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Pseudo-Minkowskian coordinates in asymptotically flat space-times

Simonetta Frittelli* and Ezra T. Newman†

Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvannia 15260
~Received 15 August 1996!

For a rich class of asymptotically flat vacuum space-times, we show that it is possible to introduce a global
coordinate system in a canonical fashion that is analogous to the standard Minkowskian coordinate systems
used in flat space. This is accomplished by studying the intersection of the future light cone of interior
space-time points with future null infinity. This intersection, referred to as a light cone cut of future null
infinity, is piecewise a two-surface which can be described analytically by a function of the coordinates of null
infinity. This function~the light cone cut function! can be given a special spherical-harmonic decomposition
with the coefficients depending on the interior points. The canonical pseudo-Minkowskian coordinates are
defined from the four coefficients of thel50,1 spherical harmonics. In Minkowski space-time this prescription
yields precisely the standard Cartesian flat coordinates.@S0556-2821~97!05304-6#

PACS number~s!: 04.20.Gz, 04.20.Ha
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I. INTRODUCTION

It is the purpose of this paper to argue that for suita
defined classes of asymptotically flat vacuum space-tim
sufficiently close to Minkowski space, there exists a spe
set ofglobal coordinates, chosen in a canonical fashion, t
are, in a precise sense, the counterparts of the ordinary
space Minkowski coordinates. These coordinates, which
will denote byxa and refer to as a canonical set of coord
nates~or as pseudo-Minkowski coordinates!, are such that
when the radiation data~the Bondi asymptotic shear! goes to
zero~i.e., to flat-space data! thexa become the conventiona
Minkowski coordinates. There is a 10-parameter transform
tion freedom in their choice that is analogous to the Poinc´
transformations; this freedom does become the Poin´
group in the limit of vanishing data.~The boost freedom can
sometimes be eliminated by requiring that the Bondi m
mentum have only a nonvanishing ‘‘time’’ component
i 0, leaving only the Poincare´ translations.! That we can ob-
tain this canonical choice of global coordinates is rather s
prising. For many years it was believed that the~asymptotic!
coordinate freedom associated with asymptotically
space-times was that of the Bondi-Metzner-Sachs~BMS!
group@1,2#. It was then shown that with the data chosen in
special class@2#, defined by certain asymptotic fall-off prop
erties ~but still very general!, the BMS group could be re
duced to the Poincare´ group @2#. Nevertheless, it was be
lieved that the coordinates associated with these Poin´
transformations could only be defined in the neighborhood
future null infinity, I1. It is our claim that these pseudo
Minkowski coordinates can be extended throughout
space-time.

We will be concerned with two different ‘‘suitably de
fined’’ classes of asymptotically flat vacuum space-tim
The first class, which has been shown to exist@3#, are the
asymptotically flat spaces obtained from hyperboloidal ini
data~i.e., data given on spacelike hypersurfaces that inter
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future null infinity on a two-sphere! that are sufficiently close
to the Minkowski space data. The solutions are ‘‘global’’
the future of the initial data surface and possess a smo
conformal extension, ‘‘above’’ the data surface, through n
infinity, I1. We will refer to such space-times asHF spaces.
The second class, originally conjectured by Penrose, has
yet been shown to exist, though there appears to be s
hope@4# that in the near future its existence can be dem
strated. This class, which we will refer to asRPspaces, is the
special case of future asymptotically simple space-times@5#
where thevacuumEinstein equations are imposed. It is cha
acterized by the condition that the conformal structure can
extended, in all null directions, through null infinity. TheRP
spaces presumably contain theHF spaces.

In principle, our argument for the existence of the pseu
Minkowskian coordinates applies to generic asymptotica
simple spaces, since it makes no use of the Einstein e
tions. Its value resides, however, in the fact that it appl
equally well to theHF spaces and theRPspaces, if the latter
can be shown to exist.

There are subtle technicalities underlying the ideas u
here, which we have not addressed, and thus we have
attempted to state our results in a mathematically form
manner. We can think of our proofs as being essentially h
ristic.

