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Motivated by the methodology of numerical studies of gravitational radiation, we investigate the
discrepancies that arise if wave forms are observed at a finite distance as opposed to infinity. Our
study is based upon scalar radiation from a spherically symmetric Einstein-Klein-Gordon system.
This allows us to isolate the effects of backscattering and redshifting while avoiding more complicated
effects that arise in nonspherical systems with gravitational radiation. We show that discrepancies
close to 100% can arise at large observation distances R >> M for sufficiently periodic systems. They
are most pronounced for radiation losses between one-quarter and one-half of the initial mass. This
falls within the expected regime of the spiral infall of a relativistic binary system. ‘The predominant
contribution to this discrepancy stems from a time-dependent redshift arising from radiative mass

loss.
PACS number(s): 04.30.+x, 95.30.8f

L. INTRODUCTION

This paper addresses the following question: How well
can you identify gravitational radiation fields without go-
ing to infinity? A practical aspect of this question has
arisen in the context of numerical relativity, where the
standard approach uses a spatial grid terminated at a
finite radius R [1-3]. For a system of mass M < R,
it has tacitly been assumed that the wave form at the
grid boundary approximates the wave form at infinity,
after compensating for the 1/r falloff, with an error of
the order of magnitude of M/R. An important result of
this paper is that this is not true, even in the simplest of
systems, for radiation consisting of a long wave train.

Accurate wave forms are the crucial theoretical input
for the design of optimal filters for gravitational-wave an-
tennas. The most potent sources of radiation are highly
asymmetric systems, such as binary black holes. Suffi-
cient computational power to study such systems is on
the verge of becoming available with the new massively
parallel machines. For this purpose, it would be expedi-
tious to truncate the grid domain at a small radius, e.g.,
R = 10M. This would only be useful, for the purpose of
antenna design, if the distant wave form could be recon-
structed from the fields at the grid boundary. Such wave
form extraction at R ~ 12.5M has been accomplished by
matching an exterior linearized solution to the numerical
interior in the axially symmetric case of radiation from
small pulsations of a relativistic star [3]. It is difficult to
assess to what extent this method can give accurate wave
forms and polarization properties in the case of highly
nonlinear asymmetric sources. In this paper we use the
simple model of a spherically symmetric, self-gravitating,
massless scalar field to isolate how strong radiation fields
affect the wave form apparent at a finite radius.

For clarification of the issues involved here, we review
some standard results. In theories based upon the wave
equation in four-dimensional spacetime, pure radiation
fields exist only in special circumstances. Plane-wave so-
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lutions of the linear wave equation are the most notable
case, where the amplitude is described by an arbitrary
function of the phase fronts, ie., for a scalar field by
®(t — 2) for a plane wave moving in the z direction. Such
plane-wave solutions exist for all the rest mass zero fields
of arbitrary spin and even in some nonlinear theories such
as general relativity.

These plane-wave solutions are physically unrealistic
in the sense that they have infinite total energy and that
their sources must have infinite spatial extent. However,
they serve as reliable models for the far field behavior of
radiation from a compact source. In electromagnetic the-
ory, the O(1/r) part of the electric and magnetic fields
possess the algebraic properties of a plane wave. For
a localized distribution of charges and currents, this be-
havior is embodied in the peeling property [4] of Maxwell
fields, which describes the asymptotic properties of the
eigenvectors {# of the Maxwell field tensor Fy,:

Fulv = A, (1.1)
In the nondegenerate case (1.1) admits two indepen-
dent eigenvectors. They satisfy the null vector condition
[#l, = 0. The peeling theorem implies that these eigen-
vectors become degenerate as r — co and approach a
unique outgoing null vector k# which satisfies the asymp-
totic eigenvalue equation

Fu k” = O(r~2). (1.2)

