Explaining the Racial Achievement Gap in the Pittsburgh Public Schools

Robert P. Strauss Haijing Hao
Yue Wang
H. John Heinz III. School of Public Policy and Management

Carnegie Mellon www.andrew.cmu.edu/user/rs9f rpstrauss@gmail.com

Agenda

1. Introduction
2. Racial Achievement Gap in Pittsburgh: PSSA Patterns over Time
3. Principal and Teacher Effects on Student Achievement in Pittsburgh Public Schools
4. Things to do next

1. Introduction

\square Who is Bob Strauss?

- A product of suburban Cleveland
- Michigan/LSE/Wisconsin
- Federal, state, local public service
- 2 Presidential pens, various awards
- Battered parent of 3: 21 (Elena), 25 (David), 27 (Sarah)
- Fiscal and Education Reform social worker
\square Why am I here?
- Various Research Projects with Pittsburgh Public Schools:
\square Teen Attitudes Survey in 1999
ㅁ 2004 Training of PPS Principals: Statistics and Educational Assessment
\square September 2005 Project to Analyze Racial Achievement Gap
■ Ms. Haijing Hao's Hard Work December, 2006, Z. Sheng in May, 2006
- 1996-8 State Board of Education Project, 354 reforms of teacher preparation
- State Board asked me to evaluate the effects in 2006-8

Data Sources for PPS and State Research Projects

- Pittsburgh SD Data Warehouse
- State Personnel and Withdrawal Files
- State Certification Files
- State Praxis Files
- PSSA Identifiable Information
- State Retirement System
- Act 48 Relational Database
- Pending College Board SAT Analysis
- District/School Data Census Data
- Surveys of Hiring Practices: Superintendents, Board Presidents, and Union Presidents

2. Student Achievement: PSSA Patterns

Racial Achievement Gap: Pittsburgh vs. Philadelphia

Comparing A District's Score to Statewide Mean

$\square 2006$ Grade 5 Math PSSA for Pittsburgh

Mean Black PSSA Score/ Statewide Mean PSSA Score

- Example: 1300 / 1423 = 91.4\%

Math Racial Achievement Gap (Mean):

Pittsburgh vs. Philadelphia, $5^{\text {th }}$ Grade, 1995-2007

Pittsburgh vs. Philadelphia Racial Achievement Gap (Mean)
5th Grade Math 1995-2007

9/6/2007

Math Racial Achievement Gap (Mean):

Pittsburgh vs. Philadelphia, 8th Grade, 1995-2007

Pittsburgh vs. Philadelphia Racial Achievement Gap (Mean) 8th Grade Math 1995-2007

Math Racial Achievement Gap (Mean):

Pittsburgh vs. Philadelphia, 11th Grade, 1995-2007

Pittsburgh vs. Philadelphia Racial Achievement Gap (Mean) 11th Grade Math 1995-2007

9/6/2007
Student Achievement - PSSA Patterns

Reading Racial Achievement Gap (Mean):

Pittsburgh vs. Philadelphia, $5^{\text {th }}$ Grade, 1995-2007

Reading Racial Achievement Gap (Mean):

 Pittsburgh vs. Philadelphia, $8^{\text {th }}$ Grade Reading 1995-2007

Pittsburgh vs. Philadelphia Racial Achievement Gap (Mean) 8th Grade Reading 1995-2007

Reading Racial Achievement Gap (Mean):

Pittsburgh vs. Philadelphia, $11^{\text {th }}$ Grade Reading 1995-2007

Pittsburgh vs. Philadelphia Racial Achievement Gap (Mean) 11th Grade Reading 1995-2007

Summary

\square The racial achievement gap by the numbers:

		Math			Reading		
		Black	White	Gap	Black	White	Gap
5	2006	91.38\%	103.79\%	12.41\%	89.95\%	102.58\%	12.63\%
	2007	89.69\%	102.90\%	13.21\%	88.19\%	100.85\%	12.66\%
	Changes	-1.69\%	-0.89\%	0.80\%	-1.76\%	-1.73\%	0.03\%
8	2006	89.04\%	100.23\%	11.19\%	87.54\%	104.30\%	16.76\%
	2007	88.51\%	100.97\%	12.47\%	88.65\%	100.55\%	11.90\%
	Changes	-0.54\%	0.74\%	1.28\%	1.12\%	-3.75\%	-4.87\%
11	2006	84.76\%	103.61\%	18.85\%	85.76\%	103.47\%	17.71\%
	2007	86.75\%	105.02\%	18.27\%	85.34\%	104.38\%	19.04\%
	Changes	1.99\%	1.41\%	-0.58\%	-0.42\%	0.91\%	1.33\%

3. Principal and Teacher Effects on Student Achievement

■actors Explaining the Gap: \square Prior achievement, SES, race, gender
\square Family background, attendance, disciplinary incidents
\square School Resources: Principal and Teacher Effects
-The Results and Implications

The Research Questions

1. What is happening over time to Black/White differences in student achievement in Pittsburgh Public Schools?
2. What is happening over time to achievement differences between economically disadvantaged and nondisadvantaged students?
3. How much of the $10-20 \%$ differential can be explained by student and family background?
4. How much of the $10-20 \%$ differential can be attributed to prior student success, building and classroom resources?
5. What is happening to these differences at the building (principal) and classroom levels, i.e., when we drill down?
6. Can best practices be inferred from the data and inform how to narrow the achievement gap?

Time Line of Analysis: Example

Research Methodology

\square The statistical modeling of student performance, which generally examines the following basic relationship, a student achievement on an Exam (PSSA Reading, Math) depends on:

1) prior math/reading achievement of the student
2) gender
3) ethnicity (compared to white)
4) socio-economic background
5) family structure (single parent, institutional compared to two parent)
6) special education and gifted status
7) school attendance
8) disciplinary incidents

Research Methodology (cont'd)

\square In addition to factors 1-8 above, the modeling procedure has examined:
9) differential principal effects, or
10) differential Math/English teacher effects.
\square Factors 9-10 can be used to identify more successful principals and teachers, holding constant factors 1-8.

Some General Cohort Results: PSSA Math by Race, Girls

Some General Cohort Results: PSSA Math by Race, Boys

Some General Cohort Results: PSSA Reading, by SES

The Mean Score Ratio of PSSA Reading Test, An Age Cohort

\square Ratio of Reduced Lunch kids mean to Regular lunch kids mean
日 Ratio of Free Lunch kids mean to Regular Lunch kids mean

Some General Cohort Results, PSSA Math, by SES

Statistical Analysis: PSSA Reading and Prior Terra Nova Reading

$\square \quad 60.6 \%$ of the variation in individual PSSA reading scores was explained by the statistical model:

1) Terra Nova reading is a very powerful predictor of PSSA reading: A 1% improvement in prior year Terra Nova Reading is associated with a 1.7% improvement in PSSA Reading grade scores.
2) Girls did 1.7% better than boys.
3) Compared to Whites, Blacks scored 4% lower; note that this is a much smaller achievement gap than the general one, 10% to 20%, noted above in the graphs.
4) Compared to regular lunch, a student receiving a free lunch scored 1.9% lower, and a reduced lunch scored 0.5\% lower.

Statistical Analysis: PSSA Reading and Terra Nova (cont'd)

5) Compared to a two-parent family, a student coming from a single parent family scored 1.0% lower.
6) A special education student scored 6.5% lower on PSSA reading.
7) A gifted student scored 4.9% higher.
8) Every disciplinary incident was associated with a 0.85% lower PSSA reading.
9) A 1% increase in attendance rate in school days is associated with a 0.06% improvement in PSSA Reading scores.
\square Comment: Terra Nova reading results are very powerful in predicting PSSA reading results.