II. THE ARGUMENT

We begin with a brief discussion of some backgrou
issues.

Since, in either case,RP or HF, we are dealing with as-
ymptotically flat space-times with smooth conformal exte
sions to null infinity, we can begin with the existence
I1, with its usual properties, e.g., it isS23R, and that we
can introduce standard Bondi coordinates ofI1, namely,
(u,z,z̄) with uPR and (z,z̄) the complex stereographic co
ordinates onS2. Two-dimensional subsurfaces ofI1 will be
described by functions of the form

u5F~z,z̄ !. ~1!
1971 © 1997 The American Physical Society
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1972 55SIMONETTA FRITTELLI AND EZRA T. NEWMAN
They need not be differentiable or single valued, though t
will be piecewise differentiable and piecewise single valu

From the fact that the space-times we are dealing with
R4 with a boundary~the boundary being either the initia
data surface orI), there will exist global coordinate system
~onR4), any one of which we will refer to asya. In addition
to the globalya, there will also be local space-time Bon
coordinates in the neighborhood ofI1 obtained by extending
the Bondi coordinates ofI1, (u,z,z̄), into the interior via an
affine parameter,r , along the null geodesics normal to th
spheres,u 5 const, onI1. These local Bondi coordinates,

y
B

a5~u,z,z̄,r !, ~2!

must be connected to the globalya, in a neighborhood of
I1, by some transformation,

y
B

a5Ya~yb!. ~3!

It is this transformation that allows us to connect or ‘‘tie
the interior of the space-time toI1.

We now assume that, in the class of ‘‘suitable spa
times,’’ the vacuum metrics are known in the globalya co-
ordinate system,gab5gab(yc), and that, in principle, the nul
geodesic equations can be integrated in the form

ya5ya~y
0

b ,z
0
,z̄

0
,s!, ~4!

wherey
0

b is an initial point, (z
0
,z̄

0
) are a choice of stereo

graphic coordinates on the sphere of null directions aty
0

b ,

labeling the initial null directions, ands is an affine param-
eter along the null geodesics.@That the null directions
(z

0
,z̄

0
) at the various pointsy

0

b can be related to each othe
smoothly follows from the existence of a global orthonorm
tetrad.#

Remark.The theorem on the differentiability of solution
to ordinary differential equations@6# guarantees that the nu
geodesicsya(y

0

b ,z
0
,z̄

0
,s) are sufficiently differentiable func

tions of the initial conditionsy
0

b ,z
0
,z̄

0
in an open interval of

the parameters ~later, our argument requires them to b
twice differentiable!. The degree of differentiability of Eq
~4! actually extends to the boundaryI1. This can be seen
clearly by conformally compactifying the space-time~the
null geodesics are conformally invariant!. Since the confor-
mally compactified space-time can be extended pastI1, then
I1 becomes a finite surface contained in an open rang
the parameter along the null geodesics.

Using Eq.~4! in Eq. ~3!, we have the expression for th
null geodesics in the neighborhood ofI1 in the Bondi coor-
dinates; i.e.,

y
B

a5Ya
„yc~y

0

b ,z
0
,z̄

0
,s!…. ~5!

or

u5u~y
0

b ,z
0
,z̄

0
,s!, ~6a!

z5z~y
0

b ,z
0
,z̄

0
,s! and complex conjugate, ~6b!
y
.
re

-

l

of

r5r ~y
0

b ,z
0
,z̄

0
,s!. ~6c!

As our interest is in the behavior of the null geodesics
I1, we lets ~and r ) →`, thus we have

u5u~y
0

b ,z
0
,z̄

0
,`![U~y

0

b ,z
0
,z̄

0
!, ~7a!

z5z~y
0

b ,z
0
,z̄

0
,`![Y~y

0

b ,z
0
,z̄

0
! and complex conjugate.

~7b!

In principle, Eqs.~7! are known functions for any asymptot
cally flat space-time. Moreover, our earlier remark est
lishes that bothU(y

0

b ,z
0
,z̄

0
) and Y(y

0

b ,z
0
,z̄

0
) are suffi-

ciently differentiable functions ofy
0

b ,z
0
,z̄

0
.

