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Abstract

We describe how to extend the ACT-R production system
to model human errors in the performance of a high-level
cognitive task: to solve simple linear algebra problems
while memorizing a digit span.  Errors of omission are
produced by introducing a cutoff on the latency of
memory retrievals.  If a memory chunk cannot gather
enough activation to be retrieved before the threshold i s
reached, retrieval fails.  Adding Gaussian noise to chunk
activation produces a pattern quantitatively similar to
subject errors.  Errors of commission are introduced by
allowing imperfect matching in the condition side of
productions.  The wrong memory chunk can be retrieved
if its activation is large enough to allow it to overcome
the mismatch penalty.  This mechanism provides a
qualitative and quantitative fit to subject errors.  In
conclusion, this paper demonstrates that human-like
errors, sometimes thought of as the exclusive domain of
connectionist models, can be successfully duplicated in
production system models.

Introduction
ACT-R (Anderson, 1993) is a model of human cognition
which assumes that a production system operates on a
declarative memory.  It is a successor to previous
production system models (Anderson, 1976, 1983) and
continues the emphasis on activation-based processes as
the mechanism for relating the production system to the
declarative memory.  Different declarative memories have
different levels of activation which determine their rate and
probability of processing by the production rules.  ACT-R
is distinguished from the prior ACT theories in that the
details of its design have been strongly guided by the
rational analysis of Anderson (1990).  Essentially it is a
production system tuned to achieve optimal performance
given the statistical structure of the environment.

Errors are a fundamental aspect of human cognition that
symbolic systems have never been able to completely
model.  Symbolic systems have been able to model
consistent errors by assuming that people have systematic
bugs (Van Lehn, 1989) and errors of commission by
assuming certain rules fail to apply.  They have much
more difficulty with the occasional slips or intrusions
(Norman, 1981).  These systems are sometimes thought
of as too precise, too deterministic and too algorithmic to
be able to exhibit the random, gradual degradation of
performance exhibited by humans.  A symbolic system
works or it does not.  When connectionist models became

popular (Rumelhart and McClelland, 1986), one of their
main attractions was that their holistic computation style
could exhibit a capacity for human-like errors and graceful
degradation of performance under noise or component
failures.  ACT-R is a hybrid system.  Although its
declarative elements are symbolic structures and its
procedural rules implement an algorithmic matching
process, the activation of the chunks is spread through a
connection network.  In this paper, we describe how to
model errors with the ACT-R system by redefining (part
of) the matching process as an activation-based constraint-
satisfaction mechanism.

To be concrete, we will explain this with respect to the
following task which is described more fully in Anderson,
Reder, & Lebière (in preparation). Subjects were asked to
memorize a digit span of 2, 4 or 6 digits, and then solve a
linear equation before recalling the digits.  The equation
types are detailed in Table 1.  Types (1) through (4) are
the simple equations, solvable by a single transformation.
Types (5) through (8) are the complex equations, which
require two transformations.

Errors in the equation solving tasked increased either
with the complexity of the equations or with memory
load.  Subjects solved 96.9% of the simple equations and
90.8% of the complex equations.  They solved 95.2 % of
the equations with a memory load of 2, 94.7% with a load
of 4, and 91.7% with a load of 6.  Both factors also
impacted on the proportion of digit strings recalled
correctly.  After solving simple equations, subjects
recalled 95.0% of the digit strings while they recalled
91.3% after solving complex equations.  They recalled
95.5% of the two-element strings, 95.8% of the four-
element strings, and 88.1% of the six-element strings.
These factors were additive.  For more details see
Anderson et al (in preparation).

