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The details of an algorithm for the global evolution of asymptotically flat, axisym-
metric space-times, based upon a characteristic initial value formulation using null
cones as evolution hypersurfaces is presented. A new static solution of the vacuum
field equations which provides an important test bed for characteristic evolution
codes is identified. It is also shown how linearized solutions of the Bondi equations
can be generated by solutions of the scalar wave equation, thus providing a com-
plete set of test beds in the weak field regime. These tools are used to establish that
the algorithm is second order accurate and stable, subject to a Courant-Friedrichs-
Lewy condition. In addition, the numerical versions of the Bondi mass and news
function, calculated at scri on a compactified grid, are shown to satisfy the Bondi
mass loss equation to second order accuracy. This verifies that numerical evolution
preserves the Bianchi identities. Results of numerical evolution confirm the theo-
rem of Christodoulou and Klainerman that in vacuum, weak initial data evolve to a
flat space-time. For the class of asymptotically flat, axisymmetric vacuum space-
times, for which no nonsingular analytic solutions are known, the algorithm pro-
vides highly accurate solutions throughout the regime in which neither caustics nor
horizons form.

1. INTRODUCTION

The physical basis of a new algorithm for the evolution of space-times has been proposed.'
This algorithm is based upon the characteristic initial value problem for general relativity, using
light cones as the evolution hypersurfaces, rather than the spacelike foliation used in traditional
approaches based upon the Cauchy problem. The intimate use of characteristics has particular
advantages for the description of gravitational radiation and black hole formation.2 4 The first
attempt to carry out numerical evolution based upon this algorithm was only successful in a region
outside some sufficiently large worldtube. Near the vertex of the null cone, instabilities arose
which destroyed the accuracy of the code. The underlying cause of this instability was too com-
plicated to analyze in the context of general relativity, especially since the numerical analysis of
the characteristic initial value problem had not yet been carried out even for the simplest linear
axisymmetric systems.

This warranted an investigation of the basic computational properties of the evolution of the
flat space scalar wave equation using a null cone initial value formulation.5 It was found that near
the vertex of the cone the Courant-Friedrichs-Lewy (CFL) condition places a stricter limit on the
time step than for the case of Cauchy evolution. This insight made possible the development of an
extremely efficient marching algorithm for evolving the data on the initial cone by stepping it out
from the vertex of the next cone to null infinity (scri) along each angular ray direction. This
marching algorithm is based upon a simple identity satisfied by the values of the scalar field at the
corners of a parallelogram formed by four null rays. The result was a stable, calibrated, second
order accurate global algorithm on a compactified grid. Furthermore, scri played the role of a
perfect absorbing boundary so that no radiation was reflected back into the system. This algorithm
offers a powerful new approach to generic wave type systems. The basic idea is applicable to any
of the hyperbolic systems occurring in physics.

In this paper, we apply the algorithm to the evolution of asymptotically flat, (twist-free)
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axisymmetric space-times. In a Bondi null coordinate system the metric takes the form 6

ds 2 =((V/r)e2
8-U

2 r2 e 2 Y)du 2 +2e 2 Odu dr+ 2Ur2 e 2 ydu dO

-r 2 (e 2
ydO

2 +e-2y sin2 0 dA2). (1)

The vacuum field equations then decompose into the three hypersurface equations

OUr r= 2f r ( Yr 2 (2)

Er4 e 2(y- °U~rlr= 2r 2r2 (8) - (sin 2 a )' + 2 Y. r Rae] (3)

I ~ ~~2(r 4
sin 9 OU), rO

Vr=: -- r 4e2(y-fl( Ur )2+ 2rsnS)r
V 4 2 2r sin 0

+e2(l- )[ 1 -(sin 0 )'+y+ 3 cot Oyo-(Po)2-2r ( e3 -6 )] (4)

and one evolution equation

4r(ry)ur= 2r',rV-r 2( 2 y,, U+ sin O( U , 2) a r) 2(Yr sin O),

+2-r~e2(y-)(Ur)2+2e 2(-y) (,8)2+ sin Si i (5)

The initial data consists of y, which is unconstrained except by smoothness conditions. Because y
represents a spin-2 field, it must be O(sin22) near the axis and consist of 132 spin-2 multipoles.

Here we are interested in the global application of this system when the null hypersurfaces are
null cones, although the approach also goes through without major change if the null hypersur-
faces emanate from a finite world tube. We require that the null cones have nonsingular vertices
which trace out a geodesic worldline r= O. For the quadrupole terms, this implies the boundary
conditions y=O(r2 ), ,B= O(r 4 ), U=O(r), and V=r+O(r3 ). For higher multipoles, the
smoothness conditions can be worked out by referring back to local Minkowski coordinates. 7 As
a consequence, O(r') terms in y can contain multipoles with 26Isn. Any satisfactory compu-
tational algorithm must meet the challenge of preserving these smoothness conditions.

In Sec. II, we analyze the linearized version of these equations and show how their solutions
may be obtained locally from solutions of the scalar wave equation. This provides an important
means of constructing linearized solutions in a null cone gauge for the purpose of code calibration.
It also reveals essential changes in the grid structure necessary in adapting the null parallelogram
algorithm for the wave equation to linearized gravity.