Future null-geodesic completeness implies that Eqs.~7!
determine a unique point (u,z,z̄) on I1 for every initial
point y

0

b and every initial direction (z
0
,z̄

0
). As (z

0
,z̄

0
) range

over the sphere of all initial directions, Eqs.~7! parametri-
cally describe a mapping from the two-sphere intoI1;
namely, a two-surface onI1. It is the intersection of all null
geodesics fromy

0

b with I1. This surface can be described
the form~1! by inverting Eq.~7b! and using the inversion in
Eq. ~7a!. We refer to the surface, when expressed in t
form, as thelight cone cutof I1 from the interior point
y
0

a .
Because of future null-geodesic completeness, the l

cone cuts stay away fromi1 ~i.e., they do not blow up!, but
generically they will not be single valued or differentiabl
This can be seen from the fact that, in general, due to
development of caustics in the space-time, Eq.~7b! will not
have a unique inverse@i.e., there will be several values o
(z

0
,z̄

0
) for each (z,z̄)#. If, however, Eq.~7b! is inverted

locally, so that, locally,z
0
5Y

0
(y

0

a ,z,z̄) and thez
0
is elimi-

nated from Eq.~7a!, we obtain the~piecewise! light cone cut
function in the form of Eq.~1!; i.e., as

u5Z~y
0

a ,z,z̄ !. ~8!

Emphasizing an essential point, we stress that though Eq~8!
is given only piecewise and is not globally smooth or sing
valued, however, Eq.~7a! is single valued and smooth. W
will return to this point later.

As an important digression we look at both Eqs.~7! and
~8! in Minkowski space. In a given Minkowski frame with
standard coordinatesxa, the null geodesics~4! can be written
as

xa5x
0

a1sl a~z
0
,z̄

0
!, ~9!

wherel a(z
0
,z̄

0
) is a null vector for all values of (z

0
,z̄

0
) that

can be given in the form

l a~z,z̄ !5
1

A2~11zz̄ !
„11zz̄,z1 z̄,i ~ z̄2z!,211zz̄….

~10!
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55 1973PSEUDO-MINKOWSKIAN COORDINATES IN . . .
For later use, we note that the four components ofl a are
linear combinations of the first four spherical harmon
Y00(z,z̄) andY1m(z,z̄).

The transformation~3!, between thexa and the Bondi
y
B

a5(u,z,z̄,r ), is given by

xa5uta1r l a~z,z̄ !, ta5
1

A2
~1,0,0,0!. ~11!

Finally, for Minkowski space, after a brief calculation b
following null geodesics and passing to the limits→`, Eqs.
~7! become@7–9#

u5x
0

al a~z
0
,z̄

0
! ~12a!

and

~z,z̄ !5~z
0
,z̄

0
!, ~12b!

hence, for the light cone cut function~8! we have

u5Z0~x0
a ,z,z̄ ![x

0

al a~z,z̄ !, ~13!

which describes a smooth embedding of a sphere onI1.
Using our observation that thel a are combinations of the
first four spherical harmonics, and dropping the label 0,
~13! can be rewritten as

u5 (
l50,1
m52 l ,l

x
l ,m
Ylm~z,z̄ ! ~14!

with

x
0,0

[A2pt,

x
1,0

[2A2p

3
z,

x
1,1

[Ap

3
~x2 iy !,

x
1,21

[2Ap

3
~x1 iy !, ~15!

or

x
l ,m

⇔xa.

