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In this work we explore further consequences of a recently developed alternate formulation of general
relativity, where the metric variable is replaced by families of surfaces as the primary geometric object of the
theory—the(conforma) metric is derived from the surfaces—and a conformal factor that converts the con-
formal metric into an Einstein metric. The surfaces turn out to be characteristic surfaces of this metric. The
earlier versions of the equations for these surfaces and conformal factor were local and included all vacuum
metrics (with or without a cosmological constant In this work, after first reviewing the basic theory, we
specialize our study to spacetimes that are asymptotically flat. In this case our equations become considerably
simpler to work with and the meaning of the variables becomes much more transparent. Several related
insights into asymptotically flat spaces have resulted from {f)swWe have showriboth perturbatively and
nonperturbatively for spacetimes close to Minkowski spdmev a “natural” choice of canonical coordinates
can be made that becomes the standard Cartesian coordinates of Minkowski space in the f(g} lilsihg
these canonical coordinates we show how a singenpletely gauge-fixedoerturbation theory off flat space
can be formulated3) Using the rigid structure of the spacetime null cof@ih their intersection with future
null infinity) we show how the asymptotic symmetrigise BMS group or rather its Poincasebgroup can be
extended to act on the interior of the spacetimes. This apparently allows us to define approximate Killing
vectors and approximate symmetries. We also appear to be able to define a local energy-momentum vector
field that is closely related to the asymptotic Bondi energy-momentum four-véS@s56-282197)04420-2

PACS numbd(s): 04.20.Gz, 04.20.Ha

[. INTRODUCTION conformal factor for a family of associated conformal met-
rics. They? are local coordinates okl*, and{ is a stereo-

In a recent series of papers, Einstein’s theory of generajraphic coordinate o$?. It is from this sphere’s worth of
relativity (GR) was reformulated and presented as a theory ofurfaces themselves that the conformal metric—conformal to
characteristic hypersurfacgs—4] rather than as a theory of an Einstein metric—is constructed; the conformal factor then
the metric field. From this point of view the spacetime metricconverts it into an Einstein metric. All the surfaces, for arbi-
and associated connection are all derived concepts: the bagiary but fixedZ, given byZ(y?,¢,¢) =constant, are null sur-
variables of the reformulation are special families of threefaces with respect to this metric.
surfaces in a four-manifold“—from which a conformal The partial differential equations satisfied by the two
metric can be found—and a scalar functiéa conformal functionsZ and Q2 (which are discussed in detail [1—4])
facton which converts the conformal metric into a metric. €@n be imposed, in general, in any local region of an Einstein
The surfaces, which are obtained from solutions to partiamanifold. Roughly speaking the equations split into two sets:
differential equations, are automatically the characteristidWo (complex equations, which we refer to asetricity con-
surfaces of théderived metric and the metric automatically ditions guarantee that a Lorentzian metric can be con-
satisfies the Einstein field equations. This reformulation ofStructéd from the function& and(); the third (rea) equa-

GR has been referred to as the null-surface formulatioﬁ'on’ referred to as ), imposes the vacuum Einstein

(NSF of GR and can be applied to the Einstein equationsequations on that m(.atric..The purpose of the present work is
with or without sources. In the present work we will confine to study these equations in the very important special case of

asymptotically flat vacuum spacetimes. The main result of
ourselves solely to the vacuum case. his study is that the meaning of the variables becomes mor
More specifically, the NSF describes GR in terms of twot 1S sudy IS That the meaning ol Ihe varnables becomes more
) 4 oo - e concrete and hence clearer and, furthermore, the structure of
functions onM™*x S% one of the function&Z(y®,{,{) de-  the equations changes and becomes much more transparent
scribes anS”’s worth of surfaces through each spacetimeand simpler to use. It formally allows a straightforwahdly
point, while the other functiofi}(y?,¢,{) plays the role of a gauge fixedl perturbation theory.
In Sec. Il, without giving any details or proofs, we outline
(seg[1-4] for detailg the main features and equations of the
*Electronic address: simo@artemis.phyast.pitt.edu NSF of GR. The main body of this work, contained in Sec.
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1, is divided into five subsections. In Sec. lll A we review and Ricci tensors, etc., can be expressed in terms of the
certain features of null infinity and discuss an alternate geosurfaces and the conformal factor. The entire conformal in-
metric meaning of the functioZ(y?,¢,¢) which has, up to formation of the spacetime is coded into the surfaces, which
now, defined the null surfaces. In addition, the derivatives ofvill be described by

Z with respect to {, ) take on a simple geometric meaning. _

In Sec. Il B, we discuss our main result, a single real equa- u=2(y%¢,0). (1)

tion [the light cone cutLCC) equation) which, in the case of o

asymptotically flat spacetimes, replaces the two complexor fixed value of ¢,£), Eq.(1) describes a local foliation of
metricity conditions. Its derivation, which is quite lengthy, is pm4 py the level surfaces d(y?,¢,¢). For changing values
contained in Append|x A. The LC_:C equation, plus equation (2,0), u=2Z(y2¢,{)=const describes a local two-
(E), are a pair of cogpleq equathns férand (), and' con- arameter family of foliations.

stitute the vacuum El_nsteln equations fqr _asymp_totlcally flat™ \with no proofs or derivations, as they have been given in
spaces. Section Ill C is devoted to describing an integral verg,sonsjve detail elsewhere, we will write out the Einstein
sion of the LCC equation andz{ and to a related perturba- . . a s o

. : . . X equations for the families of surfacess Z(y?,{,¢), and the

tion expansion. In connection with this one can see how the a o .
gauge becomes fixed. In Sec. Il D, self-duat anti-self- ~conformal factorQ2(y®,,¢). Though the vacuum metric can
dua) vacuum metricgvia the good cut equatiorare shown be written explicitly in terms oZ and(}, we will not need it

to satisfy the complexified version of the LCC equation,Nere but refer the reader [a—4]. L

while in Sec. IIl E an alternate differential version of the V& begin with some preliminary definitions: from the as-
LCC equation is given which displays interesting propertiesSumed knowledge d(y?,¢,{) we construct three additional
In Sec. IV several isues that arise naturally from the asympfunctions by differentiating: two functions as the first de-
totically flat NSF are raised and discussed. Specifically, irrivatives with respect t¢ and{, and the third as the second

Sec. IV A we show how from knowledge @(y?,{,{) one  mixed derivative with respect to bothand{. Using thed

can obtain Bondi interior coordinatesyd,rs,¢{s,{g).- Un-  and & notation [5], we construct the four functions of
derstanding the insertion of Bondi coordinates in the contextya - r).

of the NSF is fundamental to the description of asymptoti-
cally flat solutions in terms of the NSF. In Sec. IV B, we
give a preliminary analysis of how the asymptotic symme-
tries, the Bondi-Metzner-SacliBMS) group (or more accu-
rately the Poincaresubgroup, yields several natural struc-
tures in the interior of the spacetime that reflect the group ) . i ) —
action at infinityZ*. In particular, we discuss the introduc- 1 heir gradientsj,¢' [for any fixed value of {,)] form a
tion of a global pseudo Minkowskian coordinate systemCOvector basis. Using the set of dual vectof§(y¢,{)
(equivalent to the previously mentioned gauge fiximpd  [satisfying 62¢),,= 68!, for the same fixed value of¢(¢)],
the related global pseudo Poincaransformations generated we can define the directional derivatives

by the Poincargransformations at infinity *.