This also solves the major computational problems for the nonlinear case. In Sec. III, we show
how the linearized algorithm can be extended to this case. In Sec. IV, we discuss the major finite
difference techniques necessary for second order accuracy. In Sec. V, we present a study of the
stability and accuracy of an evolution code based upon this algorithm. New exact and linearized
solutions are introduced to establish second order convergence. In addition, a global check on
accuracy is carried out using Bondi's formula relating mass loss to the time integral of the square
of the news function.
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II. THE LINEARIZED BONDI EQUATIONS

In the linearized limit ,B=0 and V=r. The equations (2)-(5) reduce to one hypersurface
equation and one evolution equation for the surviving field variables y and U,

(r4U 2r 2(sin2 0 9),r (6)

4r(rY),ur= 2r2Y r-r2 sin 0 (i )] . (7)

Physical considerations suggest that these equations be related to the wave equation. If this

relationship were sufficiently simple, then the scalar wave algorithm could be used as a guide in
formulating an algorithm for evolving y. A scheme for generating solutions to the linearized Bondi
equations in terms of solutions to the wave equation has been presented previously.6 However, in

that scheme, the relationship of the scalar wave to y is nonlocal in the angular directions and is not
useful for this purpose.

We now formulate an alternative scheme in terms of spin-weight 0 quantities a and Z, related
to y (spin-weight 2) and U (spin-weight 1) by8

y=82 a=sin d sin 6 ada)a (8)

U= Z= Z. (9)

Then the linearized equations are equivalent to

(r4 Zr),r= -2r 2 (2-L 2)ar, (10)

and

E:= 2(ra),ur- r- 1(r2ar- r2Z/2),r=0, (11)

where L2
-(1/sin O)d6(sin 0cd) is the O-part of the angular momentum operator. Now let 'D be

a solution of the flat space scalar wave equation,

rlE '= 2(rD), ur-(r'D),rr+ r- 'L2 (F=O, (12)

and set

r2a,r= (r 2 'F),r (13)

and

r2 Zr= 2(L2 - 2)'D. (14)

Then

E=r3 4+2('D+a),u-2r-2 (r2'D),r+Z, (15)

and

Er=r-2 (r 3Ll (D),r (16)
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Equation (10) is satisfied as a result of (13) and (14) and the wave equation (12) implies
E, = 0. If (D is smooth and 0(r2 ) at the origin, this implies E = 0, so that the linearized equations
are satisfied. The condition that (I=O(r2 ) eliminates fields with only monopole and dipole
dependence so that it does not restrict the generality of the spin-weight 2 function y obtained
through (8).

Thus for any linearized axisymmetric gravitational wave in the null cone gauge, y may be
related to a scalar wave by (8) and (13). The CFL condition for convergence of a finite difference
algorithm requires that the numerical domain of dependence be larger than the physical domain of
dependence. Because the relationship between (F and y is local with respect to the null rays on the
cone, their domains of dependence coincide. This suggests that a stable and convergent evolution
algorithm for the gravitational field may be modeled upon the scalar wave algorithm. This turns
out to be the case although some subtle distinctions arise, as described below.

An evolution algorithm for scalar waves has been formulated in terms of an integral identity
for the values of the field at the corners of a null parallelogram lying on the (u,r) plane.5 The
wave equation with source, El(F=S, can be reexpressed in the form

-1 (2)l =-2+rS, (17)
r

where 4=r( and El (2) is the 2-dimensional wave operator intrinsic to the (u,r) plane. Integra-
tion over the null parallelogram as depicted in Fig. I then leads to the integral equation

OQ= IIP+ IIS-bR+fdu [ L ]rS (18)

where P, Q, R, and S are the corners and A the area of the parallelogram.
This identity gives rise to an explicit marching algorithm for evolution. Let the null parallelo-

gram span null cones at adjacent grid values uO and uO+ Au, as shown in Fig. 1, for some 6 and
t. If qi has been determined on the entire u0 cone and on the u0 + Au cone radially outward from

the origin to the point P. then (18) determines V/ at the next point Q in terms of an integral over
A. This procedure can then be repeated to determine , at the next radially outward point T in Fig.
1. After completing this radial march to scri, the field q1 is then evaluated on the next null cone at
u0 +2 Au, beginning at the vertex where smoothness gives the start up condition that i= 0. The
resulting evolution algorithm is a 2-level scheme which reflects, in a natural way, the distinction
between characteristic and Cauchy evolution, i.e., that the time derivative of the field is not part of
the characteristic initial data.

The CFL condition on the numerical domain of dependence is a necessary condition for
convergence of a numerical algorithm. For the grid point at (u, r, 6), there are three critical grid
points, (u-Au,r+Ar,6) and (u-Au,r-Ar,6±AO), which must lie inside its past physical
light cone. These gives rise to the inequalities Au<2Ar and Au<-Ar+(Ar2 +r 2 A02 )1/2. At
large r, the second inequality becomes Au<rA6 and the limitations on the time step are essen-
tially the same as for a Cauchy evolution algorithm. However, near the vertex of the cone, the
second inequality gives a stricter condition

Au<KArA0 2 , (19)

where K is a number of order 1 whose exact value depends upon the start up details at the vertex.
For the scalar wave equation, these stability limits were confirmed by numerical experimentation
and it was found5 that K-4.