Here the limit » — oo holds ¢ — r constant and defines
future null infinity J* and the null vector k” defines the
asymptotic propagation direction. In that limit, rF, k"
defines the pure radiation field. In gravitational theory,
the analogous peeling property describes how the four in-
dependent null eigenvectors of the Weyl curvature tensor
become asymptotically fourfold degenerate as the gravi-
tational field of an isolated source attains a local plane-
wave structure at large distance along the outgoing light
cone [4].
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These asymptotic properties unambiguously identify
the pure radiation field at null infinity, i.e., the ideal limit
of observations made by a sequence of antennas at farther
and farther distances. In practice, with antennas at finite
distances, something else is measured. In scalar terminol-
ogy, we represent this as ®(¢, R, 0, ¢). Assume that there
are enough antennas to supply complete knowledge of the
field in some (2,6, ¢) local patch of the world tube » = R.
To account for a radial spread in antenna sites, we might
consider this patch thickened between closeby radii R;
and R,. However, for technical simplicity, we adopt the
physically equivalent view that all radial gradients of ®
are known in a patch of radius R. Let the totality of this
information about ® and its radial gradient in this patch
be denoted by ®r(t,6, ¢).

In this scalar terminology, one aspect of our primary
question is the following: Can we pick out the radiation
part of the local information contained in ®g(t,6,¢)?
Everyday experience listening to a car radio would sug-
gest “yes.” Yet on mathematical grounds this is impos-
sible. There is no unique local prescription for splitting
this information into an inductive part and a purely ra-
diative part. In the radio example, the signal is “dis-
torted” when the car is too close to the transmitter. Here
the “distortion” is not the fault of the radio, which we
hypothesize to possess perfect fidelity. The distortion is
apparent because the detected signal is not the signal
that was intended to be sent. The intended signal is the
signal which would be received by an ideal antenna at
infinity. Radio communication does of course work with
negligible distortion under the intended circumstances,
i.e., many wavelengths from the source where inductive
effects are comparatively small. This defines the physi-
cal context for which radio communication is designed.
However, this context is not invariant under boost trans-
formations. At any given distance from the transmitter,
significant apparent distortion (in addition to Doppler
shifting) would be apparent to a sufficiently relativistic
car.

This last feature is highlighted by the Coulomb field of
a stationary charge. In the limit as the observer velocity
approaches the velocity of light, this field appears to be
an impulsive plane wave. The same effect arises in the
case of a stationary observer and moving source. Fur-
thermore, superimposed versions of this boost distortion
cannot be transformed away. For instance, in the case of
two sufficiently relativistic charged particles moving in
opposite directions, with negligible acceleration and ra-
diation, a strong impulsive signal will be detected by an
observer at a finite distance in the center-of-mass frame.

The above considerations tell us that ®x(¢, 8, $) ade-
quately describes the intended signal under some set of
normal circumstances. But to decide what is normal we
need information about the position and motion of the
sources relative to the observer. In laboratory or terres-
trial electrodynarnics, there is more than ample experi-
ence and information to decide this issue. In the case of
relativistic astrophysical sources, there is often a great
deal of ignorance about their structure but the observa-
tional distances are so large as to guarantee the correct
radiation zone interpretation.
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In the context of the numerical treatment of a general-
relativistic system, there are both gauge ambiguities and
curvature effects that complicate this issue. It is therefore
useful to first consider a scalar wave in flat spacetime. In
that case, let ®r(t,0,¢) be given globally on the world
tube r = R except limited from below by some finite time
to. Is it then paossible to determine the radiation field for
retarded times t — r > g — R? From a consideration of
the domain of dependence determined by the given data,
the answer is “no.” This domain of dependence is in fact
empty, the reason being that any spacetime point in the
the region r > R can be reached by a light ray that does
not register on the world tube. In the language of the
car analogy, there can be competing signals from other
distant radio sources exterior to the world tube.

This competition from external sources is never com-
pletely absent. Mathematically, it corresponds to incom-
ing radiation fields from the infinite past. Information
about such fields can be included in the problem by speci-
fying additional data on the spacelike hypersurface which
extends from the world tube to infinity at time ¢3. This
removes the obvious problem with the domain of depen-
dence. Now every light ray which reaches a point with
r > R and ¢ > #g must pass through one of the data hy-
persurfaces. In many practical circumstances this com-
petitive signal due to incoming radiation is negligible. In
that case, for a charged system, the additional data at
t = tp might be suitably approximated by a Coulomb or
static multipole field.