0 (ya.2,0)=(6°6",6-,0Y=(U,0,@R)

=(2,52,52,562). 2

i®=6029,0=P,; (i=0,+,—,1). ©)
[l. THE NULL-SURFACE FORMULATION OF GR
Frequently we us®=4,=d/JR. Also for shorthand we de-

In this section we will review the new formulatiofthe fine

NSF) of classical general relativity1—4]. In this formula-
tion, the emphasis has been shifted away from the more stan-

dard type of field variablémetric, connection, holonomy, A(Yy34,0)=8°Z and A(y?,{,{)=8Z. (4)
curvature, etg.to, instead, families of three-dimensional sur-
faces on a four-manifoldy1*. On the manifoldV*x S? (the Using these variables and notation, the vacuum Einstein

sphere bundle oveM* with no further structurg there are  equations are

given differential equations for the determination of these

surfaces. From the surfaces themselves, by differentiation D20 =QQ, (E)
and algebraic manipulation, a two-index symmetric tensor on

M# can be defined. We will refer to this tensor as a “con-

formal metric,” although it actually represents a special 6Q=§WQ, (my)
member of the conformal class. The surfaces, which are our

basic geometric quantities, are then, with no further condi- OA,1—2A,_=[W+3(In q)]A,4, (my)
tions, the characteristic surfaces of this conformal metric

(and of the whole conformal clasdn addition, the equations 1 _ 3 1

allow for a choice of conformal factor that turns the confor- QEEDA,lDA,lJr S—qZ(Dq)Z— EDZq'

mal metric into a metric which satisfies the vacuum Einstein
equations. Thus, the vacuum Einstein equations have been —
reformulated as equations for families of surfaces and a q=1-A,1A,;, (5
single (scalay conformal factor. All geometric quantities,

such as the metric, the connection, spin coefficients, Weyand
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1 — 1- 1 — 1 — Remark:If one considers EqsH) and (m,) as equations
W( 1- ZA11A11> =A, 5 0A 0+ SAGA + 7 A8A,1  for Q for given A, then the study of their integrability con-
ditions should yield equations involving onk so that they,
1 1 - with (m,;), would be equivalent to the “conformal Einstein
—508Ing— 74,48 Inq. (6)  equations." The conformal Einstein equatiorithe vanish-
ing of the Bach tensor being one of thegield metrics that
[Equation(E) is a direct translation into our variables of the are conformal to vacuum metrics; i.e., such that a conformal
trace-free part of the Einstein equatioRy,— $ga,R="0 factor would exist that wpuld convert the conformal_ metric
while Egs.(m;) and (m;) guarantee that a metric exigts. into a vacuum metric. This procedure has been pa_rtlally suc-
It is often useful to include among our “Einstein equa- cessful. It was shown8] that the conformal metric con-

tions” (E), (m,), and (m,), a fourth equation that follows structed fromZ must satisfy the vanishing of the Bach tensor
immediateily fror,n the defir;ition(s4)' namely as a necessary condition for the existenc€)ofThis condi-

tion is also sufficien{9] if we restrict ourselves to asymp-
52N = 52A. 0 totically flat metrics.
' It is the purpose of the remainder of this work to study our

Equations E), (m,), (m,), and () are local coupled differ- Version of the Einstein equations, na_mely E(:E),((m,)_,
ential equations for the dependent variat#eand 2. These (M), and (), for the case of asymptotically flat spacetimes.
four equations, though they appear not to have any obviou&he meaning gnd structure of the equations change consid-
relationship to the Einstein equations, actually have the iden€rably, becoming simpler and much more transparent. Per-
tical content as the vacuum equations with the possibility ofurbatively, they become gauge fixed and the solution can be
a nonvanishing cosmological constant appearing as a coffitten (in principle) as a series of explicit quadratures over

stant of integration in the solutions. o the sphere—a nonlinear version of D’'Adhar integrals.
As we emphasized earlier, from knowledgezty?,{,¢)

andQ(y?,¢,0), satisfying Egs. E), (m), (m,), and (), a IIl. THE NSF EQUATIONS FOR ASYMPTOTICALLY

vacuum metric can be easily construc{dd-4]. More spe- FLAT SPACETIMES

cifically, our construction produces a sphere’s worth of con-
formal metrics and a sphere’s worth of conformal factors all
of which are equivalenffrom Egs. (n) and (m;)], to a We now make the specialization from a description of any
single unique metric obtained after a sphere’s worth of coor{local) Einstein spacetime to the study of asymptotically flat
dinate transformations. In other words, we have a uniqu&acuum spacetimes. In this case the geometrical descriptions
metric that has been given in a sphere’s worth of coordinatef various quantities becomes cleaner and more precise. We
systems parametrized by,¢). begin with the fact that null infinityZ", exists.Z" can be

It is important to emphasize that our equations involve sixthought of as the future null boundary of the spacetime, the
independent variables and six derivative operators which igollection of the “end points” of all future directed null
general do not commute among themselves. Specifically, wgeodesics, where the asymptotically flat spacetime “be-

A. Light cone cuts of Z*

have comes flat.” These “end points” form a three-surface, re-
ferred to asZ", that can be visualized as a light cone and be
(8,0j—9;0) P =0, (7@ coordinatized by a Bondi coordinate system,
(80— 3;0)®=—T/9;D, (7b) (u,Z,0), (9)
(86, — 6;8)P=—Tlo;®, (79 whereu is the Bondi retarded time, and,¢) (in S?) label
) ) the null generators af*. (We note that sinc&" is, in some
(60— 00)D=2sD, (7d) sense, flat, it turns out that it possesses an invariance group.
The invariance group and some of its ramifications are dis-
wheres is the spin weight ofb and cussed later in this workUsing Z+ and its properties, we
0 o 0 o can introduce a special class of null surfaces in the interior of
Ti=o7, Ti=9;, 83 the spacetime described in the following fashion; our basic
. ! variable, the function which describes our family of null sur-
Ti=A;, Ty=46j, 8b)  faces
- _ <1 -
T T (89 u=2(y%2,0), 10

QTE={AL A, +8A, + A, _ 8+ A0S — 257 1A, +BA,; _
_ is chosen as the past null cones of the pointg (£) of 7.
+AL AT A0S AL LS 257, (8d)

ATE={AA,_+8A,+ A, 8+ A,06 —28 JA,1+8A,; Iwe refer here to the equations that are derivefsin which are
— — - — a4 _ integrability conditions for the equations used by FriedricH7h
TA AT A6 A5 —26 . (8e) coincidentally referred to as “conformal Einstein equations.”
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In this description, the values ofu(g”,g’_) in Eq. (10) are  below, which has many of the properties that we seek: it is a

considered fixed, whilg® varies over the past light cone of single equation with a unique solution for given radiative

(u,2,0). data. Conversely, though not trivially, the solutions to the
From this meaning t&, there exists aual interpretation ~LCC equation coupled to EqsE] satisfy (m)), (m;), and

of u=2(y? gg_)- namely, if the spacetime poinf is held (1), which allows us to claim that the NSF of asymptotically

i . . : . flat spacetimes consists of just the LCC equation and Egs.
fixed in Eq.(10) but the ¢,¢) is varied overS?, we obtain a .
(piecewise differentiab)etwo-surface onZ*, the so-called (E), two coupled real equations for the two real unknons

! 4 . . and ().
light cone cut ofZ*, defined as the intersection of the future . . :
light cone of the poiny® with Z*. It consists of all points of The derivation of the LCC equation, being lengthy and

. . . . largely technical, is given in Appendix A. It mainly consists
L rcached oyl geodesics o, Wi i ) et o aking aporoprite dervales of Eqa. (m), an
the light cone cut function(The light cone cuts of* for (1), and combining them in a suitable manner to obtain an

) . ; : equation which can be integrated up in the variaRleAt
Minkowski space are sm_ooth and topologlcﬂ_?y though in this point an integration constant is introduced, in the form of
the general case they will have self-intersections and gusps N

From this dual point of view, we now have a geometrica c_omzp_lex Spin weight-2 function of three variables4{)
interpretation, not only oZ(y?,¢,{) but also ofo=86Z and whicfr”is denoted

R=080Z. w is the “stereographic angle” that the light cone o=0(u,{,0), (13)
cuts make with the Bondu=const cuts; i.e., it labels the
backward direction of the null geodesics from the point
(u,g,2), onZ", toy? Ris a measure of the curvature of the
cut and thus a measure of the “focusing distance” fréim

to y2 along the null geodesic. The four functions

where " =g/ du. Further manipulations and one more inte-
gration in the variablel are necessary. The asymptotic flat-
ness is imposed by setting the new integration constant to
zero, so that there remains only

(2,82,82,852)=60'(y*.4,0), (11) (U2 (14

which are defined geometrically o, describe the interior 4q the free complex datuna turns out to be the free char-

of the spacetime. They cdim principle) be invertedsee Eq.  acteristic datum for asymptotically flat spacetimes and is re-

(2)], leading to ferred to as the asymptotic Bondi sh¢6]. The final equa-
tion is the LCC equation

y2=y(6'.£,0), (12)
32822 =820+ 8%+ N[ Z,Q], (15)
which gives the location of spacetime points in terms of
(geome_trica)linformationgnf., namely the se#'(y*,¢,2), where oRza(Z,g,g_) is the freely chosen Bondi sheés
all obtained fromZ(y#,,{). Since the complete conformal being the complex conjugatenith the variable ‘U” re-

information of the_spacetime is coded irf§y®,{,{), itiS  placed byz. We choose data such thagu,¢,£) vanishes as
coded intod'(y®,,£) as well. That local interior spacetime y—. +o. Physically, this is a natural condition limiting the
structure can be obtained frofiT is due to the fact that the gravitational radiation to finite amounts. On this data we im-

lightcones have a rigid structure. This plays an importanbOse the gauge condition thafu,?,)—0 asu— +. The

role in our later discussion. preservation of this form of the data restricts the full BMS
group to its Poincarsubgroup(See Sec. IV B
B. The light cone cut equation The quantityN stands for

