PHYSICAL REYIEW D

VOLUME 49, NUMBER 12

15 JUNE 1994

Classical and quantum dynamics of the Faraday lines of force
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We study the vacuum Maxwell theory by expressing the electric field in terms of its Faraday lines of
force. This representation allows us to capture the two physical degrees of freedom of the electric field
by means of two scalar fields. The corresponding classical canonical theory is constructed in terms of
four scalar fields, is fully gauge invariant, has an attractive kinematics, but a rather complicated dynam-
ics. The corresponding quantum theory can be constructed in a well-defined functional representation,
which we refer to as the Euler representation. This representation turns out to be related to the loop
representation. The resulting quantization scheme is, perhaps, of relevance for non-Abelian theories and

for gravity.
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1. INTRODUCTION

Considerable effort [1,2] has been expended over many
years to the problem of giving a reduced phase-space for-
mulation, and eventual quantization, of physical theories
[such as general relativity (GR) or Yang-Mills (YM)
theory] that possess a gauge group. The problem has
been to find the transformation from the “large” phase
space, including the gauge degrees of freedom, to a small-
er phase space for which all the variables are gauge in-
variant but yet contain all the physical information of the
original large space. A formulation of this type was re-
cently given for GR and YM theory in Ref. [3]. In this
formulation, the basic variables of the reduced phase
space were a generalization of Faraday’s lines of force
from electromagnetic theory. This formulation, though
very geometrical, was mevertheless quite involved,
presenting some difficult conceptual issues. It is the pur-
pose of this article to clarify some of these issues by
studying the same ideas but in a simpler system, namely,
in vacuum Maxwell theory on Minkowski space.

In Sec. IT we present the classical canonical Maxwell
theory in terms of the new version of the reduced phase
space. In Sec. III we show how the quantization can be
carried out in terms of the new variables. An important
aspect of the formalism that we develop is that the reduc-
tion to the physical degrees of freedom is entirely defined
on physical space with no recourse to Fourier transforms
or momentum space. In particular, the gauge-invariant
degrees of freedom of the field are captured without using
the (background) metric structure of spacetime. This
feature may become very important in gravity.

II. CLASSICAL THEORY

We begin with the standard canonical form of Maxwell
theory on a 3+ 1 decomposition (R X E?) of Minkowski
space. The Maxwell potential 4,(x) and the electric field
E%x) are canonical conjugate pairs (x is in E>, and
a=1,2,3). They satisfy the first class Gauss-law con-
straint
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9, E4x)=0 2.1
and ex)olve under the Hamiltonian
H= [ d*x[E%x)E“(x)+B%x)B%x)] (2.2)

where B% x) is the magnetic field. Indices are raised and
lowered by the Euclidean metric. A4, is set to zero
throughout the paper.

- A common way to resolve the problems associated
with the gauge transformations generated by the Gauss-
law constraint is to decompose both the electric field and
the connection into their transverse and longitudinal
components, discard the longitudinal component and
separate the two helicities of the transverse components
by means of a transverse basis in momentum space. The
resulting two components represent the physical degrees
of freedom of the field. We follow here an alternative
path, always remaining in coordinate space: we will de-
scribe the electric field in terms of its Faraday (or electric)
lines of force [4] or the integral curves of E°. The Fara-
day lines can be described (in general) by a congruence in
the three-dimensional space E°.

We denote curves in E> by Greek letters a, 3, etc.; and
real parameters labeling the curves by u and p. For the
purpose of this paper, we define a congruence € as a two
parameter family a(u,v) of (unparametrized) noninter-
secting curves that fill space. Thus a congruence is given
by a map @: (u,v)—alu,p) or, more explicitly, by
x?=a%s,u,v) with s an arbitrary parametrization of the
individual curves. Note that, from this definition, a
congruence carries more information than just a foliation
of E* by one-dimensional curves. The extra information
is contained in the fixed labeling of the curves by the two
parameters x and v. (The information in this labeling will
be used to characterize the ‘“density” of the Faraday
lines, and thus fix the strength of the electric field.)

A congruence € is uniquely related to a pair of scalar
fields as follows. Given a point x in E*, there is a unique
curve aly,v) in the congruence @ that goes through x,
and therefore @ determines two numbers ¥ =y and v =p
for every point x, i.e., two scalar fields, which we denote
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as u(x) and v(x). Conversely the congruence is deter-
mined by any two scalar fields u(x) and v(x) as the set of
the unparametrized curves a(u,v) defined as the intersec-
tion of the surfaces u(x)=yu and the surfaces v{x)=u.

From now on, we will equivalently talk of the
congruence, and of the pair of scalar fields u(x) and v(x).