Suppose again that we knew ®g(t, 8, ¢) on the world
tube and the appropriate data at ¢ = ;. The exterior
field, including the radiation field is now uniquely de-
termined by these data [5]. However, in general, this
exterior field cannot be extended to a solution in a four-
dimensional neighborhood of the world tube. This consti-
tutes an example of an improperly posed boundary-value
problem for the wave equation [6]. The standard version
of the boundary-value problem for the wave equation is
to specify the Cauchy data ® and J;® at some initial
time. These Cauchy data then determine a unique so-
lution within its domain of dependence. Furthermore,
this solution depends continuously on the data. It is in
this sense that the Cauchy problem is well posed. There
are well-posed versions of the initial-value problem based
upon data on characteristic hypersurfaces, such as a light
cone, or on combinations of characteristic and spacelike
hypersurfaces. But quite generally, a boundary-value
problem for the wave equation is not well posed when
two points on the boundary can be connected by a time-
like line. The data hypersurface in the above example
fails this criterion in two ways. First, there are timelike
lines which connect points at ¢ = #3, r > R to points
on the world tube. Second, there are timelike lines con-
necting pairs of points on the world tube itself. Given
compatible data on the world tube and on an extension
of the spacelike hypersurface ¢ = tp, a unique solution
does exist for some range of r in both the interior and
the exterior of the world tube but not in a neighborhood
of the world tube. In general, the world tube will act as
a three-dimensional sheet source.

A boundary-value problem being improperly posed
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does not necessarily mean that it is incorrect. But it gives
a warning that small variations in the data might lead to
large variations in the solution. Furthermore, unless the
data are subject to certain constraints there might not
exist solutions in a neighborhood of the boundary surface
[6]. In the scalar example, these constraints imply that
both ® and 9,® cannot be independently specified on the
world tube r = R. Compare this with the situation for
the Cauchy problem. Furthermore, even ® by itself can-
not be specified freely on the world tube but must satisfy
a unique continuation condition. This condition implies
that knowledge of ® on any patch of the world tube de-
termines @ on a larger causally related patch. It thus
poses a type of functional constraint on the data. One
solution of this constraint problem is that ® be an an-
alytic function. These bizarre mathematical conditions
are unfamiliar to physicists, who for the most part deal
with well-posed versions of the initial-value problem. It
is not known to what extent they affect the extrapolation
of radiation fields from numerically obtained data on a
finite world tube.

In general relativity, there are severe complications, in
addition to those mentioned above for flat space, which
can potentially effect the accuracy of wave forms based
upon a finite world tube. Gauge ambiguities make it un-
clear which components of the metric or curvature tensor
to use. Some method of selecting the cornponents trans-
verse to the propagation direction is necessary but there
is no unique means of defining this propagation direction
locally. One choice might be to use one of the four null
eigenvectors of the Weyl tensor. The extent to which
these four eigenvectors differ could be used to measure
the inherent ambiguity in the local propagation direc-
tion. However, such a scheme has not been implemented
in any of the present treatments of numerical relativ-
ity. The choice of time coordinate can introduce further
gauge effects. There are additional physical complica-
tions. Time-dependent versions of redshifting occur. The
nonlinear gravitational self-source is noncompact and in-
troduces backscattering which blurs the distinction be-
tween incoming and outgoing fields. Furthermore, in a
case such as a binary black-hole system, there is no prac-
tical scheme for eliminating incoming waves from the ini-
tial data.

In spite of all these complications, techniques used by
numerical relativists with spacelike codes seem to lead to
consistent and sensible results in the range of problems
where they have been applied (neutron-star oscillations,
supernovae). In this context, where the nonlinearities
are not too severe, confidence has developed in perhaps
mathematically naive but physically practical and fruit-
ful schemes.

On the other hand, it was precisely the challenge of
these mathematical difficulties in formulating an unam-
biguous theory of gravitational radiation that has given
rise to a successful new approach. The use of null co-
ordinates [7] and the compactification of the points at
null infinity [8] has led to a mathematically rigorous de-
scription of gravitational radiation in terms of geometri-
cally defined quantities such as the Bondi mass and news
function. These geometrical techniques have been incor-
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porated into a numerical evolution scheme based upon
the characteristic initial-value problem on a grid with
compactified future null infinity J+. This allows the cal-
culation of radiation fields according to their geometric
definition at J* [9].