Although the null-surface equationg), (m,), (m,), and
(1) are completely general in the sense that they contain, 1 fu
locally, all possible spacetimémcluding singular and regu- N== f Ndu’, (16)
lar asymptotically flat spacetimgghey appear quite intrac- 2 )
table as they stand; we have not been able to implement any
systematic method of constructing solutions or of approxi- . o ]
mating solutions from them. It is thus highly desirable towhereis explicitly given by
achieve a simpler or clearer formulation of these equations.
We will now show that a simple reformulation does exist for

the regular asymptotically flat solutions of Einstein equa- 2Though the integration function is introduced with the only con-
tions. dition of being independent dR, the NSF equations require this

Our main result is that the complex equationg) (m;), function to be also independent efandw. This assertion is easily
and () imply (via a lengthy derivationa real equation re- proved in the linearized approximation; the linearized result pre-
ferred to as the light cone cyt.CC) equation, displayed sumably holds in the exact case as well.
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- 1 3 (R
N=A,O(A,1—A,O—(6A),,—ZJ+EJ (K,_—L,,)dR)+A,q

- — 1— 3 (R—
A,l—A,O—(éA),+—ZJ+§ (K,+—L,)dR’)
1'2 3'2R 712_32R__ /1'2_ AN

—26 J+§6 JW(K,,—L,Jr)dR—ZfSJnLEé L(K,Jr—L,,)dR +§66 (A1A,_+A,1(BA),1)

- (A, — — - - — — 1 -
—63<Tl[3(A,1A,+A,1(6A),1—2A,16 InQ)—K])—éz(A,A,+A,1(6A),)— > 38°K

—88(A, A, + A, (8A), )=~ A, (Ao— A1~ (BA), )+ (8A), , (BA),1— A, )

— A2(BA),0— (BA), 1)+ K= (BA), 4 (BA),1]+2A,0(BA), - +2(8A),o(8A),1 +28(A, oA, + A, (8A),0)  (17)

with @ (oo
Q=1+J f QOdR'dR’ (21)
- _ J— R JR’
J=38L+8K+A,2+2A,,(8A), . +3A,_A,_

_ _ - _ and
+3A,1(8A),_— (8A),_A,;+(3A),T— (8A),1(8A) 1,

(18) Z(ya1§15: ZO(ya1§=5

< + f LG(£.)(Dog+82rr+N[Z,0])dS'2,
S

4

1 — 1 — - —
1_ZA,1A,1)6InQ‘l'EA,lA,l(éA),l_A,A,l
(22

1 — 1 — 1
+ EA’lA'—+ EAEA'V" EA'l(éA)’l’ (19 whereG(Z,¢’) is the Green’s function for the “double La-
placian” 8?82, discussed in Appendix C.
and Note that() is required to approach the value 1Rs>oo.
This is a geometrical requirement arising from the fact that
the null surfaceZ = const have been chosen so that they are
asymptotically null planes. This requirement fixes the other-
wise arbitrary “constants of integration” in EqE(.

N is thus seen to be a rather complicated functional of Eoth Similarly, when integrating Eq15) the kernelz,, of 5232
and(}. It involves an integration ovar and overR of poly-  is introduced, which consists of a combination of the0
nomials which are second and third order in the derivativesand| =1 spherical harmonics with the four coefficients being
of %Z and linear in the derivatives of i It is disturbing  arbitrary functions ofy®: i.e.,

(and potentially troublesomehat N actually contains the

highest-order derivatives in the LCC equation. Nevertheless, —

the explicit expression faX that is presented here is just one Zo= |§1 fin(Y)Yim(¢,0)-

of many equivalent forms, sindd can be changed via the o
Egs. (), (m)), and (m); at this time we are not yet certain L . . .
oquhqigh E‘orlr)n of N S/vcl)ll)JId be most advantageoﬁgNe em- The kernel can fe simplified by introducing n«é«lmnonl-.
phasize that in this form, the LCC equation is suitable forc@) coord;natesx X from these four functions via
perturbations around flat space, sim¢és nonlinear and van-  Xim= fim(y”) so that

ishing in the limit of smallA.

1 - -
LE—A,lA,+—§A,16A,1—A,26 InQ. (20)

Zo= 2 XimYim(£.0). (23
C. Integral form of the asymptotically flat NSF =01
Equationg15) and (E) are a pair of coupled equations for
bothZ and Q) that will be shown to constitute the full set of
Einstein equations for asymptotically flat spacetimes with th
asymptotic free data already includede®, {,{). They can
be written as the pair of integral equations

Though it is far from obvious, it has been shojr2] that,
when the spacetime is sufficiently close to flat space, the
e[ransformationx|m=ﬁm(ya), which defines the canonical
coordinates<? from a global coordinate systegt, is suffi-
ciently well behaved for the canonical coordinaiésto be
also global. The coordinates defined in this way trans-
form, in a nontrivial manner, via the asymptotic Poincare

3It can be seen that, up to second ordeAiand(), A can actually  transformation group, and constitute actual cartesian coordi-
be rewritten into manifestly real forfi1]. nates if the spacetime is flat. The properties of these canoni-
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cal (pseudo Minkowskian coordinates driven by the We claimed earlier that we havperturbatively a fixed
asymptotic Poincargransformations are discussed in Sec.gauge. This arises from our fixed choice of
IV B. Zo=Z|-0XimYIm, the fixed choice of null foliations and the
We can obtain insights into the structure of the two equaboundary condition thaf) goes to 1 aZ*. Thex?® play the
tions (21) and (22), by means of a perturbation scheme dual role of constants of integration of the LCC equation and
around flat space. The characteristic datum for flat space s the choice of local canonicgdseudo Minkowskianco-
o=0. The solution iZ=Z, and()=1. Perturbed solutions ordinates. A general gauge transformat{ocnordinate trans-
around flat space correspond to a choice of dataeos;  formation away from these canonical coordinates would
where € is a small real parameter, and in general can beonsist in choosing thg? as four arbitrary functions o§?,
expressed as power series of the fofwZo+3=M ,€"Z,  namelyx®=x3(y?®). The property of uniqueness @bertur-
and Q=1+3M ,€"Q, where the indexn labels the bative solutions to Eqgs. &) and(15) in this gauge can be
nth-order correction to the flat solutions. It is important to invoked to show that the coupled systeE){(15) is equiva-
note that, even though the free data are taken to be only firé¢nt to the full set of equationsg), (m;), (my), and ().
order, the restricted data have contributions to higher ordergor, if the solution is unique, it cannot be further restricted

as well in the following sense: by imposing on it Egs.r,), (m,), and (), and must there-
_ fore satisfy them identically. This argument is restricted to
01(Z,0)=01(Zy,{) + €Z2101(Z,{) the perturbative solutions.
We point out, but do not further explore, that the integral
+ €2 Z,01(Z0,0) + Ezl&l(ZOag) ... equ_ations(Z_l) and(22) appear to _be well suited for the use
2 of fixed-point theorems on function spaces to approach the

problem of existence of solutions. Unfortunately, finding a
measure and studying properties of the map appears to be
virtually insurmountable due to the complexitydf The use

of Newton’s approximation is also suggested but carries the

Q=1+0(?) (25) same difficulty.