The linearized gravitational evolution equation (7) can be recast into a form similar to (17),

m (2)= (20)
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FIG. 1. Line segments drawn at 45° represent radial characteristics. Their intersection defines the fundamental null
parallelogram PQRS shown superimposed upon the computational cell, which consists of the points marked by circles and
their nearest neighbors in the angular direction.

where now 1'= r y and _X only contains hypersurface terms. This allows use of the null parallelo-
gram algorithm to evolve y by the same marching scheme as in the scalar case. The additional
feature here is that U must be simultaneously marched out the null cone using the hypersurface
equation (6). For the scalar wave equation (17), the angular momentum barrier is represented by
the term L2 V/r2 , which is determined from VI by a double angular derivative. In the linearized
gravitational evolution equation (7), the analogous term is [r2 sin O(U/sin 0),a],r, which is deter-
mined from U by a single angular derivative. In turn, the hypersurface equation (6) relates U to y
by a single angular derivative. Physically, this has the same net effect of producing an angular
momentum barrier depending upon the second angular derivative, as in the scalar case. However,
the nontrivial mathematical distinction between the two cases leads to nontrivial difference in their
natural grid structures for a numerical algorithm. In particular, the grid for U must be staggered
between the grid points for y. These and other details of the marching algorithm will be given in
Sec. IV, where we discuss the nonlinear case.

The use of scalar waves to generate solutions of the linearized Bondi equations provides an
important tool for testing evolution algorithms in the linear regime. Monopole solutions may be
represented in the form F = [F(u + 2r) - F(u)]/r and axisymmetric multipoles may be built up
by applying the z-translation operator

tacos O(dr-du)-r-l sin Odly (21)
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to these solutions. Then y may be obtained via (8). For the calibration measurements in Sec. V, we
use the solutions

¢=(dz~~u (u+ 2 r)], (22)

obtained by applying (d,)' to the fundamental Lorentz invariant solution l/(xax,). This solution
is well behaved above the singular light cone u = 0.

III. THE NONLINEAR ALGORITHM

The nonlinear evolution equation (5) can also be recast in the form of (20) in terms of 0= ry,
for an appropriate choice of 2-dimensional wave operator C (2). In this case, the (ur) submani-
fold is not flat so that it would not be appropriate to base Cl (2) upon a flat metric. Indeed, such a
choice would lead to an improper domain of dependence and could not be used as the basis for a
stable algorithm. It would seem more natural to use the 1 (2) operator of the metric induced in the
(ur) submanifold by the 4-dimensional metric (1). Here we pursue an alternative choice based
upon the line element

do2=21(,n V)=e 2 du[(Vlr) du+2dr], (23)

where l, = u / is the normal to the outgoing null cones and n is the other null vector normal to
the spheres of constant r. Although this choice is not unique and other possibilities deserve
exploration, it leads to the simplest XW-terms when reexpressing (5) in the form (20). Because the
domain of dependence of do-2 contains the domain of dependence of the induced metric of the
(u,r) submanifold, this approach does not lead to convergence problems associated with the CFL
condition.

The wave operator associated with (23) is

El (2 )r=e- 2f[20,ru-((V/r) /,r),r1 (24)

and the nonlinear evolution equation (5) becomes

El ( 2 )0=e-2&, (25)

where

IV\ I Sin 1 1 U \\1 (yUsin 0),
,r{~ YU+ s (i))1Yr

- -rl yr rtXu2-i @sin 0 2-o sin 0

+ r3 e2 (ry-)(Ur) 2 +- e 2 (IlV)[(,Ie)2 + sin 0(sin (26)

Because all 2-dimensional wave operators are conformally flat, with conformal weight -2, the
surface integral of (25) over a null parallelogram gives an integral equation analogous to (18),

PQ=P O+ OSf OR+ 2 du drM. (27)

This allows the evolution of y by the same basic marching algorithm as described in Sec. II for the
scalar wave and linearized wave cases. The additional modifications are that /3, U, and V must be
simultaneously marched out the null cone using the nonlinear hypersurface equations (2)-(4).
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Because of the hierarchal structure of these equations, y, /3, U, and V may be marched in that
order without any matrix inversions or other implicit operations. The basic computational cell and
finite difference constructions are described in the next section.

Near the origin, the metric approaches the Minkowski metric so that the stability of the
nonlinear algorithm in this region should be subject to the same Courant limit as for the linearized
equations. Near scri, the gravitational variables have the asymptotic form

y=K+r-c+ O(r-2 ), (28)

f3=H+ O(r 2 ), (29)

U=L+ 0(r-'), (30)

2(L sin O) 9
sin 0

+re 2
(H-K)[1+2H sin 0 )+ ,s 3 0)s8+4(H, )2-4H,6,K-2(K, )2]

-2e 2 HW+ O(r 1), (31)

where _A corresponds to Bondi's mass aspect. In a standard Bondi frame at scri K, H, and L all
vanish, but not in null cone coordinates adapted to a Minkowski frame at the origin. This depen-
dence can lead to drastic behavior of the u-coordinate at large distances. In a numerical study of
spherically symmetric, self-gravitating scalar radiation fields,2 H -+ - as a horizon is formed and
an infinite redshift develops between central observers and observers at scri. In that case, a
consideration of the domains of dependence indicates that the step size Au for stable evolution
must approach zero as the horizon is formed. The divergence of the outgoing null cone equals
e-2p1r. If 3 -- o - at a finite value of r then a caustic will in general form. When this occurs, a
single null cone coordinate system cannot cover the entire exterior region of the spacetime.