In other words, in Minkowski space, the Minkowski coord
natesxa are the coefficients of the first four spherical ha
monics of the light cone cut function. If the Minkowsk
space had been described by some other global coordin
ya, then the light cone cuts would still have had the form

u5Z~ya,z,z̄ ![ (
l50,1
m52 l ,l

f
l ,m

~yb!Ylm~z,z̄ ![ f a~yb!l a~z,z̄ !,
.

tes

where f
l ,m
(yb) are the appropriate coefficients in the expa

sion. By comparison with Eq.~14!, thexa coordinates could
then be obtained from

x
l ,m

5E
S2
Z0~y

a,z,z̄ !Ȳl ,m~z,z̄ !dS2[ f
l ,m

~ya!, ~16!

for l50,1, wheredS2 is the area element on the unit sphe
dS25(2/i )@dz`dz̄/(11zz̄)2#. This relationship, which can
be expressed equivalently byxa5 f a(yb), gives the coordi-
nate transformation fromya to the canonicalxa.

It is precisely this observation that we will use to obta
the pseudo-Minkowskian coordinatesxa in the HF andRP
spaces.

The basic idea is to consider the curved space light c
cut function~8!,

u5Z~ya,z
0
,z̄

0
!

~in the following, we are dropping the sublabel 0 iny
0

a), find
the coefficients of its first four spherical harmonics, a
identify them as the pseudo-Minkowskian coordinates. M
explicitly, in the HF and RP spaces, we intend to define
four pseudo-Minkowskian coordinates by the transformat

x
l ,m

5E
S2
Z~ya,z,z̄ !Ȳl ,m~z,z̄ !dS2[ f

l ,m
~ya!, ~17!

for l50,1. There is a difficulty with this definition; namely
can we give meaning to the integrals~17!, since the cut func-
tion Z(ya,z,z̄) is multivalued~or is given piecewise!? The
solution is actually quite simple; the integral is pulled ba
to the sphere of null directions at the pointya. The integral in
Eq. ~17! becomes@from Eqs.~7a! and ~7b!#

x
l ,m

5E
S0
2
U~ya,z

0
,z̄

0
!Ȳl ,m„z~ya,z

0
,z̄

0
!,z̄~ya,z

0
,z̄

0
!…

3J~ya,z
0
,z̄

0
!dS0

2

[ f
l ,m

~ya!, ~18!

for l50,1, whereJ(ya,z
0
,z̄

0
) is the Jacobian of the transfor

mation~7b! and the integral is taken over the sphere of init
null directions. That the Jacobian exists follows from t
smoothness ofY(y

0

b ,z
0
,z̄

0
) @Eq. ~7b!#. As all the functions in

the integrand are now well defined, the integral is well d
fined. We thus have Eq.~18!, or

xa5 f a~yb! ~19!

as our proposed transformation from the globalya to the
canonicalxa.

The only remaining issue is whether Eq.~19! is well be-
haved globally; i.e., does the Jacobian of Eq.~19! exist and is
it different from zero for allya? This can be answered affir
matively by first remembering thatU(y

0

b ,z
0
,z̄

0
) @from Eq.

~7a!# is a smooth function ofy
0

b and then observing that fo
sufficiently small values of the data the HF and~presumably!
theRP spaces are smoothly connected to Minkowski sp



ly

a

e
n

co

er
rs
th
a
e
en

s

or

n
e
ar

th
o
it
an

-
-

-

s,
e
e

t
oe

of
rm
-

w

e

ea
-

cit
ge

In

as-
t

e a

by

hat
pe-
es.
ndi
ar-
e

-
on-
e
tes,
tu-
rdi-
ex-

l

tion

sed
n.
it-
fold
i
e

o-

r-

1974 55SIMONETTA FRITTELLI AND EZRA T. NEWMAN
and, second, that the transformation~19! applied to
Minkowski space@namely, Eq.~16!# has a nonvanishing
Jacobian. It now follows, by continuity, that for sufficient
small data the Jacobian of Eq.~19! is nonvanishing. We have
thus shown that the transformation~18! and ~19! yields a
special or canonical set of coordinates that in the flat-sp
case are the standard Cartesian flat coordinates.