EO'R1+60'R2+620'R3+"' . (24)

SinceQ=1+0(€?), the linearization is explicitly

and D. A digression: Self-dual spacetimes

As a mild digression we discuss a special case of He. (

z(xa,g,gz zo(xa,g,5+ Ef G(g,g')(62gR +8%0g )dS'? and(15), namely the case of asymptotically flat vacuseif-
§ ! ' dual spacetimes. These spacetimes are complex, and arise by

+0(€?). (26) allowing u to become complex and treatidgand ¢ as two
independent complex coordinates. The two functions
For n>1, thenth corrections to flat solutions are found by o(u,Z,¢) anda(u,Z,¢) are no longer complex conjugates of

direct integration from lower order corrections: each other, they become independent data. The choice of
Bondi shear that corresponds to self-dual spacetimes is
_ INTXZ X2 /2 - —
Zn—fszG(é/,g )[6 O'Rn+6 O'Rn+ Nn(Z,Q)]dS y O,(u,gyg)zo (29)
(27)

with o=0c(u,{,{) as an arbitrary spin-weight-2 function of
(" R the three arguments. The self-dual spacetimes can be de-
Qo= fR fR,[Q(Z)Q]“dR dR". (28 scribed in terms of complex light cone cut functions satisfy-
ing the so-calledjood cut equationi.e.,
The process of integrating Eq§21) and (22) is very _
much simplified by the fact thaQ depends onZ only 3%°Z2=0(2,¢,0). (30
throughA and has no linear term iN. From this it follows
that the right-hand side in Eq(28) depends only on We point out that, if the LCC equation is complexified by
Z,_1,...,Z1 and is thus known at ordem—1. Thus, the allowing all complex conjugate quantities to become inde-
right-hand side of Eq(28) constitutes a source in terms of pendent, Eq(15) is consistent with the good cut equation
known lower orders itz and can be integrated, yieldirg, . (30). By this we mean that every solution to the good cut
The Q, in Eg. (27) can now be thought of as a source for equation is also a solution of the complexified LCC equation.
Z,, and sinceN is also second order i, the entire right-  |Indeed, from Eq(30) we have that\ = o(Z,,¢) and hence
hand side of Eq(27) involves only known lower ordeZ  that A,;=0. This implies thatQ=0 and hence thaf®i=1.
terms. The two equations thus decouple at every stage of tirurthermore, this also implied, . =A,_=0 as well as a
approximation allowing one to toggle back and forth be-further set of relationgsee Appendix Bamong the different

tween them. At every stage, the solutions are unique, due igerivatives ofA andA that are relevant to Eq15): namely,
our fixed choices of the kernel, and the boundary condi-

tion for ). Thus the coupled equatiori$5) and E) can be 0=2A  +8A. (313
uniquelysolved, given radiative data, by means of a per- " '

turbative expansion. We have not studied the difficult prob- —

lem of the convergence of this expansion. 0=2A,,—0A,q, (31b)
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1 - . - . - . A ei, y_: 1 1_' 34
0=5 A1 +285-20A,10- Ao, (319 (0.4.0=0(u.8,0) (34)
In this case, Eq(33) contains onlyd derivatives ofZ, since

with the result thatN in Eq. (15) vanishes identically. In the solutionA to Eq.(34) does not depend oé™ or 6",

other words, the null-surface description of self-dual space- AsS a next step in complexity, we discuss the analogous
times is procedure for anti-self-dual spacetimes. In this case, the cut

function must satisfy

Q=1 and 8°Z=0(Z,,,9). (32 S
8°Z2=A(Z2,82,82,86Z,¢,() (353
The space of thécomplex solutions to Eq(32), known as
H space, has been extensively studied. Refer¢d8gre-  but where nowA is first determined by a solution of
views the theory and describes the significance of E2f5.

A stronger statement can be made in the linear regime. It
is interesting to notice that in the linearization of the com-
plexified LCC equation, withr(u,Z,£) =0, it is completely ) . ) )
equivalentto the good cut equation with regularity imposed Where asymptotic flatness and appropriate regularity condi-
onZ; i.e., every solution of the complexified linearized LCC tions are imposed oA. [Note that Eq(35b) is the complex
equation with vanishing, satisfies the good cut equation as conjugate of Eq(310).] Equations(35) are understood in the
well. In order to see this we write the complexified linearizedfollowing manner. Equatiori35h) constitutes a fourth-order
LCC equation with vanishing i.e., nonlinear equation for the function in the independent

variables ¢',Z,¢). The solutionA is then expressed in terms

of Z by A=A(Z,82,5Z,50Z,¢,¢) and placed on the right-
hand side of Eq(353, which, in turn, becomes a nonlinear

1- L .
0=5 8°A,1+206~ 20,16~ A,1d5,  (35D)

328522=820(Z0,¢,0).

terms of spin-0 spherical harmonics, this equation implies:

that3°Z is equal too(Zy,Z,) only up to the addition of the - L - -
- ) i ] ) ) . over thed derivatives because of the presencéofandddZ

kernel of 82 acting on spin-2 functions. Since this kernel is in the right-hand side of Eq35a.

vanishing(there are no nonzero spi_n-Z functions that are an- Analogously, we can treat the linearized approximation of

nihilated byf_SZ), thend?Z=0(Z,,¢,0). real general relativity in the following manner; the real cut

Presumably, the exact complexified LCC equation withfunctionZ would be found by
o=0 with some appropriate regularity conditions @ -
should be equivalent to the exact good cut equation. 8°2=A(Z,82,82,88Z,¢,() (363

E. Alternative version of the null-surface equations andA is determined by

In this section we will show that there is a version of the 1., .
asymptotically flat null-surface equations that have a lack of 0= 2 0°A,1+ 200, (36b

symmetry between thé and & derivatives; i.e., they will ) , ) . ,
have a chirality or handedness: technically, they will dependVith appropriate regularity conditions and asymptotic flat-
on a choice of the complex structure on thgg) sphere. ness imposed oA. Herea(u,£,¢) enters in the solution to

As a model, we first examine the case of self-dual spaceEd- (36D as a constant of integration. It is simple to show
times, as in the previous section. The light cone cut functionshat, by integrating up Eq36b), taking? of Eq. (36, and
Z for self-dual spacetimes satisfy the good cut equationentering the solution into the right-hand side of Eq36a),
which can equivalently be written in the form we recover the linearized LCC equation.

This same procedure can be applied in the exact real case.
The counterparts of E436) are

827 =A\(Z,52,82,582,(,0) (33
6%°Z2=A(Z,6Z,0Z,55Z,L,() (379
with A representing a source term to be specified by the _
additional equation and an equation for the determination/of6*,¢,¢): namely,

286=82A,, +8[A,y(8A),, + A, A, 1= A, [A,o— A1~ (8A), 1+ (BA), [(BA),1— A, ]

—a(g JW(K—,+—L—,)dR’—%j)—/tl[(f_ﬂ\),o—((;5A),1]+K——(5A),+(5/T),1- (37D
R
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[Equation(37b) is derived in Appendix A, where it appears The (A§,d?) are the ten parameters of the asymptotic Poin-
labeled as Eq(A14).] The approach to the light cone cuts via caretransformation. If Eq(398) is treated as a ten-parameter
Eq. (37) does not seem to have immediate practical uses. léet of motions, we can differentiate E@8) with respect to

has a handedness built in, which, however, does not conany _of the parameters to o_btain ten vector fields that can be
pletely favor thed derivative over the derivatives for the defined” as four translations, three rotations, and three
same reason as above, namely, the presenéé aind 557 boosts. Obviously they are not symmetries of the spacetime,
in the right-hand side of Eq37b). It does not appear that a though they do become the spacetime symmetries in the case

letelv chiral d - h ht b of vanishing radiation data—the case of flat spacetime. It is
completely chiral descriptiofsuch as sought by Penrose asg qqestive that these vector fields might be thought of as

part of the twistor programwould be feasible even in & gefining global approximate symmetries, thus, perhaps, al-
perturbative fashion, since at the linearized level it is clearoying the discussion of approximate conservation laws via

from Eq. (36b), thatA,; is not vanishing. Noether-type theorems. There are other, more dynamical,
objects that can also be obtained which transform nicely;
IV. FURTHER ISSUES AND DISCUSSION e.g., local energy-momentum four-vector fields can be ob-

We have presented here an unconventional description ofyints x2. We will not go into these issues in great detall

the vacuum Einstein equations applied to asymptotically flahere, since they will be treated elsewhere. On the other hand,
spacetimes in terms of either the light cone cutsZofor,  we do want to give the gist of the ideas here. In order to do
equivalently, the past null cones of the pointsZof, i.e., in  this, however, we find it appropriate to first give an outline of
terms ofZ and (). This formulation has certain advantagesthe theory of infinite dimensional representations of the Lor-
(and of course certain disadvantageser the conventional entz group[14,15. This material is presented in Sec. IV B.
treatment. We are interested in studying what new insights it In Sec. IVC we will very briefly discuss how the
can give us into Einstein manifolds or into solution- asymptotic form of the NSF might be of use in one attempt

(tEained from the Bondi mass aspect mapped down to the

generating techniques. to “quantize” GR.
As a possible application we plan in the future to sty ) o _ _
second ordérthe problem of the classical scattering of data A. Introduction of interior Bondi coordinates

fromZ~ to I+, i.e., if paSt data are given and a solution is The Bondi Coordinates%é"g_) of Z* can be extended
evolved from it, what will the future data look like? This into the interior of the spacetime, in a neighborhoodZ6f
appears to us to be technically difficult but conceptuallyin the following manner. From a given cut=const atZ",
straightforward with the use of the fixed pseudo Minkowskicgordinatess and ¢ can be assigned as labels for the null
gauge. _ . ~_ geodesics that meet the cut orthogonally. The coordinate sys-