A. Euler potentials and their conjugate momenta

We now consider the relation between congruences and
electric fields. Let us fix a region R of the three-
dimensional space. Given a congruence in R, determined
by the two fields u(x) and v(x), we can construct the
vector field

E%x)=g%Q,u(x)d,v(x) . 2.3)

It is immediately seen that the vector field E%x) con-
structed in this way is divergence-free. We interpret it as
an electric field. Note that this electric field is every-
where tangent to the curves of the congruence—the
curves of the congruence are therefore the integral curves
of E%x), or its Faraday lines of force.

Conversely, given an electric field E%x), we can, local-
ly, find two scalar fields u (x), and v(x), and therefore a
congruence, such that (2.3) is satisfied. Note that in gen-
eral this construction works only locally, because the in-
tegral lines of an arbitrary electric field may have wild
global behavior. For instance, a line may get arbitrarily
close to a point an arbitrary number of times so that the
Faraday lines may fail to form a congruence. In order to
avoid these global difficulties, and for simplicity, we re-
strict ourselves to a finite region of space. More precise-
ly, we fix a fiducial two-surface =, and assume that we are
only interested in a finite region R which lies in a neigh-
borhood of 2, and that all the Faraday lines in this region
R have an “origin” on 3 and intersect = once and only
once. We can then “coordinatize” the two-surface = by
(u,v) parameters and label the lines of force intersecting
the surface accordingly. Later, we will fix boundary con-
ditions for the fields on this fiducial surface. Given this
restriction, we can construct the u (x) and v(x) fields for
any given electric field.

The two scalar fields # (x) and v(x) capture the two de-
grees of freedom of the divergence-free electric field.
These fields were first introduced by Euler, and are some-
times referred to as Euler potentials. Following Ref. [3],
we want to view u(x) and v(x) as the two gauge-
invariant canonical coordinates of the electromagnetic
dynamical system. Thus, we have to find their canonical-
ly conjugate momenta, which we denote as p,{(x) and
ps(x). These can be found by means of the “singular”
canonical transformation [3,5] from the phase space
given by the six canonical variables [E%(x), A,{(x)] (with
some boundary conditions, which we will discuss below)
to the set of four functions fu(x), v(x), p,{x), p,(x)].
These four functions are to be canonically conjugate to
each other, gauge invariant, and are to span the phAysical
phase space (namely the constraint surface modulo gauge
transformations). Such a canonical transformation was
introduced in Ref. [3] and is given by
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E°=¢g%Q,ud,v , (2.32)
p,=—B%,v,

(2.3b)
p,=B%,u .

pu{x) and p,(x) are then two scalar densities conjugate to
u(x) and v(x). The generating functional S| 4,u,v] of
the canonical transformation (2.3) is given by the natural
pairing between a congruence a{u,y) and a one-form A4:
namely,

S[A,u,v]=fd3x e%9,ud. v A,

=faufa[ 4,

aly,n)

2.4)

where the first integral is over the region R, and the line
integral is therefore over the portion of the curve a{u,v) .
contained in R. This generating functional leads to (2.3)
via

&S

E°= 54 =g, ud,v

a
pﬁ"‘%i":—e“”cab A.8,0=—B%,v , 2.5)
puz_g—fzb—eabcabAcaau=Baaau .

Equation (2.3) is the implicit form of the canonical trans-
formation between E and A and [u,v,p,,p,]. It is, of
course, not possible to invert these equations for 4 unless
a gauge is fixed. We can, on the other hand, try to solve
for the magnetic field B®=g%3, 4, (which is gauge in-
variant) as B°=B%u,v,q,,q,). Note that two com-
ponents of the magnetic field [along the gradients of u (x)
and v(x)] are directly determined by Eq. (2.5); the last
component (along the curves) can be obtained by integra-
tion, from the fact that B is divergenceless.

In doing so, however, we encounter a difficulty, be-
cause the third component of B¢ is only determined up to
an integration constant. More precisely, one can easily
see that if B%x) solves Egs. (2.5), so does

B'"%(x)=B%x)+plulx),v(x))E%x)

=B%x)+p(u(x),v(x))e®d,u(x)d,v(x) (2.6)

for any arbitrary function of two variables p(u,v). Thus,
there is a “lower dimensional” degeneracy in the canoni-
cal transformations (2.5). This is related to the fact that
in the derivation of (2.5) from S| 4,u,v] we perform an
integration by parts, which gives boundary terms

fa,,(sabfuacha) and fac(eabca,,uuA,,) .