PSSA Reading Explained by Prior Terra Nova Reading, Principals or English Teachers

\square By controlling for the previous Terra Nova Reading score and each principal, the explanatory power increased from 61\% to 64\%.

- Of the 89 principals under whom the tests were administered, 33 displayed significant effects on PSSA reading scores, ranging from $+15.66 \%$ higher to -35.65% lower than the reference principal (around the median principal).
\square By controlling for the previous Terra Nova Reading score and the English teachers, the explanatory power increased from 61% to 68%.
- Of the 236 teachers under whom the tests were administered, 90 displayed significant effects on PSSA reading scores ranging from $+14.38 \%$ higher to -24.94% lower score than the reference teacher (around the median teacher).

Statistical Analysis: PSSA Math and Terra Nova

- 50.1% of the variation in individual PSSA math scores was explained by the statistical model that controlled for previous student Terra Nova Math, other student characteristics and building effects:

1) A 1% improvement in prior year Terra Nova Math is associated with a 0.92% improvement in PSSA Math grade scores. Thus, Terra Nova Math is a very powerful predictor of PSSA Math.
2) Girls did 1% worse than boys.
3) Compared to Whites, Blacks scored 3.1\% lower and Asian scored 3.4\% higher; note that this is a much smaller achievement gap than the general one, 10% to 20%, noted above in the graphs.

Statistical Analysis: PSSA Math and Terra Nova (cont'd)

4) Compared to regular lunch students, a student receiving a free lunch scored 0.9% lower.
5) Compared to coming from a two-parent family, a student coming from a single parent family scored 1% to 8% lower.
6) A special education student scored 5.9% lower on PSSA Math and a gifted student scored 7.4% higher.
7) Every incident was associated with a 0.49% lower PSSA reading score.
8) A 1% increase in attendance rate in school days is associated with a 0.09% improvement in PSSA Math scores.

PSSA Math Explained by Prior Terra Nova Math, Principals or Math Teachers

\square By controlling for the prior year Terra Nova Math score and the principals, the explanatory power increased from 51\% to 60\%.

- Of the 89 principals under which the tests were administered, 62 displayed significant effects on PSSA reading scores ranging from $+17.5 \%$ higher to -37.2% lower than the reference principal (around the median principal).
\square By controlling for the prior year Terra Nova Math score and the Math teachers, the explanatory power increased from 51% to 68%.
- Of the 199 teachers under which the tests were administered, 148 displayed significant effects on PSSA reading scores ranging from $+32.4 \%$ higher to -27% lower than the reference teacher (around the median teacher).
\square Comment: Terra Nova Math results are very powerful in predicting PSSA Math results.

Excel Spreadsheet

\square Math Teachers' Effect Model (Click to see the table)

	\# of Obs	$=$	6846			
	F(212, 6623)	=	308.08			
	R-squared	=	0.6779			
	Root MSE	$=$	0.09021			
	drop if class_count<5					
	school year		Grade 3	Grade 7	Grade 8	Total
	2004		1,235	0	1,415	2,650
	2005		1,203	1,396	1,597	4,196
	Total		2,438	1,396	3,012	6,846
	$\boldsymbol{l o g}$ _pssa_math					
	Explanatory Variables:		Size of Effect	t		
1	log_prev_terra_math		1.4979	52.56		
2	sex_female=1		-0.0128	-5.69		
3	race_American Indian		-0.0740	-2.27		
4	race_asian		0.0080	0.69		
5	race_black		-0.0178	-5.73		
6	race_hispanic		-0.0180	-1		
7	race_multi_race		-0.0054	-0.93		
8	lunch_free		-0.0099	-3.72		
9	lunch_reduced		-0.0079	-1.56		
10	single_father_parent		-0.0032	-0.82		
11	single_mother_parent		-0.0086	-3.05		
12	institute_parent		-0.0110	-0.39		
13	substitue_parent		-0.0145	-2.41		
14	foster_parent		0.0022	0.18		
15	special_education		-0.0299	-6.84		
16	gifted_member		0.0303	5.47		
17	incident_count		-0.0019	-3.9		
18	log_attendence_days		0.0356	5.02		
19	log_school_white_rate		0.0003	0.04		
20	log_class_white_rate		0.0264	6.76		
21	Math_teacher_is_hmroom		0.0042	0.97		
22	class_size		-0.0002	-0.53		
23	school_enrollment		-0.0001	-1.62		
24	Teacher 55		0.1786	4.63		
25	Teacher 159		0.1125	1.3		
26	Teacher 59		0.0718	2.91		
27	Teacher 172		0.0661	2.44		
28	Teacher 107		0.0457	1.78		
29	Teacher 21		0.0414	1.7		
30	Teacher 133		0.0350	1.01		
31	Teacher 33		0.0333	1.29		
32	Teacher 137		0.0315	1.38		