Another pr_oblem is t_o study asymptotically flat metrics in tem is completed by defining a parametey that varies
the asymptotic region in terms of and (). In order to ac-  along these null geodesics. In other words the coordinate
complish this(since the metrics in the asymptotic region aresystem is defined by choosing null geodesics labeled by
expressed in interior Bondi coordinatese must first find  where they interesed" [i.e., (u,¢,¢)] and are othogonal to
the relationship between our pseudo Minkowskian coordithe u= const cutsyg is chosen as a geodesic parameter. We
nates and the interior Bondi coordinates. Finding this relarefer to ug,rg,¢g,¢g) asinterior Bondi coordinates.
tionship is a pretty geometric excercise using the light cone Here we study how to transform the coordinay@sinto
cut function. This is done in Sec. IVA. __interior Bondi coordinatesi s,z ,{s) in a neighborhood

Of considerably more interest to us is the question ofof T*. We show that the cut functio&(y?,¢,¢) actually
what, if any, effect can be seen in the interior of the asympancodes the coordinate transformation.
totically flat space that might be induced by the asymptotic \ye have at our disposal a sphere’s worth of coordinate
symmetries. That this is a distinct possibility could be con-yransformations, from thg? to our family of null coordi-
jectured from the rigidity of the light cone structure that we pates, ¢' = 6 (y?,¢), defined by Eq(2). However, the inte-
are dealing with. This, in fact, is what happens; there argjor Bondi coordinates do not correspond with one of these
several different but related objects that can be fotmd coordinate systems for any given value/ofAt every value
defined in the interior, that transform under representationsof (¢, ¢), the coordinatef® defines the past null cone from
of the Poincareggroup, some of them via finite-dimensional (y, 7) at scri. The coordinates9(,6~) label all null geode-
representations, others via infinite-dimensional representaics within this past light cone. The value 6f that corre-
tions. One of the more intriguing results is the following: As sponds to the null geodesic that meets scri orthogonally is
we mentioned earlier, given a particular Bondi coordinateg™ = g~ =0, for the reasons described in the discussion be-
system atZ", there is a canonical choice of coordina#®8  |ow. Thus we can transform froy? into interior Bondi co-
throughout the spacetimghe pseudo Minkowskian coordi- qqinates Us.Ts,(s,(s) by the set of four implicit func-
nates. If the asymptotic Bondi coordinatesu,,{) are tions
changed via an asymptotic Poincdransformation, this in- o o
duces a transformation of the pseudo Minkowskian coordi- ug=Z(y*, ¢ (¥*),{s(¥?), 0=8Z(y* {g.{p),
nates to new pseudo Minkowskian coordinat€$, The re-
lationship of the newx’s to the old ones is a nonlinear 0=8Z(V: {w i ro= 887 (va ay 7 (ya
realization of the Poincargroup. We have an equation of the (V':ls:28)s To (% ey oY)
form .

They encodey?=y?(ug,rg,{g,{g) and are, as can be
ra_ '’ b Aab qb AT
X'E=x"(x%, A, d). (38 clearly seen, intrinsically connected to the cut functin
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To show thatd™ =6~ =0 corresponds to the orthogonal wheret®=(1,0,0,0).
null geodesic, first we point out tha assigns a sphere’s

. LOo L
worth of values ofu at scri for every |nt§rlor pO”’_]y V'_a B. Aspects of Lorentz covariance in asymptotically flat
u=2(y%¢,2), by means the null geodesics froffy, i.e., via spacetimes
the light cone cuts. The issue is how to pick the correct value ) ,
of ¢ on the light cone cut, which corresponds with the null _ [t has been known, since shortly after the seminal work of
geodesic that leaves scri orthogonally, thus assigning @ Bondi[16,5] on gravitational radiation and the discoveries of
unique value ofs. The light cone cut is a two-surface at scri € related asymptotic symmetries—the Bondi-Metzner-
which is tangent to a Bondi cuti const) at only a discrete  SachS(BMS) group—that, with an appropriate choice of the
set of points, at which the tangent vanishes. By solvingd249e applied to the characteristic data, one could obtain the
a o ’ f AT — . oincaresubgroup as the invariance group of the asymptotic
62(21’ ,¢,£)=0 anddZ(y*,¢,{) :“0 for {and{ aS”f“”C“O”S region of the spacetime. We have recently realized that this
of y* (with one choice of these “tangent points,” such as theasymptotic invariance has consequences that go well beyond
one that minimizes the value @f), we obtain {5,{s) @ the asymptotic regions, and, in fact, has local influences
functions of y% Then by substitution we obtain throughout the spacetime. By this we do not mean that we
ug=2[y% Zs(y?),{s(y?], i.e.,ug as a functiory®. The re- can find spacetime symmetries resembling the Poincare
maining coordinate, the geodesic parametgr can be ob- group; however, we are finding a large number of interesting
tained from the NSF picture, simply by the substitution intolocal structures that transform under either the finite- or
r=3852 a ,_, ieldina ra= 557 a a ,_ ay). infinite-dimensional(reducible, nonunitany representations
As a(r?/illisthat?/on hegreBwe shg//v k{g\(/\ytz]ing()?oz:Zadure ca f the Lorentz group. These structures arise because of the
be applied in a flat spacetime to obtain the interior Bondi€XiStence of the asymptotic symmetry. Though, at the
esent, we do not yet understand the physical significance

coordinates from standard Cartesian coordinates. Since t . N
Cartesian coordinate€=(t,x,y,z) can always be obtained of most of these quantities, they nevertheless are intriguingly

[12] from an arbitrary coordinate systeyd by knowledge of suggestive. Our purpose here is to give a simple preliminary
Z(y? §§_) this example covers the most general flat case discussion of them. We will concentrate on the homogeneous

The light cone cut function for flat space in Cartesianl‘oremz group in detail and simply mention how the Poincare

. . translations enter the discussion.
coordinates has the for{23), or equivalentlyZo=x"/", We begin with a brief review of some of the ideas asso-

where ciated with the finite- and infinite-dimensionéeducible,
1 o o o o nonunitary representations of the homogeneous Lorentz
/a=——————((1+£0),~ ({+ )i (L= 0.(1- D). group[14,15.

_\/7(1+ {0) We first recall that the representations are labeled by two
(40) numbers(k, andc) wherek, is integer or half-integer and

. L is any complex numbd4] or alternatively bys andw with

Aapplymg 0 10 Zg an_d s/ettmg it equal to ze_;o we Lzave s (the spin weightbeing either integer or half-integer aad

xm,=0, where m,=8/,=[1V2(1+{{)](0,(Z"~1).i({ (the conformal weightbeing complex. However for the sake

+1),(=20)). This is a quadratic equation fgras a function  of simplicity we will confine ourselves to a special subset of

of X%, and the solutions are these representations, the so-callecs=0 and
w=...,—4,—-3,—-2,0,1,2,3,... representations. The linear
2 2 2 L 1 1 L 1 ’ L b
Za(x?) = [ D A (41  Vector space associated with each of these representations
B X+iy ' has a dual space which also lies in this same class. The
) representations can thus be organized in dual pairs, the pairs
and the complex conjugate being
o 2EEyP 72 (WWw)=(-2,0,(-3,1,(-4,2,....—n,n—2), n=2.
{e(x?)= xSy (42) (46)

Choosing the positive signwhich gives the smallest A vector, in any one of these=0 representations, can be
value of u upon_substitutio) and substituting this expressed as a regular function on the sphere, i.e., by
value of (Zg(x?),s(x?)) into u=x3/,({g(x?)) and r

X388/ ,({s(x?)), we obtain oz _
T(60=2 2 7 Yim(£0) (47)
ug(x®) = %(t— \/x7+y2+ 72, (43

with the conitantsf('fv) being the components of the vector

ra(x®) =22 +y2+ 22, (44) in the Y,m(g,g”) basis. The ) labels the representati_on and
also describes how the vectors of the representation trans-
which completes the transformation. The inverse transformaform under the Lorentz transformation. The Lorentz transfor-
tion giving x2 in terms of the interior Bondi coordinates is mation is given in the form of the fractional linear transfor-
L mation (Mobius transformation or (almos} equivalently by
X2=v2Uugt?+rg/?({g,L{p), (450  an SL(2C) transformation. Specifically, we have



4738 FRITTELLI, KOZAMEH, AND NEWMAN 56

x| _ space of its dual; i.e., fronw=—-n<-1 to the finite-
”7<w ") 22 E "mY|m ' (48) dimensional representatiom’ =n—2; e.g., fromw=—2 to
=0m=-1 w’'=0 or w=-3 to w'=1. Explicitly, the mappings are

with given by
’ /’_/ —KW ,_ 49 , — — dadn
n(w)(§ &) 77(w)(§ & 49 W(W')(gig): § G(W’,W)(gv)\)n(w)()\a)\) (1_’_)\)\—)2:
and (56)
— al+b ad—bc=1, (50) where G, w)({,\) is a Green’s function for everw. For
ci+d instance, fow=—2, the Green’s function i§, _,)=1 and

it allows us to obtain Lorentz scalars from the= —2 rep-
resentation. For w=-3, the Green’'s function is

K=y L G(1-3)= Z'(\)7,(¢) and it yields Lorentz four-vectors from
thew= —3 representation.