In the more general case being considered here, it is also possible for the u-direction to
become spacelike at large distances, corresponding to the coefficient of du2 in (1) becoming
negative. (The u constant hypersurfaces, of course, must remain null.) As discussed in Sec. V,
this does not affect the stability of the algorithm. The algorithm is also valid when the vertex of the
null cone is replaced by an inner boundary consisting of a timelike or null worldtube, so that it
may also be applied to other versions of the characteristic initial value problem.9

IV. FINITE DIFFERENCE TECHNIQUES

The numerical grid is based upon the outgoing null cones, using the compactified radial
coordinate x = r/( 1 + r) and the angular coordinate y =-cos 0. Thus points at scri are included in
the grid at x = 1.

In order to improve numerical accuracy at the grid boundaries, the code is written in terms of
the variables r= r5= ry/sin2 0, /3, S=(V-r)lr2 and U= U/sin 0. For a pure quadrupole mode,
5 has constant angular dependence.

To develop a discrete evolution algorithm, we work with two sets of spatial grid points, both
of which have the constant spacing Ax = 1 /Nx and Ay =I /NIy. The first grid is defined by
(unxj ,y1) = (nAuiAxjAy). The second grid is shifted (staggered) in both the x and y variables

and is thus defined by (unxi+ 112 ,Yj+ 1/2) = (nAu,(i+ 2)Ax,Uj+ 2)Ay). Note that the staggered

grid extends beyond the physical boundary x= 1. This peculiarity is successfully exploited for a
smooth calculation of the metric at scri. The time step is variable and is limited by the largest
possible value that would satisfy the CFL condition over the entire grid.

J. Math. Phys., Vol. 35, No. 8, August 1994

Downloaded 24 Jul 2001 to 136.142.123.73. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



G6mez, Papadopoulos, and Winicour: Null cone evolution of axisymmetric space-times

A staggerered grid is not necessary for the scalar wave equation but its introduction for the
gravitational case is dictated by a detailed von Neumann stability analysis of the linearized equa-
tions. Accordingly, 5,,j, and S reside on the (xi,yj) grid while U is placed on the
(xi+ 112,Yj+ 1/2) grid. We denote values of a field F at the site (n,i,j) by F n =F(unx ,Xyj). We use
centered second order differences for derivatives at points not on the edges of the grid, e.g., for an
arbitrary field F

FYlij J= F,1NY(Fi~j+ I -Fij-1)- (32)

To calculate derivatives of the field at the edges of the grid, we use backward and forward
second-order differences, e.g., at the y= + I edges of the grid, where j NY

1
F NyIN X-Fi±N+2+

4 Fi±+Ny+l 3Fi±Ny). (33)

A. The hypersurface equations

In terms of the numerical variables A, /3, S and U, and expressed in the coordinates x and y
used in the code, the hypersurface equations (2)-(4) are

16,l =Xp = _W19(34)

X 4 X~~~~~~~2

______ 2((1 _Y2)u,_) = 2 - u, (35)

* x2S X + l _ S =_WS, (36)

where the source terms Mg, -Wu, and Ws are given by

amok= 21 X(_X)(1 _Y2)2 ( 7 X)2, (37)

u =Pxy /3x) ,y+ 4 y,4+(l -y 2 )[25,x((l -y 2 ),y-2y)- rxy], (38)

-1 -E 1> -x + ]~ i 1 y)x[ 1> 4 'xY

- X4(( )2(1 _y
2 )e2((l Y

2
)^P--e2(l(1-Y 

2
) _1- 125- 2 yly

+( -y 2 )[105+8y5,y+8 8 2 +4y5/3p +/3, + (/)2

-(1 -y 2 ) 2 (8 5 2 +2 5,yBy+ 5,yy+ 8 y55,y) + 2(1 -y 2 )3 (5y)2}. (39)

Note that Eq. (34) has just one radial derivative, and can be evaluated at the points (n, i - 1,2). We
can discretize it as follows

/i3j= 8 -i+j+(-WI)i-11/2,J Ax. (40)
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Equation (35), which contains a second radial derivative, is evaluated at the points (n,ij- ,1).
Near the origin, where U = 0(x), it becomes a singular differential equation. In order to integrate
it to second order accuracy it is necessary to apply numerical regularization to the derivatives on
the left hand side. Noting that d/dx=4x3d/dx 4 , Eq. (35) becomes

2x( 1-x)[x 4Q,]X4+X2[ 1-( I1-X)(B ,x-( 1-y2)y'X)]& x

=e2(f_(1 -y 2)h(l _X)*U (41)

Using the identity

Xi 1 /2 -Xi I 11 2 = 2Ax xi_ (x_ 1 2 +X. 1 11 2), (42)

we can discretize (41) as

(l-Xi-,) 4'-
2 +2 [LXi4_1/2( Uij-(i - Ij)-Xi -I- 1/2( Ui- Ij-Ui- 2,j) ]

(Xi- 1/2x i- I - 1/2)

+2 ` I lx1(-il(~~-i2j(-J (iJ- _ j)) vx(&i,i &i-2j)

(AX)2( l1-Xi ) IJIj4

The above is a 3-point formula, and it can not be applied at the points at xi= Ax, however we
know the asymptotic behavior of U at the origin, and we can use it to construct a starting
algorithm for these points. We approximate the Bondi equations for ' and U by the leading two
terms in a power series,

5=ar2 +br3 , U=4y(ar+ 3 br2 ). (44)

Expanding j, to the same order, we obtain for the rate of change of a and b

a u = 65b,

b, = 0. (45)

By fitting a least square polynomial to near the origin, we can read off the coefficients a and
b and evaluate U on the next hypersurface. This approximation is consistent with the global
second order accuracy of the algorithm.