In this paper, we use this approach to compare wave
forms at J* with the approximate wave forms obtained
by a simple prescription at the boundary of a finite spa-
tial grid. We deal here with the radiation of a self-
gravitating, spherically symmetric, massless scalar field,
ag described by the coupled Einstein-Klein-Gordon equa-
tions. The assumption of spherical symmetry eliminates
ambiguities in the local radial direction and the context of
a scalar field eliminates gauge ambiguities. Furthermore,
initial incoming waves are eliminated in the test region by
choosing initial data with compact support. In the non-
spherical case, this remedy is not possible for the initial
data describing gravitational degrees of freedom because
of the constraint equations. Elimination of these effects
allows isolation of the nonlinear effects of backscattering
and time-dependent redshifting. Furthermore, spherical
symmetry allows the luxury of a very fine grid so that
these effects can be studied here without contamination
by numerical noise.

Ii. DESCRIPTION OF THE SYSTEM

We give a brief description of the characteristic initial-
value problem for a spherically symmetric, zero rest mass
scalar field ®. For more thorough treatments, see Refs.
[10] and [11]. Einstein’s equation

Guw = 81(V,®V, 8 — 14,,V, 0V*D) (2.1)

is decomposed with respect to a family of outgoing null
cones emanating from the central geodesic. Let u be the
proper time along this geodesic, with u =const on the
outgoing null cones. Let r be a luminosity distance on
these null cones, so that 4xr? is the surface area of the
spheres of symmetry. Then, in this Bondi-type coordi-
nate system, the line element becomes

ds® = e*duy (%du +2 dr) — r2(d6? + sin? § dg?),

(2.2)

where 8 and ¢ are the usual polar coordinates.
In the neighborhood of the origin, we adopt, as bound-
ary conditions on the coordinates

V(u,r) =r+ O(r®) and f(u,r) = O(r?), (2.3)

so that the metric reduces to a Minkowski (null polar)
form along the central world line. The resulting metric
does not take an asymptotic Minkowski form in the limit
r — oo of null infinity. We set H(u) = B(u,00). Then
Bondi time up at J7 is related to proper time u along
the central geodesic by

duB oH

e = - ' (2.4)

The coordinates (ug,r, 6, ¢) constitute a standard Bondi



frame in the neighborhood of J* in which the metric does
take an asymptotic Minkowski form. Bondi time up is
appropriate for discussing asymptotic quantities such as
the mass, the news function, and radiation wave forms.
However, central time u is more convenient in dealing
with horizons. A horizon forms at a finite central time
u = uy but at an infinite Bondi time, with the central
redshift determined by Eq. (2.4).

In these coordinates, the field equations reduce to the
two radial equations

Br= 27”'(4’,1')2) (2.5)

(2.6)

and the scalar wave equation 0® = 0, which takes the
form

Ar®) ur = r (FV @) 1. 2.7)

The boundary conditions (2.3) imply that 8 > 0 and
V < 2Py, with 8 a monotonically increasing function of
r.

The initial null data for evolution consist of ®(uo,r)
at an initial retarded time u = uy. We use the gauge
freedom ® — ® + const to set ®(up,00) = 0. Further-
more, we only consider nonsingular, initial data with the
asymptotic behavior

@:%-{-0(-}2-).

Ve = e??

(2.8)

Here Q(u) is the scalar monopole moment. The hypersur-
face equations (2.5) and (2.6) uniquely determine B(uo, 1)
and V(ug, r) from these data. Formal evolution then pro-
ceeds by determining 8,®(up, r) from the radial integral
of the wave equation (2.7) which gives, after integration
by parts,
-
2Py =V, + / (=
0

® ,dr. (2.9)

Our algorithm for numerical evolution is based upon an
identity obtained by integrating this equation along the
radially incoming null geodesics [11]. It is carried out
on a compactified grid in terms of the radial coordinate
z=r/(1+r), where z =1 at J+.