(a,b,c,d) complex and

1 L Returning to the theory of asymptotically flat spacetimes,
v=0'/1(4,0)= 2 > "™ (2,0 we briefly review some of the ide4S] concerning the BMS
=0 m=-1 group, the symmetry group af'. o
=(1+gB‘l((angb)(a_ELb_)Jr(cngd)(c_ZLd—)). Given the Bondi coordinates &f", (u,{,{), the BMS

transformation is given by
(51)

. u'=K(u+ ,_ ,
The four components' represent a unit Lorentz vector, Ut a(d.0))

namely the velocity of the “boost.” For a rotation,

=(1,0,0,0) and we have th&=1. The Lorentz vector’, "= @, ad—bc=1, (57)
is defined to have the components as the spacetime végtor ci+d
in Eq. (40). We are using capital Latin indicésJ to denote o — )
Lorentz objects. where K is given by Eq.(51) and a(¢{,{) is an arbitrary

Equations(47)—(51) contain the full description of the function of conformal weight 1 01, the so-called super-
s=0 and integew+ — 1 representations. Though these rep-translation. By demanding that the Bondi shegfu,Z,?)
resentations are all infinite dimensional, they are not totallythe free gravitational characteristic dat@anishes at future
reducible; they do contain invariant subspaces. For the cas#gfinity and remains zero after a BMS transformation, one
of w=0, these invariant subspaces are finite dimensional andan show thata(Z,{) must be restricted to contain only
yield the finite-dimensional representations; ¥ox<0 the in-  1=0,1 harmonics(the four translations and Eq.(57) be-
variant subspaces are all infinite dimensional. Specificallicomes the Poincamgroup. In this manner the Poincageoup
for fixed w=0, the invariant subspace is defined by vectorsbecomes the symmetry group of .
of the form We are now in position to show how, from the represen-

w tatipn theF;)ry, thbe e;syl/njptcr)]tic_ symmet][iélr?)rentz or Poifn—
Im — caregroup can be felt in the interior of the spacetime from
77(‘”):;0 m:zq ) Yim(£:0)- (52 several different but related points of view.
First we point out and emphasize that the cut functon
In particular the scalar representation is given Wwy=0, transforms as av=1 function under the BMS transforma-

yielding as the invariant subspace tion u’'=Ku; i.e.,
70)= 70 Yo £.0), (53) Z' (3,0, ) =K(6HZOA,L,0). (58)
which are simply constants. The ordinary vector representa- We note, but do not explore in detail here, that for
tion is given by byw=1, yielding Minkowski space, the cut functioBiy(x?,£,¢) contains only
the first four harmonicd,= 0,1, and the coefficients are the
77(1)_2 2 7] Y|m(§ 5) (54) standard flat spacetime coordinatés<(y,z) and hence the

application of Eq(58) is just the ordinarycoordinate Lor-
entz transformation; i.e., we have simply the finite-
and the symmetric trace-free representationnsy2, with dimensionalw=1 representation. However, in the general
5 asymptotically flat caséwith all harmonics inZ), the first
Im - four components can again be taken as the spacetime coor-
= 2‘ 2‘4 72) Yim(£,4) 59 ginates x® (this constitutes a canonical choice of global
pseudo Lorentzian coordinates that exist when the spacetime
There are “intertwining” operatorl4,15 that map vec- is sufficiently close to Minkowski spadd 2]), but now the
tors from one representation to another. We will have arcoordinate transformation generated by E§8) is much
interest in the special case where the map is from an infinitemore complicatedthis follows from the fact thaZ is in the
dimensional negativer representation to the invariant sub- infinite dimensionalv=1 representationthe coefficients of
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the higher harmonics map down to the0,1 harmonicgthe  the moment we do not yet have a good means of obtaining

finite dimensional invariant subspaggelding a transforma- the soldering form, though there are several suggestions that

tion that is in general nonlinear but dependent on the simust be explored.

parameters of the Lorentz transformation. If #thés thought A fourth place that the asymptotic Lorentz symmetries

of as a natural decomposition into the finite dimensional in-enter into the interior local geometry is when we consider a

variant subspace and the infinite dimensional remainder, i.ecurve in the spacetimes®=x?(7), with v¥®=dx*dr, and
definedZ/dr=V(x?,v3,¢{,{)=Z, 02 From the properties of

. — < s — Z, Vis aw=1 function. From this it follows thay 2 is a

Z=X /a(§’§)+|22 Z"(x*)Yim(£,0) (59 w=—2 function. Via the intertwining operator for=—2

functions (56), V~2 maps into the finite dimensional=0

and representation. This yields a scalar functib(x®v?) on the

tangent bundle that is homogeneous of degrekin thev?.
@ e In the case where the cut functiof is that of either
Z'=xX'"3/ (0, 0)+ > ™M), ¢), (600 Minkowski space or of a self-dual space, there is the result
=2 [17,13 that® t=g,w%"; i.e., it is the spacetime norm of
v2. In the general case, we do not yet know the meaning of

then from Eq.(53) the transformation has the form ®(x,v) but it is difficult to believe that it is not significant.
A xauh A im,ea For example, it has the structure of a scalar function on the
X"4=ApXP+ Ajm(Ap) 27 (X%). (61)  tangent bundle and hence could be used as a Lagrangian,
Note that the components ef, [given as in Eq.(40)] are with
just a linear combination of thk=0,1 spherical harmonics. P (x2,0?)
The decomposition of Eq59) is into the four components of Pa=———7— (64)

. . . v?
invariant subspace of the=1 representation plus the re- v

maining infinite number of components. In this representay; ®(x%,v%) were used as a Lagrangian for the curves

2?” tzevlvnrfl?ltethguf' g irtoirﬁomﬁgﬁmﬁ;r?&)tﬁz tte:kr:"n S{ x?=x%(7), we can only guess, at the present moment, of its
ap down to the =9, terms yielding Eqio.). (ote tha meaning; in flat spaces and self-dual spaces, it yields geode-

from the invariant subspace property of the first four COMpO~;. motion—perhaps in the general case, sifida,v) de-

Cvi?t‘;' ttrhﬁyfd?mno;[nmr?pthurr)n t?\/;[ahe highércomponents, pends only on the conformal structure, it yields the equations
EC ? S gl among bethse h? fas th lizati of the conformal geodesics. In any case we feel it is very

quation(61) can now € thougnt ot as the generalization,, q .y hjje investigating the possible meaningsdaf
.Of the Lorentz transforma_ltlofnr the general_lz_atmn of Kilk- In this discussion we have tried to point out that there is a
ing symmetriej;to approximatgor pseudo Killing symme- very rich Lorentzian structure in the interior of arfguffi-

tries for the.spaceUmes. A more detailed paper is being prec'iently weall asymptotically flat spacetime, that is inherited
pared on this issue.

X . from the asymptotic symmetries and propagated rigidly
The Bondi mass aspeft0] (an asym_ptotlc compone_nt of throughout the spacetime, via the light cone structure of the
the Weyl tensor whosé=0,1 harmonics have been inter-

ted as the Bondi q AtisTY ¢ spacetime itself. To our knowledge this structure has not
preted as the Bondi mass and momentisigiven as a func- - j,q oy previously observed; what significance it may have or

tion onZ" of the form\Pg(u,g,g). Itis known to transform \yhat use it can be put to are both, at the moment, open
under the(asymptoti¢ Lorentz group as &= —3 quantity.  guestions.