As with Eq. (34), Eq. (36) can be approximated at sites (n,i- -,j) as follows

2 ~~~~Xi-1/2 (6
Xi-. 1 2 jy(Sij-Si-,,j)+ _ / (Sij+Si,1 j)=(.''S)i-1/2,j. (46)

B. The evolution equation

In practice, the corners of the null parallelogram, P, Q, R, and S, cannot be chosen to lie
exactly on the grid because the velocity of light in terms of the compactified coordinate x is not
constant even in flat space. Numerical experimentation suggests that a stable algorithm with high
accuracy results from the choice made in Fig. 1. The essential feature of this placement of the
parallelogram with respect to a coordinate cell is that the sides formed by incoming rays intersect
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adjacent u-hypersurfaces at equal but opposite x-displacements from the neighboring grid
points. Solution for the null geodesics of the metric (23) to second order accuracy then gives for
the coordinates of the vertices

Xi-l-Xp=XR Xi- 1

=Au(l -Xi_ )2[l +ri-J(Sn2 +Sn)12]14,

xi-xL)=xs-xi

=Au(l -x 1 )2 [1+ri(SVi1]+S7n+)/2]/4. (47)

The elementary computational cell consists of the lattice points (n,i,j) and (n,i ± 1,J) on the
"old" hypersurface and the points (n+ 1,i-2,j), (n+ 1,i- 1,j), and (n+ 1,i,j) on the "new"
hypersurface (and their nearest neighbors in the angular direction). The marching algorithm com-
putes the value of the fields at the point (n + 1, i,j) in terms of their predetermined values at the
other points in the cell.

The values of * at the vertices of the parallelogram are approximated to second order accu-
racy by linear interpolation between grid points. Furthermore, cancellations arise between these
four interpolations so that the evolution equation (27) is satisfied to fourth order accuracy, pro-
vided the integral can be calculated to that accuracy. This is accomplished by approximating the
integrand by its value at the center of the parallelogram. To second order accuracy, this gives

I du dr = J du dr=- Au (rQ-rp+rs-rR)$•C, (48)

where the centered value JK can be obtained by averaging between appropriate points in the cell.
Thus the discretized version of (27) is given by

@ gt(@l-l *i-2 ,ei~l,@, 1) + + u (rQ-r~Sr)C (49)

where Y is a linear function of V/ and the j index has been suppressed.
Consequently, it is possible to move through the interior of the lattice, computing +

explicitly by an orderly radial march. This is achieved by starting at the origin at time Un+ 1. Field
values vanish there. Next, proceed outward one radial step using the boundary conditions (dis-
cussed below). Then step outward to the next interior radial point using (49), iterating this process
throughout the interior and for all angles. This updates all field values stretching to scri along the
new null cone at uf+1, thus completing one evolutionary time step.

The above scheme is sufficient for accurate evolution in a neighborhood of the origin. Global
evolution, including the points at x = 1, requires careful manipulation of (49) to avoid problems
from the fact that qt1- rK at scri. Thus the direct use of this formula is not possible for the point
at scri, while points near scri would suffer serious loss of accuracy. We renormalize (49) in the
following way. First, we introduce the quantity k = f( 1 - x). Near scri f has the desired finite
behavior, while near the origin it leaves unchanged the constant coefficient form of the evolution
equation, thus preserving the stability properties. With this substitution and with the use of (48),
the evolution equation (27) becomes

¢kQ I Au XQ.%C+_(I 1X p- Au Xc)

-xs)( +4 u c) -X 1IR+4-Au XRSC) * (50)
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Now all terms have finite asymptotic value. The coefficient ( 1 -xQ)/( 1 -xs) has 0/0 behavior at
scri but approaches the limit 1. Further refinement is possible with the use of the explicit second
order approximation for the characteristics (47) which leads to the approximation

(1 -xQ) S (51)

where

8= Au(1+xi(SVI + S+ 1)/2) . (52)

The final result is that the equation (50) propagates 0 radially outward one cell with an error of
fourth order in grid size. This is valid for all interior points and the point at scri. The error in each
cell compounds to a third order error on each null cone and a second order global error after
evolving for a given physical time. Second order global accuracy is indeed confirmed by the
convergence tests described in Sec. V.

We mentioned that a modified form of the basic grid cell Eq. (47) is used at the origin. This
is necessary since the incoming characteristic through the points P and R can not be centered at
x=0. The corners of the modified cell are given by

XP=0, XR=2 AU, X4XQXSX= Au(1-Xi)2 . (53)

Only the linear terms of X are kept while evolving the first point, i.e., for xl = Ax. This reduces
Eq. (27) to

Q 'AS OR du dr-(r U,y),r (54)

Using the expansion (44) for U near the origin, the integral simplifies further to

fA du dr(3 a r+- yb r2). (55)

The integrand is now evaluated to second order accuracy at u+ 1/2 =u +Au/2 using

n+1/2n 6 bn Au
5 2

and bn + 112 = b. Keeping higher order terms would not improve the global convergence rate of the
code.