The simplest way to eliminate these complications is to
choose appropriate boundary conditions for the fields. It
is particularly convenient to fix this “lower dimensional
set of degrees of freedom” of the fields on the fiducial sur-
face Z itself. If the surface is given by the mapping
3:(u,v)eR?>—x%u,v), we thus fix “boundary” conditions
on 2, by assuming that 4, is normal to the surface, by
which we mean



A, =A4,0x°/3u=0, A,=A,0x°/w=0. (2.7)

Note that the boundary term considered above is then
vanishing on 2. It is then a straightforward exercise to
show that the magnetic field is tangent to =, namely
B4, (3x®/0u )(3x°/dv)=0. This condition is sufficient
to invert Eqg. (2.3b), because it uniquely fixed the arbitrar-
iness displayed by Eq. (2.6). The magnetic field is then
uniquely determined in terms of «, v, p,,, and p, by three
requirements: (i) Egs. (2.3b); (ii) the divergenceless prop-
erty 9,B%=0; (iii) the boundary conditions (2.7) on the
fiducial surface.

B. Explicit inversion of the canonical transformations

We can compute explicitly the magnetic field as fol-
lows. We introduce the notation

f(x)= IOS(X)gJ_IdS

to indicate that the scalar function f (x) is obtained by in-
tegrating the scalar density g (x) along the (unique) curve
of the congruence that passes through x, the integral go-
ing from the origin of the curve on the fiducial surface =
to the point x itself. Hence s is an arbitrary parametriza-
tion of the curves and J is the Jacobian of the transforma-
tion (s,u,v)—x%=x%s,u,v), i.e.,

J=¢e%9,ud,vd,s .

(2.8)

(2.9)

It is then straightforward to check that all conditions (i),
(ii), and (iii) are satisfied by

Ba=g%%, 43,11, +e°%d,v3,II, (2.10)
with
=/ Os‘x’p,,rlds , M= OS(x)p,,J_lds . @.11)
1t is also easily seen that the connection is given by 7
A,=ud, I, +vo,II,+9,A (2.12)

where A(x) is an arbitrary scalar function. An important
property of the relation between B? and A4, and the new
variables is that the dependence of B¢ and 4, on p, and
D, is nonlocal, but linear homogeneous (except for the
gauge term 9,A). This fact will play a major role in the
next section.

There is an alternative, but equivalent, method of ob-
taining II, and II,, that avoids the use of the arbitrary
parametrization s (and J). Given the two densities
(three-forms) p, and p,, it is easily seen that one can
find two oneforms I1¥, and II°, that
P, =e",ud,vI%, and p,=&,ud,vIl’,. The scalars
IT, and II, are then given by the line integral of these
one-forms along the loops II,= f g‘x)l'[“ad a’,
n,= ¥’ da”

Notice that if we did not fix the boundary conditions
on the fiducial surface, the magnetic field would have
been determined only up to an additive term proportional
to E*, the proportionality factor being constant along the
curves. In other words, in the absence of boundary con-
ditions, the inversion from the reduced phase space to the
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original one is unique up to a lower dimensional ambigui-
ty. More precisely, this ambiguity would be given by a
single function of two variables. The same ambiguity ap-
pears if we try to invert (2.3a) and expressed the reduced
variables as functions of E, and A4,. In fact, Eq. (2.3a)
determines # and v only up to arbitrary transformations
(u,v)—(u',v")=(u"(u,v), v'(u,v)) with a unit Jacobian.
These too depend on a single function of two variables,
and should be fixed as boundary conditions.

C. Equations of motien

By inserting E [u,v] and B[u,v, p,,p,] into the Hamil-
tonian, we obtain the Hamiltonian H [u,v, p,,p,] written
in terms of these (gauge-invariant) reduced phase-space
varjiables. One can then calculate the equations of
motion

dpu /dt=28[avab](aau8bv)
(=) abe —
—B4%, fos %9, B, d,vJ " 'ds
dpv/dt='—23[auab](aauabv)

+B93, [*Vewd, B3, ul ~lds
stx) 2 (2.13)
du /dt=— [ e, B,d,ul " 'ds

dv /dt=— fOS(X)e“bcaaBbach“lds ,

with B“ given by (2.10). Note that all the equations that
we have written are invariant under a change in the pa-
rametrization of each curve: @®(s)—a®(s'(s)).