If we now restrict the vaILEO‘{fg(u,g,g’) to a light cone cut
by substitutingu=2Z(x%¢,{) we obtain aw=—3 function C. Quantum comments
of the form‘lfg(xa,g,g). By applying thew= — 3 intertwin-
ing operator(56), it is mapped into av’ =1 finite dimen-
sional vector that has the form

As was mentioned in earlier sections, for a asymptotically
flat spacetimes our variablé represents the past null cones
from points atZ* or alternatively the intersection of the fu-

1 ture directed null cones from interior spacetime points. From

p=2 2 p'mY|m(§,5, p'Mespl(x2), (62 the first point of view they are _the nuII_surface_s that most

=0 m=—| resemble the null planes of Minkowski spacetime and, in

fact, are the null planes in the flat space case. From the

i.e., a Lorentz four-vector field on the spacetime. To obtain aecond point of view, in the flat case, they are strictly the
spacetimecovector field one needs a soldering form, i.e., anspheres orif* representing the intersection of the flat space

object of the forme', so that light cones withZ"; the position, orZ", being determined
by the coefficients of the four=0,1 harmonics—namely the
p3(xP)= p'(xb)e?. (63 Minkowski flat coordinates. In linear theory or in full theory,

we keep the same type of coordinatésur pseudo
This would then yield a spacetime energy-momentum vectoMinkowski  coordinates—the  first  four  harmonic
field that presumably could be interpreted as the total energycoefficients—but now the cones or planes become deformed.
momentum passing through the future null cone of the pointn our basic equation, the LCC equation, it is thg that
x2. One would have, via the integral curves of this vectorplays the role of a source term driving the equation and caus-
field, preferred curves through spacetime. Unfortunately, aing the deformations of the surfaces.
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We discuss now a fewrather unexpectedresults that equivalent to Egs(8d) and(8e):
arise when we treat the LCC equation as an operator equa-

tion, representing an attempt at developing a quantized ver- . _(5/\)” 5t (A1)
sion of our NSF of GR. o B
Since(complex oy represents the free data for the gravi- Ti1: (8A),—26 . (A2)

tational radiation field, it and its complex conjugate can be

considered as the basitanonical fields of the classical sim-  The equivalence can be verified by using the commutators
plectic manifold §at|sfy|ng Poisson bracket relations amongh) to pull & througha; in the term GA),:, and using Egs.
themselves. The idea is to prometg to a quantum operator (8a)—(80).
og obeying commutation relatior{®btained via the Poisson N .
brackety on Z*. This procedure constitutes the Ashtekar Similarly, Egs. (n) and (my), .respectlvely, take on the
asymptotic quantization prograilg]. We then insert this [olowing equivalent expressions:
operatorog into our LCC equation, thus also promotidgo -
5 A, ;=—(0A),,+K (A3)
We remark on two aspects of this procedure. and
The quantization ofrg by no means implies we are con-
sidering linear gravity. It represents an attempt to extend the 1
asymptotic quantization procedures of Ashteks8] to the A,-=3(8A), +L, (A4)
interior of the spacetime. It is greatly aided by the fact that
we have restricted our diffeomorphism freedom to just thewith K defined by Eq(19) andL by Eq.(20).
Lorentz group by our canonical choice of coordinates. In  First, we takes, of Eq.(A4) andd_ of Eq.(A3); then we
principle we should be able to extend the operator solution ofbtain two equations by subtraction and addition:
the LCC equation into the interior. At present we do not
know how to handle the nonlinear terms in the field equa- 4A,+7:((5A),+—(8A),,),1+ 3L,,+K,_ (A5
tions for the quantunz. We have thus faf19,2Q only ana-
lyzed the linear coupling between and o5 given by Eq. and
(15). It is certainly possible that the nonlinear terms will lead 1
to the same complications that are produced in other field 0=<§(6A),++(6A), a+L LK, (AB)
theories when quadratic and higher order products of fields
arise in the field equations. As the context here is different
from other field theories—we are dealing here wifpace- In Eq. (A6), we commutesd,. throughd andd_ through6
time surfaceghat are to be made into operators rather tharand subsequently use Eq#4) and (A3) to eliminateA,
with conventional fields—the final status is not clear. andA,_, obtaining
Nevertheless, even at a linearized level the field equations
for Z produce a rather surprising result, namely, the space-o_(f(A'O 2A,)+ = (6(6A) 1—8(BA), 1)+5|_+ 3K
time points themselves become quantum operators with non-
vanishing commutation relations. The classical spacetime
manifold disappears and Ioose§ its status as a .background + §(A,i+A,1(5A),+)+/T,_A,_+A,1(6/T),_ ”
stage, becoming a quantum object. We emphasize that our
NSF formalism is quite unconventional and we do not have Sl —K (A7)
(at least from the fundamental starting pgiatmetric field T
on a manifold, but instead our basic starting variables argye  commute 9, out from both terms in
families of surfaces; it is thus not surprising that the “quan- : -
tization” should lead to a nonconventional result. This idea®(®A),1=8(8A),1) and subsequently use EGAS) to
is being further investigated. eliminate the combinationd\),_—(8A),. which appears
on commuting. In this way, EQA7) becomes
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APPENDIX A: DERIVATION OF THE LIGHT CONE CUT (A9)
EQUATION

where an integration “constant’b(u,g,{_) has been intro-
Before we proceed with the calculations, it is useful toduced, which can be seen to representutfterivative of the
recall that the following expressions fo‘l’il and Ti1 are  Bondi shear by studying the limit ¢A9) asR— .
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Equation(A9) is our starting point to eventually obtain
the LCC equation. Since the procedure is lengthy, we outline-2 )
it here and proceed with the exact calculations afterwards. (0°A), - to obtain

The LCC equation is of the form 3%5°Z

The derivation begins with commuting_ throughé_s in

(82A),_=8((8A),_+A,o— A, )+ A, (Ag—A,p)

—325+ 8% +--- , where--- represents nonlinear termsn o B B

or linear terms in derivatives d. To obtain this equation, +A,1((6A),0—(6A),1)—K+A,_(5A),_
we take a number of manipulations on E@&9) and on .

8°A=38%A, denoted Eq. () in the main text. The outline of +(8A), _(8A),1, (A16)

the calculation is the following. From E@A9), one could _
obtain 82A o=625+€-52<'7+ .-+ by taking 32 on both sides. Where a further commutation @f throughd was made and

only if one could show that the following version of the commutat@ﬁ,l,f_i] was used:
i, - . - 1- 1 — —
62(_A10_A11+(6A)17):_2620-4_... (Alo) (6A)ll:§ 6A,l+ E(A,,A,l"_A,l(éA),l‘i‘K).

which relatesA to the complex conjugate. To show that (A17)

Eq. (A10) holds, we apply of Eq. (1): This version of the commutator is obtained by use of Eq.

(A3) to eliminateA, , from the original version of the com-

mutator. Substitutingé(A),_+A,0—A,1 from Eq.(A9) into
Eqg. (A16) we obtain

(82A),_=(82A), . (A12)

We commutey_ once througffs in the left-hand side of Eq.

. ~ /7 - - - R
(A11) to obtain §*A),_=3((8A),_+A,o—A,})+--- and 26&=(62A),—6(§ f (KYi_LHr)dR'_E\]
then use Eq(A9) again to substitute in the® so that the 2 Je 4
left-hand side of Eq(A11l) becomes — — — —
) _ _Av*(A!O_All)_A!l((éA)!O_(6A)1l)+K
3°A), =280+ . Al12 — — -
(O°A),-=2080 (A12) ~ A (BA),_—(8M), (BA)
We also commutel_ throughd? in the right-hand side of

Eq. (A1), so that Eq(A11) becomes which is the explicit form of Eq(A12). O
Algebraic derivation 2. Equation (A14) holds by virtue of

the commutation relations and Egs. (I) and (A12).

S
280 =08"A,+- . (A13) The derivation begins with commuting_ through? in
The complex conjugate of EGA13) is (8°A), - to obtain
25G=82A,  +-- . (A14)  (8PA), =8%A, +3((BA), A, + A, A, )+A, (8A),
The final step is to také of both sides in Eq(A14) and +(€_5A),,(6/T),1. (A18)

show that the right-hand side becomes
) ) . On the other hand, by using Ed.)(to change the first term
35%A,, -+ =8%A,o—A,;—(3A),_)+--- . (A15)  on the right-hand side of EHA12) into a term inA, Eq.

. o (A12) gives
This last step is quite involved. Once E@¢814) and (A15)

are shown to hold, then EqA10) holds as well and one

obtains the LCC equation simply by substitutionsfof Eq.