III. DISCUSSION

There are several issues that need further discussion.
~1! We began with a given asymptotically flat space-tim

and from aspecificchoice of Bondi coordinate system o
I1 we could find the pseudo-Minkowskian coordinatesxa.
As there is considerable freedom in the choice of Bondi
ordinates~the freedom of the BMS group!, it appears that our
‘‘canonical’’ coordinates are not very canonical. Howev
the freedom of the BMS group can be reduced. We fi
make the physically reasonable restriction of the data to
for which the magnetic part of the Bondi shear vanishes
both i1 and i 0. One can then restrict the BMS group to th
Poincare´ group by requiring that the BMS frame be chos
such that the~full ! Bondi shear~the characteristic datum!
vanishes ati1; i.e., the shear vanishes in the limit a
u→`. The remaining freedom is the Poincare´ group.@In the
case ofRP spaces one can restrict the freedom even m
the shear can be made to vanish ati 0 ~asu→2`) and the
boost frame can be chosen uniquely so that the initial Bo
four-momentum~at u→2`) has only a nonvanishing tim
component. In this case one is left with only the Poinc´
translations.#

~2! In the case where we cannot~or do not wish to! re-
strict ourselves to just the translations, we can study how
pseudo-Minkowskian coordinates transform under bo
transformations. They transform, in fact, as part of an infin
dimensional representation of the Lorentz group. In the l
guage of Gelfandet al. @10,11#, the function Z(ya,z,z̄)
transforms under the~reducible, but not completely reduc
ible, infinite-dimensional! D (1,1) representation which pos
sesses an invariant subspaceE(1,1) spanned by thel50,1
spherical harmonics. (D (1,1) /E(1,1) is an irreducible represen
tation andE(1,1) by itself is the vector representation.! The
effect of this is that ifZ is expanded in spherical harmonic
the coefficients of thel50,1 harmonics do not enter into th
l.1 harmonics under the transformation, but the high
harmonic coefficients do enter and affect thel50,1 coeffi-
cients. Thexa ‘‘sit’’ in the invariant subspace but do no
transform just among themselves; the higher-harmonic c
ficients get mixed in.

We point out that by taking different inverse powers
Z(ya,z,z̄) it is possible to construct objects that do transfo
as finite irreducible representations~scalars, vectors, sym
metric tensors, etc.! under the Lorentz transformations@11#.
Some of these objects are under study, though at the mom
we are not able to advance any interpretation associated
them.

~3! One might ask what coordinate conditions on the m
ric are implied by the use of the canonicalxa. Though in
general we do not know the answer to this question, in lin
theory the metric comes out@12# in the analogue of the Cou
ce
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t
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lomb gauge; i.e., for the linearized metricgab5hab1hab,
we haveh0a50.

~4! The cut functionu5Z(ya,z,z̄) contains all conformal
information of the space-time. This includes an expli
means of calculating the conformal metric from knowled
of Z. If, in addition, an appropriate conformal factor~to
make the conformal metric into a vacuum metric! is given
@sayv(ya)# then the space-time metric can be obtained.
the situation discussed here,Z was obtained by integrating
the null geodesic equations from the knowledge of an
ymptotically flat vacuum metric. A new point of view is tha
the cut functionZ and the conformal factorv are to be the
fundamental variables of the theory and the metric is to b
derived concept. One can reformulate general relativity~GR!
completely in terms of theZ(ya,z,z̄) andv(ya). We refer to
this formulation as the null surface formulation~NSF! of
GR. The vacuum Einstein equations can be replaced
~coupled! differential equations forZ andv @13,14#. There
are actually two versions of the NSF, a general version t
applies, locally, to any vacuum space-time, and a more s
cial version that is applied to asymptotically flat space-tim
In the latter case, one begins with the choice of a Bo
frame onI1, and the choice of the Bondi shear as free ch
acteristic data.~With no loss of generality this data can b
chosen to vanish at eitheri1 or i 0 to obtain either theHF or
RP spaces.! A very attractive result obtained from this ap
proach is thatthe space-time points themselves arise as c
stants of integrationand are, in fact, the coefficients of th
first four spherical harmonics; i.e., our canonical coordina
xa, arise naturally as four constants of integration. We ac
ally first observed the appearance of the canonical coo
nates in this manner. A detailed paper is being prepared
pounding this point of view.