V. CODE TESTS

A. Testbeds

As we have shown in Sec. II, linearized solutions of the Bondi equations can be generated by
solutions of the scalar wave equation, thus supplying a complete set of test beds for the very weak
regime. For the nonlinear case, exact boost and rotation symmetric solutions'0 of the Bondi initial
hypersurface equations have also been found.'" They have been used to check the radial integra-
tions leading from y to /3, U and V but they do not provide a test of the evolution algorithm.
However, in the course of this work, we have found that one of these initial data sets is in fact
preserved under time evolution and is an exact static solution of the nonlinear vacuum equations.
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This solution provides an important test bed for null cone evolution codes. Except for spheri-
cally symmetric cases, it is the only known solution of Einstein's equation which can be expressed
explicitly in null cone coordinates with no singularity at the vertex. It has the form

2(I =+)
2 U=- aP_ _p_ r(2a2 p2 -a2 r2 +1)

2e'y= I1, e2= 4- V= r (56)

where p = r sin 0, E = Fl + a2 p2 and a is a free scale parameter. It is remarkable that the null data

y is time independent under evolution, as can be verified by inserting the above expressions in (5).

Because this solution is static, as well as boost and rotation symmetric, the commutator between
the boost and time translation symmetries implies that it has an additional translation symmetry in

the boost direction. Thus the solution falls into several overlapping and widely studied classes,
including the static cylindrically symmetric spacetimes and the Weyl static axisymmetric space-
times. However, this solution, which we call SIMPLE, has not previously been singled out,

apparently because it cannot easily be identified in the traditional coordinates used for studying
static solutions. Because of its cylindrical symmetry, it is clear that this solution is not asymptoti-
cally flat but it can be used to construct an asymptotically flat, nonsingular solution by smoothly
pasting asymptotically flat null data to it outside some radius R. The resulting solution will be

static and given by (56) in the domain of dependence interior to R. Numerical solutions generated
by this technique are used in the code calibration tests presented below.

In addition, global energy conservation provides an important test bed. The Bondi mass loss

formula is not one of the equations used in the evolution algorithm but follows from those
equations as a consequence of a global integration of the Bianchi identities.

B. Convergence and stability

We have tested the algorithm to be second order accurate and stable, subject to the CFL
condition, throughout the regime in which caustics and horizons do not form. In Sec. II, we
showed how the linearized Bondi equations may be reduced to the scalar wave equation by local
operations. For very weak data, the nonlinear equations approximate the linear equations so that
we would expect the global stability of the nonlinear algorithm to be related to the CFL condition

for the scalar wave algorithm. Near the origin, stability checks show that the time step is limited
by (19) with K= 8, which is twice the limit found for the scalar wave algorithm. This factor of 2
apparently arises from the use of a staggered grid in the gravitational case, which effectively
doubles the value of r at which the main algorithm takes over from the start up algorithm at the

origin. This gives some reassurance that the scalar wave algorithm has been optimally adapted to
the Bondi equations.

By construction, the u-direction is timelike at the origin where it coincides with the worldline
traced out by the vertex of the outgoing null cone. But even for weak fields, the u-direction
becomes spacelike at large distances along a typical outgoing ray. This can be seen from the metric
coefficient guu =(Vr)e2

p'- U
2 r2 e2

y which at large r becomes dominated by the asymptotic be-
havior U= L + 0( I/r). Geometrically, this reflects the property that scri is itself a null hypersur-
face so that all internal directions are spacelike, except for the null generator. For a flat space time,
the u-direction picked out at the origin corresponds to the null direction at scri but it becomes
asymptotically spacelike under the slightest deviation from spherical symmetry.

By choosing initial data of very small amplitude (II| ̂-10-9), we have performed conver-
gence tests of the numerical solutions against the solutions of the linearized equations. The lin-
earized solutions (22) were given as initial data at u = 0 and we compared the numerically evolved
solutions to the linearized solutions at a central time of u=0.5. We observed that for the low
angular momentum solutions (1= 2, 3, 4) the code is superaccurate, i.e., the solutions converge to
the exact result at a rate faster than second order in the grid size. This is to be expected since for
these solutions the hatted variables used in the code exhibit angular dependence that is at most
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FIG. 2. The error, as measured by the L2 norm, of a numerical solution with higher harmonics (1= 6). The computation is
made on grids of size N. equal to 24, 48, 72, 96, and 120, while keeping N= 3Ny .

quadratic in y, so that the second order accurate y-derivatives are calculated exactly. The error, as
measured by the L2 norm, of a numerical solution with higher harmonics (1 = 6) is graphed in Fig.
2. The slope of the graph gives a convergence rate of 2.04 + 0.01 with respect to grid size. This
result is insensitive to the particular norm used, i.e., we also verified second order convergence in
the LI and L. norms.

Second order convergence has also been checked against the exact static solution SIMPLE.
Since this solution is not asymptotically flat, we match the initial data smoothly to asymptotically
flat data for a nonstatic exterior. Consideration of the domain of dependence implies that the
matching boundary propagates along an ingoing null hypersurface. Thus, we can obtain a reliable
measure of how accurately the evolution preserves the static interior, provided we restrict the
calculation of the error norm to a region not yet influenced by the exterior nonstatic data. We
matched one such static solution in the interior (x -0.5) to smooth exterior data with compact
support. We calculated the Lo. norm for the region x60.4 at time u=0.25, and considered the
dependence of the error on the grid size. The preservation of the static interior to graphical
accuracy is shown in Fig. 3, while the second order convergence of the error is demonstrated in
Fig. 4. In addition, for a wide variety of initial data having unknown analytic solution, we have
verified that the numerical solution converges to second order in the sense of Cauchy convergence.