- — (3 (R 1
26(;:(62A),—6<§f (K,_—L,)dR'—=J
(A9) and subsequent integration un

4

In the remainder of this appendix we perform this proce- —A,_(/T,o—/cl)—/\,l((éx),o—(6/T).1)+ K
dure explicitly, namely, we show that the explicit forms of - —
Egs. (A12), (A14), (A15), and (A10) hold and use them to —A,_(0A),_—(0A),_(0A),4. (A19)

derive the LCC equation. _

Algebraic derivation 1. Equation (A12) holds by virtue of Using Eq.(A18) to eliminate §2A),_ from the right-hand
the commutation relations, the metricity conditiom,) and  side of Eq.(A19) and taking the complex conjugate the fol-
Eq. (A9). lowing equation is obtained:

286 =82A, . +8(A,1(8A), + A, A, )= A, (A o= A,1— (BA), ) +(BA), . (BA),1— A, )

—6(2 R(K_,+—L,)dR'—%ﬁ—A_,l«éAxo—<6A>,1)+K_—<6A>,+<6A_>,1,
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which is the explicit form of Eq(A14). O if Eq. (A3) is used to eliminaté\, . .
Algebraic derivation 3. Equation (A15) holds by virtue of  The second aukxiliary relation is the following version of
Egs. (A4) and (A3), and the commutation relations. the commutatof d,,8] on A, which is obtained by use of

The derivation requires the use of two auxiliary results.Eqs.(A4), (A3), and(A21) into the original commutator:
First, there is a relationship betweénand K. Using Eg.

(A17) one can expresks as

1 - — — 1 1 1 —
L=- EA.l(A,++(6A).1—A,_A,1_Aa1(6A)'1 5(6A)’1:§ ANE ZA’l(K+A’_A'1+A'1(6A)’1

+2A,,8 InQ), (A20) —2A,,8 InQ). (A22)

which becomes . . .
1 . . i To derive Eq.(A15) we begin by noting that, after com-
L==50a(K=A A= A,4(8A),1 24,48 InD), muting 4.8 in  (8A),_, the combination

(A21) A,O+A,1—(€_5A),, can be rewritten as

Ao+ A, —(BA),_=3A,,—3 %6A,1+ %A,l(—K+3(A,,/T,1+A,l(6A_),l—2A,lé INQ)) | —A,_A,_—A,1(8A), -
(A23)
simply by using Eqgs.A4) and (A22). The first two terms on the right-hand side of H#23) can be changed into
Aq— %66A,1 by commutingéé. Applying 32 to the resulting expression and commutﬂi?gthroughéc’_SA,l we obtain

32(A,o+ A, —(BA),_)

1 - -.[1 — — . . — —
=3 38°A,,—8° ZA,l(—K+3(A,,A,1+A,1(6A),1—2A,1i’5 InQ))) —8%(A,_A,_+ A, (8A), ). (A24)

We use Eq(A17) to rewrite — %663A,1=662(— %6A,1), which is the first term on the right-hand side of £424), in terms
of (E_SA),l, and consequently eliminatéA&),1 in terms of A, , by means of Eq(A3): namely,

1
2

1 — 1
szl(éA)vl_ K.

A, A+ .

1 x3 X2
=5 08°A, ;=807 A, +

(A25)

Inserting Eq.(A25) into (A24) and rearranging terms we obtain

- - - 1 - J— J— 1 - - J— J—
662A1+=62(A10+A11_(6A)!—)_ E 662(A!—A11+A11(6A)11)+ E 662K+62(A,_A,_+A,1(6A),_)

1 —_ —_ _
+63 ZA,l(_K+3(A,,A,l“l‘A,l(éA),l_zA,lé InQ))

which is the explicit form of Eq(A15).1
Algebraic derivation 4. Equation (A10) holds by virtue of Eqgs. (A14) and (A15).

The derivation consists of taking anto both sides of Eq(A14) and substitutingﬁif_izA,+ (which will appear on the
right-hand sidge by using Eq.(A15). In this way we obtain

- 1. — R T — —
262&:62(A!0+A11_(6A)!—)_E662(A1—A11+A11(6A)11)+§662K+62(A!—A1—+A!l(6A)l—)

-.[1 _ o i
+53(ZA11(— K+3(A,-A,1+A,1(8A),1—2A,18 InQ))

[~ A, (A=A, — (BA), )+ (BA),  (BA),1— A, )] +8[— A1 (BA),0— (8A), 1)+ K—(8A),, (8A),1]

3 R — N 1 - J— J—
_62(5 (K7+_L1)dR’_ZF)V+66(A1l(6A)1++A1A1+)1

which is the explicit form of Eq(A10). O
Algebraic derivation 5. The LCC equation follows from Eqgs. (A9) and (A10).
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To derive the LCC equation, we first add and subtriag in the left-hand side of Eq/A9), obtaining

; . 3 (R 1
2A,o—(A,O+A,1—(6A),_)=2¢r+Ef (K,- =L, )dR = 2 3. (A26)

We can now také? to both sides of EqA26) and consequently use E@\10) to eIiminateéZ(A,oJrA,1—(5/\),,) in favor
of 8%¢. Thus we obtain ai derivative of the LCC equation:

X2 _o(x2; 24_3'2 E'z R _ /_E 2—§2 R___ '

20°A,p=2(d°0c+0%0) 46J+26 (K,_—L,,)dR 46J+26 (K,+—L,_)dR
1 - — — AN — — -

+ 5 662(A,1A,,+A,1(6A),1)—63 T[B(A,lA,,nLA,l(éA),l—ZA,lé In Q)—K]

—62(A,_A_,_+A,1<6A_>,_)—;662K—66(A,_A_,++A,1(6A_>,+)—6[<6A_>,+«6A>,1—A,+)

~ A, (Ayg= A, = (8A), )= A, 1(BA),0— (8A),1)+ K]+ B((BA), , (8A), ). (A27)

This equation can be integrated in (after commutingd,

_ _ Z (0A),, =0, (B60)
throughd? in 82A,, and82c, and throughd? in 3%a), giv-
ing the LCC equation, labeled E{L5) in the main text. (] B
(3A), =, (B6d)
APPENDIX B: SELF- AND ANTI-SELF-DUAL RELATIONS
The light cone cuts of self-dual spacetimes satisfy (8A),0=80. (B6©)

A=oc and Q=1. (B1) ]
From Egs.(B6), (B2), (B5), and(B5) we obtain

The following is a list of relations obtained by using this

information to evaluate equations derived in the previous Jj=o. (B7)
appendix, the definitions df, L, andJ given in the main

text and the commutators acting dnand A.

From Eq.(B1) we immediately obtain Now we turn to the “complex conjugates” of the quantities
we have evaluated so far. From E@Bl), (B2), (B3), and
Ao=0, (B2a)  (B6) we obtain
A,,=0, (B2b) K=0, (B8)
A,.=0, (B2c)  which, if inserted into the complex conjugate of E421),
leads to
A,_=0, (B2d) _
L=0. (B9)
and
_ From the definition ofL, namely the complex conjugate of
8 In2=0, (B33 Eq. (20), we obtain
3 InQ=0, (B3b) 2A,_+3A,,=0. (B10)
which immediately lead to From the commutation relations we see that
-=0 (B4) (5A),_=8A,_+éohy, (B11a
K=0. (B5) -
(8A),1=0A, 1+ A, _, (B11b

From the commutation relatione31) and (B2), we obtain
which, if inserted into the complex conjugate of Hé4)

(6A),_=0, (B6a  and using Eq(B9) yields

(8A),,=0, (B6b) 2A,, —8A,,=0. (B12)
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Using Eq.(B12), as well as all the relevant expressions ob- APPENDIX C: THE GREEN’s FUNCTION
:ﬁ:’:ted so far, into the complex conjugate of E1g), we see Here we display the Green's functioB(¢,7) for the

equation

T M- AA 20 2. (B13 :

2 e b FEF=A (CY)
Finally, with all the expressions that have been obtained so ] ) ) )

far, the complex conjugate of E6A14) (shown explicitly in ~ for the spin-weight-zero functiok on the sphere, whew is

the algebraic derivation Jreduces to a regular spin-weight-zero source with only2 spherical
harmonics:

280+ % 3°A,1—208A,,—80A,,=0, (B14) 1
G(&m=7_— 7O/ (mIn(7(§)-7(m). (€2
which is the well-known equation for self-dual spacetimes m
displayed in[13] [Egs.(2.28].

The anti-self-dual results are the “complex conjugates” Green’s functions for higher ordér have been obtained in
of these. [21].
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