The Bondi mass is given by the asymptotic expression

_1 o afV
M= e Mr (T) (2.10)
r=o0
and the scalar news function by
N=eQ,=Q.u,. (2.11)

Here the factors of e ~2H arise from the relation of central

time to Bondi time. Alternatively, by using the field
equations, they may be expressed as the radial integrals
M=2r / e2P-H)r2(p )2dr (2.12)

0

and
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N = —e-”ff —<1>,,dr (2.13)
The Bondi mass loss formula is

My, = —47N2 (2.14)

III. WAVE FORMS

In terms of § = r®, the radiation amplitude at J*¥ is
Q(uB) = g(up,00), where the Bondi time up plays the
role of the proper time used by an observer at infinity.
As the counterpart of @Q(up) based upon the world tube
r = R, we choose ¢(7; R) = g(up(r, R), R), where 7 =

'r(uB,R) is the proper time on the world tube. These
times are related by

37‘ _ _B-2H 14

Bup — ° \/ 7’ (3.1)

as follows from (2.2) and (2.4). This gives the relative
redshift between observers on the world tube and at J+.
Since V ~ e2Hy and B ~ H, there is no redshift between
T and up in the limit R — co. An asymptotic expansion
gives

or _ [TBMm) , o1
dup ~ 1 R +O(R3)'

Asymptotically, the redshift of the proper time on the
world tube is a time-dependent version of the familiar
Schwarzschild result. In order to synchronize the two
time coordinates we set 79 = ugg = 0 on the initial null
cone.

Our purpose is to test how accurately ¢(7; R) serves as
a substitute for Q(up). This test is in the spirit of how
wave forms are calculated in the spacelike codes. It has
been constructed so as to be automatically satisfied in
the linear weak-field case throughout any region where
the wave is purely outgoing. In that case g{up,r) is
independent of r and 7 = up so that ¢(m; R) = Q(un).

In order to provide some orientation, first consider the
weak-field initial data

(4, 7) = 01721 —7r)? forr <1,
g\, T) =130 forr > 1,

(3.2)

(3.3)

which describe a pulse-shaped wave profile of compact
support. Outside r = 1 the wave is purely outgoing and
the ¢(7; R) should be identical for all R. This is apparent
in Fig. 1, which overlays graphs of ¢(r; R), for several
radii, and of the wave form Q(up) = ¢(7; 00) in terms of
a common time parameter 7. The graphs for R > 1 are
indistinguishable whereas those for the internal region
display interference between the incoming and outgoing
parts of the wave. This emphasizes how misleading the
wave form at a finite radius can be when incoming waves
are present. In all of the ensuing examples, we deal only
with regions where there is no initial incoming wave. It
should also be noted that none of the profiles have a tail;
i.e., they are of finite duration. This results from the
absence of backscattering associated with the validity of
Huygen’s principle in the weak-field regime, combined
with the compact support of the initial pulse.



2780 R. GOMEZ AND J. WINICOUR 45

0.020 T T — T

0,010 -

=« 0000

-0.010

-0.020 — ) 1 N I
0.0 1.0 2.0 3.0 4.0

FIG.1. Comparison of profiles at representative values of
R and at J* in the linear regime. The profiles in the exterior
region are indistinguishable.

In the strong-field examples to be discussed next, there
is no clean way to decompose the wave into incoming and
outgoing parts. But to make the test clear-cut, we will
only consider initial data with support » < 1 and test
radii R > 1 at which ¢(r; R) measures only the outgoing
radiation and the backscattering. In order to quantify the
discrepancy between the wave form ¢ and the radiative
wave form ) we use the I3 norm

e = [ WGR (3.4)
and the figure of merit
lle=ell
&= (35)

As above, 7 represents the proper time measured along
the world tube of radius R (or up in the case of @?). Since
the I3 norm is independent of basis, the same figure of
merit applies to the error in the Fourier transform of the
signal. Gravitational-wave antennas actually detect tidal
displacements, which arise from the time derivatives of

the signal. Similarly, we can compare such signals in
terms of
&= llgr — Q.| (3.6)

Q-

in which case ||Q,-]|? = 47rAM, in terms of the total
mass radiated.