Stability of the code in the low to medium amplitude regime has been verified experimentally
by running arbitrary initial data until it radiates away to scri. At higher amplitudes, it is expected
that physical singularities will arise, but we have not yet explored this regime. Figure 5 shows a
sequence of time slices of the numerical evolution of some arbitrary initial data of compact
support. Note the rich angular structure that arises at u'-0.25 and then dissipates. At u- 1.5 the
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FIG. 3. Evolution of initial data given by SIMPLE in the interior region, and patched smoothly to an asymptotically flat
exterior. The static interior is preserved to graphical accuracy.

amplitude of the field is sufficiently small so that it appears to be zero in the figure. It continues
to decay at later times.

C. Energy conservation

The Bondi mass loss formula relates the gravitational radiation power to the square of the
news function. It follows from the equations used in the algorithm as a consequence of a global
integration of the Bianchi identities. Thus it not only furnishes a valuable tool for physical inter-
pretation but it also provides a very important calibration of numerical accuracy and consistency.

Historically, numerical calculations of the Bondi mass MB have been frustrated by technical
difficulties arising from the necessity to pick off nonleading terms in an asymptotic expansion
about infinity. For example, the mass aspect At must be picked off in the asymptotic expansion
(31) for V. This is similar to the experimental task of determining the mass of an object by
measuring its far field. In the nonradiative case it can be accomplished by measuring gravity
gradients, but otherwise this approach can be swamped by radiation fields. In the computational
problem, further complications arise from gauge terms which dominate asymptotically even over
the radiation terms. We have recently developed a second order accurate algorithm for calculating
the Bondi mass.12 It avoids the above problems through the use of Penrose compactification and
the introduction of renormalized variables in which Bondi's mass aspect appears as the leading
asymptotic term. The Bondi mass algorithm depends only upon fields on a single null hypersur-
face. It has been incorporated into the present evolution code to calculate the mass at any given
retarded time.
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FIG. 4. The error in the evolution of the initial data of Fig. 3 up to u = 0.25, as measured by the L.0 norm. The error is
computed on grids of size NY equal to 16, 24, 32, 48, and 64, while keeping N.=3NY . The convergence rate is 1.92, in
good agreement with the theoretical expectation of second order accuracy.

In the present formalism, the news function N is given byl

2 e2 HN=2 c +(sin 0 c 2_L),+e 2K& sin (e 2 H) (57)

Here w is the conformal factor relating the asymptotic 2-geometry to the unit sphere geometry of
a Bondi frame, i.e.,

e d 9+sin2 Oe 2 Kd =o 2 (d + sin2 B d ),B (58)

where OB and bB= = are Bondi spherical coordinates. Calculation of co complicates the calcula-
tion of the news function. The simplest approach is to set y =-cos 0 and YB =-cos OB. Then

dyBC2 =d (59)

where

YB = tan I e2K]* (60)
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FIG. 5. A sequence of time slices of the numerical evolution of initial data of compact support. Note all the angular

structure that arises at about u=0.25, which later decays. At up 1.5 the amplitude of the field has decayed below those

values which can be observed in the figure.
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FIG. 5. (Continued.)
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This gives

2 eK

(1+y)eA+(1 y)eA ' (61)

where

rY e2K-

A= f dy e2K1. (62)

In order to prepare this integral in an explicitly regular form for computation we introduce an
auxiliary parameter a and rewrite (62) as the double integral

A=2f dyf da e2aKk, (63)
fo 

where K=KI(1 -y 2
) is regular at the poles. It is then straightforward to obtain a second order

accurate finite difference formula for the news function.
The Bondi formula for energy conservation between central times uo and u takes the form C

=0, where

C=MB(U)-MB(Uo)+ f dyfIdu e2 H 1N2. (64)

Figure 6 graphs C relative to the initial mass MB(UO) for a numerical evolution of the polynomial
data

[(X-X)(X-X2(y2-y2)]6
y=x A X-[(xl-x 2 )yo]2 (65)

with compact support in the domain (xI 'x's<x 2)X(-yoyyo) and amplitude parameter X.
Forthegraph,wehavechosenX=0.3, x 1=0.1, x 2 =0.5, andyO=0.5, andevolvedthenumeri-
cal solution up to u=0.01, on a grid of 512 radial X 128 angular points. The bulk of the error
occurs in the calculation of the Bondi mass, whose accuracy is more sensitive to grid size than the
accuracy of either the news function or the evolution code. Most of this error may be removed by
using Richardson extrapolation to take advantage of the known second order accuracy of the
Bondi mass. For example, if Fn(xi) is a second order accurate finite difference approximation to
the function f(x) on a grid of n points, then (4Fn - F,/ 2 )/3 approximates f to third order and in
fact to fourth order if odd orders are absent in the approximation. This absence of odd orders
indeed holds for the Bondi mass because all derivatives, interpolations, and integrals are centered.
Thus, introduction of subgrids obtained by subsampling, leads to a fourth order expression for
MB, with the corresponding relative error in energy conservation also graphed in Fig. 6. In this
way, energy conservation is attained to 0.4% accuracy. Note that only a single evolution on a fixed
grid is necessary here because Richardson extrapolation is applied when calculating the Bondi
mass. For the purposes of the graph, we have done this for each time that C is plotted, but to check
energy conservation, it suffices to do it only at the initial and final times. Figure 6 serves as a
rewarding testament to the virtues of a code with known convergence rates.