The equations that we have derived are quite cumber-
some, and highly nonlocal. They can be greatly
simplified by working with a preferred choice of the pa-
rameter s=s, along the curves, fixed as follows. We
define the quantity '

S(x)= Os""B,,da“ (2.14)
and choose the preferred parameter s, along each curve

by

S(a“(s))=sp . (2.15)

Note that S(x) is completely determined in terms of u, v,
P.» P, and hence its evolution (i.e., dS /d¢) is also unique-
ly determined, but quite difficult to calculate. Given this
choice of parametrization, we have immediately that the
projection of the magnetic field on the tangent of th
curve is one: :

B, {x)t%x)=1

(2.16)
where we have introduced the curve tangent
t”(a"(u,v,sp))=da“(u,u,sp)/dsp (2.17)
or
t4x)=J " Ux)e®Bpu(x)d,v(x)=J " Ux)E%x) . (2.18)

Thus, this parametrization is equivalently defined by

J(x)=B,(x)Ex) . (2.19)
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Two disadvantages of this parametrization are first that it
makes explicit use of the background metric, and,
- perhaps more seriously, s, is not in general a monotonic
function along the curve—it can even give rise [see Eq.
(2.12)] to discontinuities in the tangent vector ¢* and
perhaps have ¢ not even defined. The equations of
motion, however, do take the much simpler local form

dp, /dt=38;,v3,(3,ud,v)—B%,(N®B,) ,
dp,/dt=—28,ud,(d,ud,v)—B%,(M"B,),

(2.20)
du/dt=—N°*B, ,

dv /dt=M"’B, ,

where M“=03a"/3u and N*=3a°/dv [3]. In this parame-
trization, the nonlocality is hidden in the fact that the pa-
rametrization s,(x) is uniquely, but nonlocally, deter-
mined by u (x), v(x), p, (x), p,(x).

From the evolution of these variables we can obtain the
time evolution of the curves of the congruence them-
selves, The meaning that we attach to this idea is as fol-
lows: A particular curve (at one instant of time) can be
followed into the future by considering the succession of
curves that all intersect the fiducial surface at the same
value of (u,v). The successive curves x°=a’(t,s,u,v)
will have a “connecting vector,” connecting points with
the same values of (sp, u,v). This can be obtained by the
following argument: taking the time derivative of

(u,0, 5,)=0'=w'x%t) where s,=S(x) is our privileged
parameter, and remembering that we are now treating

the u,v,s, as fixed, we have that
0=0' ,da®/dt +do'/dt . (2.21)

Using the set 6% =(N° M?%,t% which is dual to o', and
(2.12), we obtain

da®/dt=(N°M,—M°N,)B*—(dS /dt)t*, (2.22)

the evolution equation for the electric lines of force.
Note that in the connecting vector (2.22), any term pro-
portional to the tangent vector is “nonphysical” in the
sense that it can be changed arbitrarily by a change in the
curve parametrization.

D. Positive-frequency version of the formalism

In order to discuss the quantization of the theory, it is
useful to introduce an alternative version of the reduced
phase-space construction and dynamics that we have
presented, based on the introduction of the “positive- and
negative-frequency” fields E* and 4 ~. For simplicity,

let us fix the gauge by 8, 4°=0, 3,4 7?=0, so that 4 ~,

is uniquely determined by B ~, (boundary conditions are
fixed). The two complex fields E *%(x) and 4 ~,(x) are
|

F¥x,0=2m) 7" [ &% [ do 6(o)e™=~oF, (k,0),

"Maxwell

FRITTELL], KOSHTI, NEWMAN, AND ROVELLI v 49

defined by
E*4x)=E%x)—iAV?A%x) ,
(2.23)
A7 4x)=A%x)—iATV2E%x) ,
where the operator A'/? is defined as
Al/zf(x )-—=—(2,n.)—3fd3k fd3y|k|eik(x-—y)f(y) ,
(2.24)

A1) =0m) 7 [k [ d3yv1—|—e"k(x‘y’f(y) .

The transformation (2.23) from the real canonical vari-
ables E“ and 4, to the complex fields E*?and 4™, is a
canonical transformation; in particular, it is simple to
check that

{E*%(x), A7, ()} =86%8%x,p) . (2.25)

Moreover, the two complex fields E ¢ and 4~ « provide
a complex coordination of the phase space. They are not
independent (the phase space has only six real dimensions
per space point), but related, by construction, via the re-
lation

[ETYx)*=iAY24~%x), T (2.26)

which we will refer to as the reality conditions. The
Hamiltonian can be written in terms of these fields as

H=i[d*x EtAV 47 (2.27)

Therefore the canonical theory can be entirely reex-
pressed in terms of the E*“ and 4 ~, fields. We will use
this formulation below.

The fields E % and 4 ~, have of course an interpreta-
tion as the positive and negative components of the
Mazxwell field. To see this, it is sufficient to write explicit-
ly the Hamiltonian equations

SH
SE *e(x)

If we rewrite this equation in momentum space, we have

9,4 ,(x,t)= =iAY2 47 %x,z) . (2.28)

3, A7 (k,0)=i|k|A~%k,1), (2.29)
so that
Ak, )y=e™® 4~ (k) , (2.30)

where o=|k|; namely, 4 ~, is a negative-frequency field.
Analogously we get

E*%k,ty=e O E (k) ; (2.31)

namely, E is a positive-frequency field.