33	Teacher 109	0.0260	1.54		
34	Teacher 92	0.0260	0.67		
35	Teacher 42	0.0218	0.75		
36	Teacher 13	0.0211	0.49		
37	Teacher 134	0.0168	0.7		
38	Teacher 165	0.0122	0.42		
39	Teacher 40	0.0076	0.25		
40	Teacher 56	0.0028	0.08		
41	Teacher 37	0.0001	0		
42	Teacher 67	-0.0003	-0.01		
43	Teacher 132	-0.0091	-0.2		
44	Teacher 180	-0.0095	-0.39		
45	Teacher 72	-0.0132	-0.45		
46	Teacher 146	-0.0161	-0.57		
47	Teacher 131	-0.0172	-0.59		
48	Teacher 27	-0.0180	-0.59		
49	Teacher 87	-0.0186	-0.57		
50	Teacher 176	-0.0192	-0.55		
51	Teacher 98	-0.0238	-0.98		
52	Teacher 75	-0.0249	-0.42		
53	Teacher 163	-0.0266	-0.88		
54	Teacher 41	-0.0270	-0.97		
55	Teacher 186	-0.0275	-0.97		
56	Teacher 80	-0.0279	-1.17		
57	Teacher 53	-0.0289	-1.32		
58	Teacher 139	-0.0298	-1.02		
59	Teacher 118	-0.0315	-1.57		
60	Teacher 46	-0.0349	-1.54		
61	Teacher 83	-0.0358	-1.46		
62	Teacher 103	-0.0358	-1.15		
63	Teacher 48	-0.0386	-1.5		
64	Teacher 58	-0.0386	-1.01		
65	Teacher 140	-0.0396	-1.65		
66	Teacher 60	-0.0412	-1.41		
67	Teacher 23	-0.0434	-2.02		
68	Teacher 6	-0.0437	-1.31		
69	Teacher 121	-0.0459	-1.26		
70	Teacher 81	-0.0464	-2		
71	Teacher 28	-0.0465	-1.34		
72	Teacher 112	-0.0467	-2.06		
73	Teacher 9	-0.0491	-1.92		
74	Teacher 110	-0.0521	-1.37		
75	Teacher 86	-0.0526	-1.59		
76	Teacher 26	-0.0529	-1.54		
77	Teacher 39	-0.0554	-1.32		
78	Teacher 147	-0.0559	-2.35		
79	Teacher 54	-0.0562	-2.32		
80	Teacher 113	-0.0568	-2.69		

Summarization by Box Plot

The Coefficients Distribution of Principals and Teachers Fixed Effects

Summarization by Box Plot (cont'd)

The 5\% Significant Coefficients Distribution of Principals and Teachers Fixed Effects

Principal and Teacher Effects: Math

Principal and Teacher Effects: Reading

English Teacher's Fixed Effects: Black vs. White Students

Math Teacher's Fixed Effects: Black vs. White Students

Principal and Teacher Effects on Achievement

4. Things to Do Next Development

\square Value in Examining Principal and Teacher Best Practices
\square Derive Implications for Professional Development and Student Assignment

- Examination of 2006-7 Data