~5! We note that for asymptotically flat space-times~not
necessarily vacuum Einstein! with a definite choice of a
Bondi frame onI1, there is, in addition to the canonica
xa, a canonically defined flat metric,h, that exists on the
same manifold. Given the cut functionZ(xa,z,z̄) for the
space-time, we also have the natural flat-space cut func
~13!, namelyu5Z0(x

a,z,z̄)[xal a(z,z̄), which leads~with
v51) to the standard flat metric in thexa coordinates~see
the Appendix!.

~6! There is an important subtle issue that should be rai
and discussed. If not clarified, it could lead to confusio
Consider the situation that we have two metrics in our ‘‘su
ably defined classes’’ that are given on the same mani
using the same global coordinatesya. Using the same Bond
coordinates (u,z,z̄) on I1, we can calculate and obtain th
light cone cut functions for each metric, say,Z1(y

a,z,z̄) and
Z2(y

a,z,z̄). We can then introduce our canonical pseud
Minkowski coordinatesxa @via Eq. ~19!# for each cut func-
tion and obtain

x1
a5 f 1

a~yb! and x2
a5 f 2

a~yb!. ~20!

The point that we want to make is that the two setsx1
a and

x2
a cannot be identified; i.e., the two functionsf 1

a(yb) and
f 2
a(yb) are always different when the two metrics are diffe
ent ~see the Appendix!.
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55 1975PSEUDO-MINKOWSKIAN COORDINATES IN . . .
~7! Though it is not at all clear at this time what uses the
canonical cordinates might have, their very existence is
prising. They, however, do appear to be needed in the
tempt @15# to apply Ashtekar’s asymptotic quantization@16#
procedure to the quantization of the NSF of GR. Here
unique gauge~in this case analogous to the Coulomb gau
of electrodynamics! is needed.

~8! Asymptotically flat self-dual space-times can be o
tained fromv51 andZ(xa,z,z̄)’s that are regular and sa

isfy the ‘‘good cut’’ equation@17#, namelyZp2Z5s̄(Z,z,z̄)
for an arbitrary choice of the functions̄(Z,z,z̄). The space-
time points enter the solutionZ(xa,z,z̄) as the constants o
integration, and appear as the coefficients of the first f
spherical harmonics; i.e., thex

l ,m
or xa appear here again in

the same canonical fashion as earlier.
~9! We wish to point out a shortcoming in the use of t

canonical coordinates for theHF spaces; there will certainly
be ‘‘ghost’’coordinates for anyHF space; i.e., there will be
numerical values of the coordinatesxa such that no point in
the HF space exists that corresponds to them. Intuitive
these missing points lie to the past of the past Cauchy h
zon. It seems likely to us, however, that this problem w
disappear for theRP spaces.

~10! It might be conjectured that canonical coordinates
this kind could exist in the Christodoulou-Klainerman spac
@18#. However, theI1 of the Christodoulou-Klainerman
spaces is not smooth; thus it is not clear that our construc
applies to this case.
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APPENDIX

We will describe here an illustrative example of what h
been discussed in the main text. We will compare the can
cal coordinates of two different flat space-times, namely, t
different flat metrics on the same manifold,R4 with future
null boundaryI1. For computational ease, however, we b
gin with a fixed Bondi frame (u,z,z̄) at I1 and give two
knowncut functions,Z1 andZ0, in terms of the same Bond
frame, rather than obtainingZ1 andZ0 by integrating the null
geodesics of the two metrics. From knowledge of the
function, a prescription is available for the transformati
between the Bondi coordinates and an arbitrary set of inte
coordinates in the neighborhood ofI1. We give this pre-
scription explicitly in the case of the two canonical sets
xa’s obtained from the two cut functions. We make use
these two transformations to find the relationship betw
the two sets of canonical coordinates. It eventually becom
e
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clear thatZ1 and Z0 are indeed the cut functions of tw
different flat metrics.