[Alternatively, we could write the four-dimensional
field F,(x,5) as Flw(x,t)='F+/W(x,t)
+F7,(x,t), where F* uvand F~ are the positive- and

negative-frequency components of F,,, defined by

2.32)

Foux0=2m 7" [dk [do6(—w)e ™~ f (ko)
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where
Full,@)=@2m) 372 [d [dt e T "90F (x,1)

and 6(x) is the step function, i.e., the characteristic
function of R7T. Then it is easy to see
that E*%x)=F*%(x,0) and B ,(x)=e%9,4",
=g, F %(x,0).]

We can now repeat the previously described construc-
tion by replacing E® and 4,, with Et%and 47 i.e., we
have

E +a=8abcabu:acv/ ,

p,=—B7%,v", 2.3")

py=B%,u’ .

The inversion of these equations can be treated as before:
B %and A, (up to gauge) are uniquely determined by
(2.3'), by 3,B ~*=0, and by boundary conditions on the
fiducial surface. The two resulting nonlocal functionals
B~ u'",v',p.,p,] and 4~ °[u’,v',p,,p,] are linear homo-
geneous (in some gauge) in p,, and p,.

We have denoted with a prime the new variables
defined by E*? and 4, to distinguish them from the
ones defined by real fields. The four complex reduced

phase-space variables [u',v’,p,,p,] are still canonically
conjugate to each other and still coordinatize the physical
phase space. Thus, the structure of the theory is the
same as before, except for the existence of the nontrivial
reality condition (2.25) and the new form of the Hamil-
tonian:

H=i [d’ e®d,u'd,0'AY* 4~ [u',v',p,,py] . (2.2)
Note, however, that the quantities #'(x),v’(x) do not ad-
mit a direct interpretation as Euler potentials of real
Faraday lines, since they are complex. This does not
affect the consistency of the above construction. Finally,
note that a third version of our construction can be ob-
tained by replacing the positive and/or negative fields
with self-dual and/or anti-self-dual fields. This may be of
interest for (the Ashtekar version of) GR. '

In the following section, we base the quantization of
the theory on the positive-frequency version of the reduc-
tion of the phase space, described here, namely on the
primed [u’,v’,p,,p,] variables (2.3"). This is not fully sa-
tisfactory for two reasons. First, the positive-frequency
version of our construction does not have the immediate
clean geometrical flavor of the real version of the con-
struction. Second, the positive and/or negative frequen-
cies of the fields are defined in terms of the background
metric, and this weakens the interest of the original con-
struction, which does not require a background metric,
particularly in view of a generalization to GR. However,
using the positive- and/or negative-frequency fields
simplifies the construction drastically, and allows us to
avoid dealing with infinities. Thus, we prefer to describe
the much simpler quantization of the positive-frequency
variables [u’,v’,p,,p,] here, and leave the analysis of the

viability of the quantization of the real (u,v,p,,p,] vari-
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ables (and of the ones based on the self-dual fields) to fu-
ture investigations.

III. THE QUANTUM THEORY

The complications of the nonlinear dynamics of the
theory described above may suggest that the quantum
theory could become difficult too. Indeed, since the
Hamiltonian is a complicated function of the reduced
variables, the Schrddinger equation becomes quite
cumbersome. However, we shall see that the action of
the Hamiltonian operator is simple. We use the positive-
frequency version of the reduction of the phase space,
that was described at the end of the preceding section,
namely on the primed [u’,v’,p,,p,] variables. For sim-
plicity of notation, however, we omit the use of the prime
on the fields [u',v',p.,p,], for the remainder of this
section—all fields are of the primed type.

We quantize the theory by means of a Schrdodinger
functional representation where we represent states as
functionals ¥ of the Euler potentials # and v: the opera-
tors u and v as multiplicative operators and the operators
Dy D, as the functional derivatives C

DX )¥W[u,v]=—i#A[8/8u(x)]¥[u,v],
Dy (x W[ u,v]=—i#[8/6v(x)]¥[u,v] .

(3.1)

We may denote this representation of the quantum
Maxwell field as the Euler representation. We choose the
ordering of the Hamiltonian (2.2') with all the functional
derivatives at the right.

A. n-photon states

Our task is to solve the time-independent and the
time-dependent Schrddinger equation. The Hamiltonian
depends on the derivative operators p,,, p, via B, (or 4,)
which is a nonlocal function of p,,p,. At first sight, this
may seem to indicate that the dynamics will be as difficult
to treat as in the classical case. However, we will see that
there is a simple short cut that can be taken, which al-
lows us to compute the action of the operator B, on cer-
tain states without difficulty.

Since B ~“ is linear-homogeneous in p,, p,, it follows
that the Hamiltonian is linear-homogeneous in the first
order derivative operators 8/8u(x) and &/8v(x). It is
then straightforward to see that the zero energy state,
namely the vacuum, is simply given by Wy[u,v]=1.