The strategy here is to choose initial data characterized
by two parameters, representing amplitude and wave-
length, and to investigate the resulting wave forms over
a comprehensive range. We have already seen that £ is
small for small amplitudes, in accord with the weak-field
limit. It is also small at high amplitudes for which a
black hole forms very rapidly. This stems from a rigor-
ous version of the no-hair theorem {12}, which establishes

"that the scalar field must vanish in the limit » — oo,

r > 2M;. As a result, in the region of greatest obser-
vational interest r > 10M, the field is zero initially by
construction and, in the high amplitude regime, it never
builds up any appreciable amplitude before the interior
region collapses to a black hole. Systems in this regime
would not be readily detectable because of their extreme
redshift. We will focus our attention on the intermedi-
ate amplitude region of greatest physical relevance. We
choose initial data of the form

_JAsin[2aN(r —1)] forr <1,
g(uo,r)_{o forr>1,

where A controls the amplitude and N controls the wave-
length.

We look first at the long-wavelength case, taking V =
%. The table below summarizes the pertinent results for
observers at R = 1 and at R = 10M; in the amplitude
range A = 0.06 (noncollapsing) to A = 0.12:

(3.7)

A M; M; ER=1)  E(R=10M)
0.065 0.112 0 0.158 0.142
0.08 0.158 10.020 0.251 0.163
0.10 0.219  0.115 0.319 0.144
0.12 0.275 0.22 0.355 0.120

For this range of parameters, the maximum discrepancy
in the wave form at R = 1 occurs for A = 0.12 but at
R = 10M; it occurs for A = 0.1. At larger observational
distances, the falloff of £ is quite accurately described by
a 1/R dependence, as can be already seen in comparing
the values in the table for R =1 and R = 10M;.

For A = 0.08, Fig. 2 displays the profiles seen by an
observer at R = 1 and another at J*, overlayed on the
same proper time scale 7, for (A = 0.08). The profiles at
R = 1 and J* look very similar; however, we can note
some differences, which can be attributed to a redshift of
the signal at J*+ with respect to that seen at R = 1. As
seen from the graph, this redshift causes the signal at J+
to become out of phase with respect to the signal seen by
the nearby observer. Note that considerable backscatter
occurs in the region interior to R < 1, where the incoming
pulse is transformed into an outgoing signal with double
pulse shape. However, there is only small backscattering
in the region exterior to R > 1. In the worst case, the
peak amplitudes at B = 1 and at J* differ only by 10%.

The discrepancy in the time derivative of the profiles
seen by the two observers, as measured by &', is higher
than the error in the profiles themselves. For A = 0.08,
&' = 0.39 at R = 10M; as opposed to £ = 0.163. Again,
&' is quite accurately described by a 1/R falloff at larger
distances.

Figure 2 suggests that larger discrepancies might result
if the system were to emit a long wave train. When the
radiation is emitted in a single pulse, any phase difference
is initially zero, by construction, and goes to zero as the
pulse decays. In the case of a wave train, the phase dif-
ference could accumulate over many cycles. Such a wave
train would arise, for example, in the case of the spiral
infall of a binary system.

We explore this possibility by using higher values of N
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FIG. 2. Comparison of profiles at R = 1 (dashed line) and
J* (solid line) for compact initial data.

in the initial data given in Eq. (3.7). As might be ex-
pected, the amplitude parameter must be set lower than
in the long-wavelength case if appreciable scalar radiation
is to escape before formation of a black hole. This in turn
has the effect of lowering the initial mass of the system,
50 that an observer at a fixed distance has a larger value
of R/M;.

First consider the choice N = 10 and A = 0.002, for
which M; = 0.045 and M; = 0.026. There is a large
discrepancy, £ = 0.66, between the profiles observed at
R = 25M; and at J*. At this radius, £ = 0.69 is now
very close to £. These profiles are compared in Fig. 3.
As before, the amplitudes are in close agreement, which
indicates very little backscatter in the intervening region.

0.0025 : ; . 7 - T

0.0015 - 4

0.0005 4

o
~0.0005 4
-0.0015 H 1
-0.0025 . , 2 ”
0.0 0.5 Lo L6 2.0
T

FIG. 3. Comparison of profiles at R = 25M (dashed line)

and J* (solid lire) for compact initial data.
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However, there is considerable phase shifting which is the
prime source of the discrepancy between the wave forms.

