example, is not -1 
(because -1 squared is 1), and it’s obviously not +1.  So, by convention, mathematicians 
define i to be the square root of -1, and in this manner we can express the square root of 
any negative number: 
 

√(-27) = √[(27)(-1)] = √(27)√(-1) = 3i 
 
                                                 
1 http://mathforum.org/library/drmath/view/52584.html 



Complex numbers, then, are a natural extension of imaginary numbers.  Complex 
numbers have a real part (a) and an imaginary part (b) in the form a + bi.  For example, 
we might solve the quadratic equation x2 − 4x + 5 = 0 using the quadratic formula: 
 

x = (−b ± √(b2−4ac))/2a 
x = (4 ± √(16−20))/2 
x = (4 ± √(-4))/2 
x = (4 ± 2i)/2 
x = 2 ± i 

  
Here, there are two complex solutions to the quadratic equation, namely, 2+i and 2-i. 
 
Bearing in mind that i is the square root of -1, we can perform any operation we’d like on 
complex numbers (though division is a little more complicated).  To add or subtract 
complex numbers, we add and subtract their real and imaginary parts. 
 
 (3+2i) − (4−3i) = -1+5i 
 
To square a complex number a+bi (or to multiply any two complex numbers), we simply 
multiply as though we were multiplying two binomials. 
 

(a+bi)(a+bi) = a2 + 2abi + b2i2 
  = a2 + 2abi − b2 (because i2 = -1) 
  = (a2 + b2) + (2ab)i (collecting like terms) 

 
This implies a theorem of closure over the complex numbers, which I will state but not 
prove.  The set of all complex numbers is closed under the operations of addition, 
subtraction, multiplication, and division.  Simply put: take any two complex numbers, 
and add, subtract, multiply, or divide them, and your result will be another complex 
number. 
 
Finally, we need to define the norm of a complex number.  The norm is analogous to the 
absolute value of a real number, and its formula looks very similar to the distance 
formula: 
norm(a+bi) = ||a+bi|| = √(a2+b2) 
 
Now let’s examine an iterated function system of complex numbers. 
 

Cn+1 = (Cn)2 
 
With complex numbers, this system is much more interesting!  If we let C0 = 1−2i, then: 
 



C1 = 1−2i 
C2 = -3−4i 
C3 = -7+24i 
C4 = -527−336i 
C5 = 164833+354144i 

 
The numbers behave a little more erratically!  Both the real and imaginary parts have 
switched their signs at least twice, without any seeming pattern. 
 
Consider a similar iterated function system of complex numbers. 
 
 Cn+1 = (Cn)2 + Ck where Ck is a complex constant 
 
By choosing different values for Ck, our system will have different properties.  Let’s try 
1+i as C0 and -1-i as Ck: 
 

C1 = -1+i 
C2 = -1−3i 
C3 = -9+5i 
C4 = 55−91i 
C5 = -5257−10011i 

 
For a given iterated function system, we can arbitrarily select a number (by convention, 
we use 2) and see how long it takes for the norm of Cn to exceed 2.  In the example 
above, ||C1|| = 1.4, and ||C2|| = 3.2.  Therefore, the value of the system exceeds 2 after two 
iterations. 
 
For smaller numbers, it can take much longer.  Let C0 = .25−.3i and let Ck = -.25−.25i. 
 

C1 = -.28−.40i 
C2 = -.33−.03i 
C3 = -.14−.23i 
C4 = -.28−.19i 
C5 = -.20−.14i 
C6 = -.23−.19i 
C7 = -.23−.16i 
C8 = -.22−.17i 
C9 = -.23−.17i 
C10 = -.23−.17i 

 
Clearly, even ||C10|| does not even exceed 2.  Will the norm of the result ever exceed 2 for 
these values?  We cannot say without further calculations. 
 
Now, consider the complex coordinate plane, or, more precisely, a small section of the 
coordinate plane.  To be precise, consider the section from a =-2 to a = 2, and from b = -2 



to b = 2.  Make a grid of points in the plane, each of them a tiny—but discrete—amount 
apart, say, at regular intervals of .01 units.  The grid will have 2012=40401 points. 
 
For every point in the grid (does that give you any ideas how you might go about this 
calculation?), let that value be C0, and run C0 through the iterated function system above 
with the above value of Ck.  Count the number of iterations each point requires for the 
norm of the system to exceed 2.  Some points will very quickly exceed this value, others 
will take a long time—in fact, some points will never reach 2 (like 0+0i).  If we go 
through, say, 64 iterations and we haven’t reached 2, we’ll quit, and say it’ll never reach 
2 (which may or may not be true, but for our purposes, 64 is plenty). 
 
Now we have a single value that corresponds to each point on the plane.  We make a 
chart of values and colors (for example, 1=red, 2=red-orange, 3=orange, 4=orange-
yellow, etc., and 64=black).  Then, we take a chunk of the computer screen 201 by 201 
pixels large, and put that point of color at the pixel corresponding to the given point.  
Voila!  What an interesting image! 
 
Right? 
 
Well, yes.  If you choose the right value for Ck, you will get some incredibly interesting 
images that are self-similar, meaning that if you zoom in far enough at the right spot, 
you’ll see the original image!  These are called fractal images, and they employ 
principles of chaos theory—more on that at some time later.  For now, the main 
consequence of chaos theory is this: for many values of C0, the results will be 
significantly different if C0 is off by even the slightest bit. 
 
Now go write a program to do all this.  Today. 
 
Just kidding. 
 
But I encourage you, if this sounds interesting, to pursue fractal imagery or chaotic 
systems as a project for Leap. 
 
In the mean time…write a program that does portions of the above algorithm. 
 
At the very least, do this: write a program that takes two numbers, a, and b, and a 
complex constant p+qi, and determines how many iterations are required for the iterated 
function system Ck+1 = (Ck)2 + (p+qi) to exceed a norm of 2. 
 
If you’re adventurous, do this for all those 40401 points and store the results in a two-
dimensional integer array. 
 
Don’t worry about the graphics part of the algorithm.  We’ll discuss Java graphics on 
Monday. 