Consider now the one-particle states. Since in the
Bargman electric field representation the one-particle
states can be represented as W [E¥]= [d’x f,E™% a
natural ansatz, with f = f,dx® a one-form, is

Wolu,v]= [d’ e®f,8,ud,v . (3.2)

We restrict the possible choices of f by requiring that f
satisfies the same boundary conditions, Eq. (2.6), that we
required on 4, in the previous section; the reason for this
will be clear in a moment. To compute the action of the

Hamiltonian on this state we first note, from (3.2), that
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2,V [u,v]=iAFd,v ,
2y Y slu,v]=—i#F,u ,

(3.3

where Fo=¢%<3, f,. Next, we compute the action of the
operator B ™% From (3.3), and the fact that B ~° is linear
in p,, p, we have

B_a[u:U,Pu:Pv ]\I’f[u’v] .

=B°[u,v, —i#iF°,v,i#iF°3,u]. (3.4
Now, B~ “[u,v,p,,p,] is a highly nontrivial function of
its arguments. However, consider the following:
B u,v,p,,p,] is defined as the unique divergence-free
function such that B “9,y=—p, and B “Q,u=p,,
satisfying our  boundary conditions. Therefore
B u,v,—i#iF®d,v, i#F,u] is the unique divergence-
free function such that B °3,v=i#AF"d,v and
B 7%, u=i#F,u. This function is of course i#iF°.
Therefore, without any additional computation we can
conclude

B u,v,pyp, ¥ flu,v]=i#iF® (3.5)
and therefore
A7 [u,0,p,50, ¥ p[u,v]=i#f, . (3.6)

Thus we have, from (2.27),
HY [u,v]=—# [ e®d,ud vAl*f,

It follows that W [u,v] is an eigenstate of the Hamiltoni-
an with eigenvalue & if an only if f, satisfies

—#AVEIf =6f, . (3.7)

Let us now consider the time-dependent Schrodinger
equation. Consider an arbitrary one-particle state of the
form (3.2), but let f, be time dependent, namely, let it be
a four-dimensional field f,(x,#). We immediately see that
the time-dependent Schrodinger equation

—i#i8, Y p[u,v]=HY [u,v] (3.8)

gives
0, fa(x2)

Thus f,(x,t) evolves in time as a negative-frequency
solution of the Maxwell equations. Equation (3.9} should
be compared with Eqgs. (2.28) and (2.29). The eigenstates
of the quantum Maxwell Hamiltonian are therefore given
by single frequency solutions of the Maxwell equations.
For each of these solutions f,(x,t) with frequency o,
namely if f,(x,t)=exp{iwt}] f,(x), we have (A)!%f,
=—of, so that, from (3.7) we have

HY [u,v]=foV [u,v]=6Y [u,v];

=i(A)2f, (x,1) (3.9)

(3.10)

W [u,v]is then an eigenstate of the Hamiltonian with an

eigenvalue
6=tw . (3.1D)

Thus we have recovered the Einstein-Planck relation, the
key result of the quantization of the free Maxwell field.
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The calculation for n-particle states is essentially analo-
gous. For example, a two-particle state is determined by
a function f;(x,y), and is given by

¥, [u,v]=[d [d% e®d,u(x)8,0(x)

X Edefaeu (y)afv(y)fad(x:y) .
(3.12)

The evolution of these states is determined by the fact
that f,;...(x,y,...) must be the sum of products of
positive-frequency solutions of the Maxwell equations.

—-- B. Relation with the loop representation

There is a remarkable similarity between the expres-
sion of the Fock states of the Maxwell field in the Euler
representation (i.e., ¥[u,v]), and in the loop representa-
tion (i.e., ¥[a]) (see Refs. [6,7]; the loop representation of
the Maxwell field is discussed in Ref. [8]). We sketch
here the relation between the two. (We avoid the issue of
whether or not the curves, given by u and v constant, are
really “loops.”) One-photon states in the loop represen-
tation are given by

da (s)

1= [ f:= [ fate ds ,

where f,(x) is an arbitrary one-form. Now, let us con-
sider a congruence €, and let u{x), v(x) be the corre-
sponding Euler potentials and a(u,v) be the correspond-
ing family of loops. Consider the value of the one-
particle state ¥ f[u,v] on the fields u(x),v(x). From Eq.
(3.2), we have [see Eq. (2.4)]

W u,]= [ dix e, 8,ud,0= [du [dv [

aly, v)
(3.14)

Therefore the one-photon states in the two representa-
tions are related by the remarkable expression

\Pf[u,v]=fd_l£fd_ll‘l’f[a(y_,2)] .