Next, going to shorter wavelengths, we choose N = 20
and A = 9.5 x 10~%, for which M; = 0.041 and M; =
0.029, the discrepancy in the wave form at R = 25M;
is now £ = 0.91. At further distances, we again find

" that £ falls off as 1/R so that, for this case, £ ~ 0.23 at

R= 100M,’.
Continuing in this manner, we find large discrepancies
at R = 100M; by increasing N to 100. In that case,

-choosing A = 1.3 x 10%, we find M; = 0.020, M; =

0.016, and £ = 0.80.

High-accuracy computer simulations for N >> 100
would require too much computer time to be practi-
cal. However the trend we have already seen for large N
can be understood and extrapolated in terms of a rough
model in which the wave forms observed at J* and at
R are approximated by monochromatic waves with equal
amplitudes but slightly different frequencies w and w+éw,
respectively, up to some time T when most of the radia-
tion has been emitted, prior to the formation of a horizon.
Referring to Eq. (3.2),

bwjw s~ M(7)/R, (3.8)

in the region R >> M. Setting @ = A sinwrT, this
implies

¢ — Q~ (AMwr/R)coswT, (3.9)
for time scales wr < R/M. By averaging the high-
frequency terms in the integrals involved in (3.5), this
gives a wave form discrepancy £ ~ MwT/+/3R, over
the time interval from 0 to 7. Here M represents some
average mass during the collapse, which we take to be
M = (M; + M;)/2. For a quasiperiodic system which
emits n cycles before forming a black hole, wT =~ 2xn.
Consequently, £ ~ 2xnM/+/3R. For the previously dis-
cussed cases with N = 10 and N = 20 (for which n =6
and n = 8, respectively), this gives better than 10%
agreement with the value of £ from the numerical evo-
lution. For the previous case with N = 100 (for which
n = 24), there is 2.5% agreement between the formula
and the numerical value obtained for £. This provides
strong evidence that this formula gives a reliable esti-
mate of £ in the large N regime.

Thus large wave-form discrepancies, £ = 1, can arise
at any radius for a system of sufficiently high frequency,
ie., n &~ R/M. For quasiperiodic signals, the discrep-
ancy in the tidal forces, as measured in terms of the time
derivative of the field by £, is approximately equal to £.

| IV. DISCUSSION

We have shown that a large discrepancy can arise be-
tween the apparent wave form at a finite distance and
the true wave form at null infinity in the process of black-
hole formation. For a long wave train, a good approx-
imation to this discrepancy is £ =~ 3.6nM/R, where n
is the number of cycles in the radiated wave. This can
be of the order of 100% at arbitrarily large observation
distances R > M for sufficiently high frequencies. These
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observation distances satisfy all the criterion for the dis-
tant wave zone. The discrepancy is most pronounced
for radiation losses between one-quarter and one-half of
the initial mass. For the spiral infall of a binary black-
hole system, with n & 10, the required observation dis-
tance required for 1% accuracy would be R = 1000A£.
The predominant contribution to this diserepancy stems
from a time-dependent version of the redshift effect. The
contribution from backscattering is less significant in the
long-wave-train case.

For short pulses of radiation there tends to be a larger
discrepancy &’ in the time derivative of the wave form,
which is related to observable tidal forces. (In the case
of gravitational radiation, tidal forces actually stem from
the second time derivative of the metric wave form.) Our
tests were set up so that there was no initial incoming ra-
diation in the observation region. Otherwise, interference
from the incoming signal leads to further distortion of the
outgoing wave form at a finite distance. However, exten-
sive numerical experimentation shows that initial data
with a 1/r falloff do not alter the results significantly.
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Such a falloff describes data with purely outgoing radia-
tion, up to curvature effects.

Although our study was based upon spherically sym-
metric scalar waves, the same underlying physical ef-
fects apply to gravitational wave forms. However, in the
case of gravitational radiation, there are more nonlin-
ear sources of backscattering and there are ambiguities
associated with gauge freedom and with the choice of
a local propagation direction. Furthermore, except for
initial data which are approximately Newtonian there is
no feasible way to eliminate incoming radiation fields.
These factors indicate that null infinity should be taken
seriously in numerical studies of radiation.
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