VI. CONCLUSION

We have constructed a second order accurate evolution algorithm for the null cone initial
value problem for axisymmetric vacuum space-times. Energy conservation is maintained to sec-
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FIG. 6. Graph of the relative error in C calculated up to u=0.01 for a numerical evolution of the data (65), on a grid of
512 radial X 128 angular points. The circles show the error as calculated from the computed values of the mass, while the
squares show the error after using Richardson extrapolation, based on the known convergence rate of the algorithm.

ond order accuracy. Extensive tests of the algorithm establish that it is globally valid in the regime
where horizons and caustics do not develop. This generates a large complement of highly accurate
numerical solutions for the class of asymptotically flat, axisymmetric vacuum space-times, for
which no analytic solutions are known. All results of numerical evolutions in this regime are
consistent with the theorem of Christodoulou and Klainerman13 that weak initial data evolve
asymptotically to Minkowski space at late time. The code is now being tested in the strong field
regime for application to the study of black hole formation.
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APPENDIX: LINEAR STABILITY ANALYSIS

We sketch here the von Neumann stability analysis of the algorithm for the linearized Bondi
equations. The analysis is based upon freezing the explicit functions of r and y that appear in the
equations, so that it is only valid locally for grid sizes satisfying A ro r and Ay < I . However, as
is usually the case, the results are quite indicative of the stability of the actual global behavior of
the code.
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Starting with the hatted code variables introduced in Sec. IV and setting r = r2 U and G = ry,

the linearized Bondi equations (6) and (7) take the form

r2 rr-2r=2[4y-(1 -y 2 )dy](rGr- G) (Al)

and

2Gur-G,rr=-(1 /2r)F,ry* (A2)

Freezing the explicit factors of r and y at r = R and y = Y, introducing the Fourier modes
G=esueikreilY (with real k and 1) and setting F=AG, these equations imply

A =2(1 -ikR)[4Y-( 1- Y 2 )il]/(2+R2 k2 ) (A3)

and

4is= -2k+Al/R. (A4)

For stable modes, Re(s) 2 0. This requires that the 1 Im(A)S0 which will be satisfied unless
Ykl<O. In the latter case, unstable solutions exist to the PDEs obtained by freezing the coeffi-
cients in the linearized equations (A. 1) and (A.2). The linearized equations themselves do not have
unstable modes but they arise in the frozen coefficient formalism from dropping the boundary
condition of spherical topology on the y-dependence. For a global solution, G should not have
periodic dependence on y but instead be decomposed into spin-weight 2 harmonics, in which case
instabilities would not arise in the above analysis. Thus these unstable modes of the frozen PDE
are artificial and should be discarded by requiring Ykl' 0 when analyzing the stability of the
corresponding FDE.

Consider now the FDE obtained by putting G on the grid points r1 and r on the staggered
points rl, 1 /2, while using the same angular grid yj and time grid UN. Let P, Q, R, and S be the
corner points of the null parallelogram algorithm, placed so that P and Q are at level N+ 1, R and
S are at level N, and so that the line PR is centered about r, and QS is centered about r1+ 1. For
simplicity, we display the analysis at the equator where Y= 0. Then, using linear interpolation and
centered derivatives and integrals, the null parallelogram algorithm for the frozen version of the
linearized equations leads to the FDEs

(Rl,&r )2( r' -3/2F- + 1/2+ r,- 1/2) - (IF+ 3 1 2 + r, I/2)

=-y[2(R1Ar)(Gj+ I- GI) -(GI+ I + GI)] (AS)

(all at the same time level) and

G N+l -GN+l-G N + NN

+ (Au/4Ar)(-G N+1 +2G N+1 -G 1N+-G N_2+2GN 1-G )

=-(Auf8R) S(Fl+ 1 / 2 -r 1-/ 2 + F+ 3 1 2 -rF+ 11 2 ), (A6)

where 8Y represents a centered first derivative. Again setting F=AG and introducing the dis-
cretized Fourier mode G=es'NAueikWAr eiJY, we have 8y=i sin(lAy)/Ay and (A5) and (A6) re-
duce to

A[(R/Ar) 2 (l -cos a)+cos a]= -L[(2R/A r)sin(a/2)+i cos(a/2)] (A7)

and
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es~A= -e'(C*-AD)1(C-AD), (A8)

where L=sin(1Ay)/Ay, a=kAr, C=ieial2 sin(a/2)+(Au/4Ar)(1-cos a) and D=(LAu/8R)
Xsin(a/2). The stability condition that Re(s)-0 then reduces to Re[CD(A -A*)]--0 which is
equivalent to I + cos a[ 1- (Ar/R) 2]2-O. Thus this stability condition is automatically satisfied and
poses no constraint on the algorithm.

The corresponding analysis at the poles Y= + 1 again leads to (A.8), where now

A[(R/Ar) 2(1-cos a)+cos a]= -4Y[2i(R/Ar)sin(a/2)-cos(a/2)]. (A9)

The stability condition Re[CD(A-A*)] aO is satisfied provided YklO, which rules out the
artificially unstable solutions of the frozen PDE discussed above.

As a result, local stability analysis places no constraints on the algorithm. This may seem
surprising because not even the analog of a CFL condition on the time step arises but it can be
understood in the following vein. The local structure of the code is implicit, since it involves 3
points at the upper time level. Implicit algorithms do not necessarily lead to a CFL condition.
However, the algorithm is globally explicit in the way that evolution proceeds by an outward
radial march from the origin. It is this feature that necessitates a CFL condition in order to make
the numerical and physical domains of dependence consistent.
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