The value of the quantum state W, on the [u,v] fields
that define the congruence @ is the integral on all the
loops « in €@ of the values of the quantum state on a. In
terms of the Dirac notation ¥ [u, v]—(uv]\I’f) and
Y [a]=(a|¥,), we can write

(wl= [du [dv{alu,p)

where au,v) are the loops in the congruence determined
by u(x)and v(x).

(3.15)

3.16)

C. Momentum operator

In order to make the relationship with the standard
Fock space basis more explicit, let us find the momentum
operator, and study its eigenvalues, namely the states cor-
responding to photons of given k. (We first point out that
for an arbitrary finite region R on which we are working
there will be no momentum eigenstates; for the moment,
we consider that our region R is a single cell in periodici-



ty lattice.) A straightforward calculation gives the classi-
cal momentum observable

P,=¢, EB°=1e,, EYB~°=3,u p,+d,0p, . (3.17)

The corresponding quantum operator acts on the one-
particle states as

Pa\yf[u’v]=(aau pu+aav pu)fsdbcfdabuacv

=ifi [ €%, f,9,ud.v . (3.18)

The last step is obtained by integration by parts and using
the periodicity of f;. We thus have that the momentum
eigenstates with momentum eigenvalue p, are determined
by

70, f4(x)=p,f4(x) (3.19)

or

falx)=¢e exp{ —(i /#)p,x°} (3.20)

where ¢, is an arbitrary constant vector. If g, is parallel
to p, then f,(x) is an exact one-form, and ¥ [u,v ] van-
ishes; therefore there are only two independent momen-
tum states. These correspond to the two polarizations of
the photon.

(Wolw, ) =( [ef,8,ud.v]| [ g,8,ud.v)
=( [ f.ETW| [ g E*°¥,)
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D. Scalar producf

Finally, we address the issue of the scalar product.
Since we have the standard Fock structure of the quan-
tum Mazxwell theory, we can obtain the scalar product on
the full state space by just defining a scalar product on
the one-particular sector. We introduce the scalar prod-
uct by exploiting the reality conditions, according to the
ideas discussed, e.g., in Refs. [9,7]: The scalar product
can be determined by requiring that the operators corre-
sponding to real observables be self-adjoint in the quan-
tum theory. In order to satisfy this requirement, we must
ask that the reality conditions be implemented in the
quantum theory as operator equations, where complex
conjugatlon is replaced by the adjoint operation. Thus,
we require that the reality conditions (2.25) on E ™%(x)
and 4 7%x) be implemented in the quantum theory as
quantum reality conditions [9,7]. Namely, the operators
must satisfy

[ET4x)]'=iA24 ~%x) , (3.21)
where the dagger indicates the adjoint operation. The
adjoint operation depends on the scalar product, and
therefore Eq. (3.21) can be seen as a condition on the
choice of the scalar product. We now show that (3.21)
determines the one-particle scalar product (and therefore
the full Fock space scalar product). First we recall that
in the representation that we are constructing the vacu-
um ¥, is given by ¥y[u,v]=1 and is annihilated by the
A ~%x) operator. Thus, from Eq. (3.21) we have that

= [d® f,(x) [ d% g,(y)(E *(x)¥|E T(y)¥,)

= [d% f,(x) [d® g,y

W Woli(AY 24 74 x)E y)¥,y)

= [[d® f,(x) [ d% g,(»)i(A) [ 4 7%x), Ep) { W | ¥o)

= [d*x fa(x)fd3y g, ()7 A)/28%,8(x,p)
=7 [ d*x f,(M) g,

(3.22)

By computing the scalar product of two one-photon states, one can recognize this scalar product as the conventional
one [10]. The extension to the n-photon states is straightforward.

Finally, we add a speculative remark on the possibility of writing the scalar product directly on the functional space
of the Euler representation states, namely the W[u,v ] states. Let us tentatively write the scalar product by means of a
functional integral:

(v, @)= [dulu,v,u*,v*19*[u,0]®[u,0] . (3.23)

The asterisk indicates the complex conjugate. The problem is to determine the measure dufu,v,u*,0*]. We can write
it in the conventional form

dulu,v,u*,v*1=[dulldv]ld u*][dv* Ju[u,v,u*,v*]

where [du] [dv] [d u*][dv*] is the “infinite- dimensional Lebesgue measure” (namely the factor that is not affected by
integration by part); the measure factor pu[u,v,u*,v*] will be determined. Using again the quantum reahty conditions