We begin with the cut function

u5Z1~y
a,z,z̄ ![ f a~yb!l a~z,z̄ !1a~z,z̄ !, ~A1!

where the fourf a(yb) are chosen arbitrarily~with a nonvan-
ishing Jacobian!, anda(z,z̄) is an arbitrary regular function
on the spherethat has no l5 0,1 spherical harmonics. Intro-
ducing the canonical coordinates, in this case, is straight
ward; i.e.,x1

a5 f a(yb), and Eq.~A1! becomes

u5Z1~x
a,z,z̄ ![x1

al a~z,z̄ !1a~z,z̄ !. ~A2!

The coordinate transformation@12# betweenx1
a and the inte-

rior Bondi coordinatesy
B

a5(u,z,z̄,r ) is given implicitly by

u5Z1~x1
a ,z,z̄ !,5x1

al a~z,z̄ !1a~z,z̄ !,

05 ]̃Z1~x1
a ,z,z̄ !

5x1
ama~z,z̄ !1 ]̃ a~z,z̄ ! and complex conjugate,

r5 ]̃ ]̄̃Z1~x1
a ,z,z̄ !5x1

a
„na~z,z̄ !2l a~z,z̄ !…1 ]̃ ]̄̃a~z,z̄ !.

~A3!

Here ma[ ]̃ l a and na[ ]̃ ]̄̃l a1l a . The four vectors
l a,ma,m̄a,na satisfy l ana52mam̄a51 while all the other
possible scalar products among them are zero. This fact
be used to find the transformation explicitly:

x1
a5~u2a!~na1l a!1~r2 ]̃ ]̄̃a!l a1 ]̃ am̄a1 ]̄̃ ama.

~A4!

Our formalism associates a flat metrich (1) with Z1 by

ds1
25hab

~1!dx1
adx1

b5~dt1!
22~dx1!

22~dy1!
22~dz1!

2.
~A5!

The flat metric~A5! can be ‘‘tied’’ or connected toI1 via
Eq. ~A4!, and its light cone cuts are described by Eq.~A2!.

The ‘‘natural’’ flat-space cuts ofI1 are obtained from the
cut function@see Eq.~13!#

u5Z0~x0
a ,z,z̄ !5x0

al a~z,z̄ !, ~A6!

which, in turn, leads to the flat metric

ds0
25~dt0!

22~dx0!
22~dy0!

22~dz0!
25hab

~0!dx0
adx0

b.
~A7!

The transformation from thex0
a to the interior Bondi coordi-

nates is now

u5Z0~x0
a ,z,z̄ !5x0

al a~z,z̄ !,

05 ]̃Z1~x0
a ,z,z̄ !5x0

ama~z,z̄ ! and complex conjugate,

r5 ]̃ ]̄̃Z0~x0
a ,z,z̄ !5x0

a
„na~z,z̄ !2l a~z,z̄ !…, ~A8!

or, explicitly,

x0
a5u~na1l a!1r l a. ~A9!
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The light cone cuts of the metric~A7! are described by Eq
~A6!.

If the Bondi coordinates are eliminated between Eqs.~A4!
and~A9!, we can obtain the relation between the two sets
global coordinates,x0

a andx1
a . To eliminate the Bondi coor-

dinates, we first solvex0
am̄a50 for z, and obtain@19#

z5
z01R0

x02 iy0
and complex conjugate,

where

R0[Ax021y0
21z0

2. ~A10!

The transformation is then
, P

,’’

hy

ys
f

x1
a5x0

a2a~na1l a!2 ]̃ ]̄̃al a1 ]̃ am̄a1 ]̄̃ama,
~A11!

wherez, on the right-hand side, is given by Eq.~A10!. As
this is not a Lorentz transformation~it is not even linear! we
see that we have two distinctly different flat metrics. Notic
furthermore, that none of the two flat metrics is more ‘‘nat
ral’’ than the other one. Had we chosen to describe the c
in an alternative Bondi slicingu85u2a, supertranslated
with respect to the original one, the cut functionZ1 would
have hadl50,1 spherical harmonics only, whereasZ0 would
have had higher-order harmonics as well. Thus, in this al
native Bondi frame,h (1) would look ‘‘natural.’’
y-

ys.

ys.
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