(3.22) for determining the scalar product, and hence p, we can write

(3.24)
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fdu[u,v,u*,v*][E"'“(x)]‘I’[u,v]*fb[u,v]:fd,u[u,vu*,v*]‘ll*[u,v][i(A)”ZA “Hx)]®[u,v] . (3.25)
Since 4 ~%(x) is a first order derivative operator, we assume we can integrate it by parts. We obtain
f[du][dv’][d u*][dv*]u[u,v,u*,v*][a"bcabu(x)acv(x)\I’[u,v]]*fb[u,v] _
=’f[du][dv][d u*dv* [ —i(A2 4 "%x)ulu,v,u*v* | 19*[u,v]®[u,v], (3.26)
or
e, u*d v *ulu,v,u*,v*1=—i(A)2 4 " x)ufu,v,u*,v*]. (3.27)
We have now to solve this equation for u. Let us tentatively write u in the form
p[u,v,u*,v"‘]=exp{ffa(u*,v*)s"bcabuacvd3x} ; (3.28)
then, by recalling Eq. (3.6), we have that
A7 (xXplu,v,u*v*|=4f (u*,v* )exp lffd(u*,v*)sdbcabuacvd"’x} , (3.29)
so that Eq. (3.18) is satisfied if
£,20,u*d,v*=—i#AV2f (u*,v*), (3.30)
namely, £, =(1/#)(A)"1?[e,%8,u*3,v*]. We conclude that
ulu,v,u*,v*]=exp [—%f[eabcabu*acv*]A“/Z[a”d‘*Bduaev]d3x]
=exp {—%fa[au*ab]v*A_”z[a“uabv ]d3x] . (3.31)

Equations (3.23) and (3.31) give us a formal definition of the scalar product that implements the reality conditions. We
expect that from this form of the scalar product one can recover the scalar product previously determined. To check
this, let us consider the scalar product of two one-particle states:

(\I/f,\llg)=f[du][dv][du*][a'v*]exp(—(l/ﬁ)fa[auab]vA_l/z[a"u *3h* W* [, v ¥, [u,0] .

This integral can probably be performed by means of for-
mal manipulations. We sketch here a possible means of
derivation, leaving a more accurate analysis for future in-
vestigations. A formal change of integration variable
from (u,») to the divergenceless vector field
E°=¢%9 43,v (and similarly for the conjugate variables)
transforms the functional integral into a Gaussian in-
tegral, where A7!/? is the covariance of the quadratic
form that defines the Gaussian measure. The integral
could then be performed, hopefully yielding Eq. (3.22).

IV. CONCLUSION

We have reformulated the classical and quantum
Maxwell theory in terms of Euler potentials u(x) and
v(x), and their conjugate momenta p,(x) and p,(x).
These two scalar fields are directly related to the lines of
force of the electric field. This formulation provides a
fully gauge-invariant canonical formalism, which is
defined entirely in configuration space and without the
need of gauge fixing. No background metric is used in
extracting the physical degrees of freedom of the
Maxwell field. The classical dynamics becomes nonlinear
and nonlocal; global issues and boundary conditions are

(3.32)

not easy to control. However, from this structure, we
have constructed the quantum theory in terms of the
Euler potentials of the positive-frequency component of
the electric field (Euler representation). Several aspects of
this formulation are quite cumbersome; for instance, the
classical equations of motion are nontrivial. However,
there are also some appealing aspects of the construction
described here, which may become useful and interesting
in view of the quantization difficulties in non-Abelian
theories and in general relativity.

In Yang-Mills theory, the difficulty of extracting the
gauge-invariant degrees of freedom nonperturbatively is
well known. Since gauge-invariant variables analogous to
u(x) and v (x) are available in Yang-Mills theory [3], we
hope that some of the techniques developed here could be
extended to the nonperturbative treatment of these
theories too. In general relativity, the key aspect of the
nonperturbative theory is the absence of a background
metric, which, in particular, prevents us from using the
powerful technique of the Fourier transform, as is gen-
erally used in extracting the gauge-independent degrees
of freedom of Maxwell field. Thus, it is important io in-
quire to what extent one could single out the physical de-
grees of freedom and treat the quantum Maxwell field en-
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tirely in coordinate space. We have shown that this is
indeed possible in a straightforward way in terms of the
u(x) and v (x) fields. An even stronger result is given by
the fact that u(x) and v(x) capture the two gauge-
invariant degrees of freedom of the Maxwell field in an
entirely metric-independent way. Therefore we can treat
the kinematical aspects of the theory without recourse to
the metric structure of spacetime. This is very valuable
in view of the fact that quantum general relativity
has to be entirely constructed in the absence of back-
ground metric structure. We recall that gauge- and
diffeomorphism-invariant variables analogous to u (x) and

v(x) are available in general relativity theory [3]. Wheth-
er these variables could play a role in the nonperturbative
quantization of the theory is an entirely open issue. A
suggestive result in this direction is the close relation be-
tween the representation developed here and the loop
representation [7].
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