Table 1
x * a = b (1)
x / a = b (2)
a + x = b (3)
a - x = b (4)
x * m + a = b (5)
x * m - a = b (6)
x / m + a = b (7)
x / m - a = b (8)



Table 2
p solve_x/a=b p compute_a*b p output_digit
   =goal>     =goal>    =goal>
        isa   solve-equation          isa   solve-equation         isa   recall-span
        lht   =term          lht   x         pointer   =index
        rht   =b          rht   =term    =item>
   =term>     =term>         isa   memory-span
        isa   term          isa   term         item   =value
        lho   x          lho   =lho         position  =index
        op   /          op   *         next   =next
        rho   =rho          rho   =rho ==>
==>     =lho*rho>    =goal>
   =product>          isa   times-fact         pointer   =next
        isa   term          arg1   =lho
        lho   =b          arg2   =rho
        op   *          product   =product
        rho   =rho ==>
   =goal>     =goal>
        lht   x          rht   =product
        rht   =product

Basic Model
An ACT-R model of this task would contain three sets of
productions: one to manipulate the equations, one to
compute arithmetic solutions, and one to retrieve digits
from the span.  Simplified examples of each production
set are included in Table 2.  ACT-R productions are
composed of the keyword 'p', the name of the production,
then a number of chunk retrievals (the left-hand side)
separated by '==> ' from a number of chunk actions (the
right-hand side).  Symbols starting with '=' are variables,
others are constants.  A chunk is composed of its name
(usually a variable, followed by '>'), the keyword 'isa', its
type, then a number of slot-value pairs.  In the lhs, slot
values which are constants or previously bound variables
are interpreted as constants, others as variables to be
bound to the actual slot value.  In the rhs, values are
assigned to the slots.  Previously bound chunks are
modified, others are created.

The first chunk in the lhs of the production is the top-
level goal.  For solve_x/a=b and compute_a*b, that goal
is to solve an equation.  In solve_x/a=b, the left-hand side
of the equation has to be a fraction with x as numerator.
In the action part, a new term multiplying the
denominator by the original right-hand term is created, and
placed in the right-hand side of the equation while the left-
hand side simplifies to x.  Solve_x/a=b encodes the two-
step process of multiplying each side by the denominator,
then simplifying.1

Compute_a*b applies when x is isolated in the left-
hand side of the equation and the right-hand side consists
of a product of two numbers, such as after solve_x/a=b
has fired.  The actual product is then retrieved through an
indirect match, so named because, unlike all previous
                                                

1As written, that rule is essentially hard-coded in the
production, and a separate production is needed for each such
rule.  No long-term memory retrieval is needed.  An
alternative model is described in Table 4.

matches, the chunk =lho*rho has not been previously
bound but is retrieved from the content of its slots (i.e.
slot arg1 has value =lho and slot arg2 has value =rho).  In
the action part of the production, the answer replaces the
product term as solution of the equation.

Output-digit has a similar structure.  Its goal is to
retrieve the digit of position =index in the span, which it
does through another indirect match.  Each memory chunk
contains three slots: its index, the value stored, and the
index of the next memory in the sequence.  The pointer in
the top goal is then replaced by the index of the next
memory.

Indirect retrievals, as occur in Compute_a*b and
Output-digit  prove to be critical to the ACT-R theory of
performance on such tasks, particularly the theory of
errors.  They are the point at which information is
retrieved from memory in the performance of the task.
Our theory of errors will locate the problem in the failure
of those retrievals.

Latency Threshold and Errors of Omission
Direct matches do not involve any search; they simply
result in the expansion of a known chunk value.  While
there are often many ways to write a production system
model using different data structures and productions (and
therefore direct matches), indirect matches are more closely
determined by the structure of the task.  As the indirect
matches are the critical elements to the predictions of the
theory, ACT-R is really quite constrained in its
predictions.

In ACT-R, every declarative chunk has associated with
it an activation measure which is interpreted as the log
odds that the chunk will be matched in the present
context.  The activation of a chunk is defined as the sum
of the activations it receives from various source chunks
which are in the focus of attention.  The amount of
activation received from a source is the product of the
source activation times the strength of association



between them, called Interactive Association (IA)2.
Thus, as an example, faced with the equation x=3*4, the
chunk encoding 3*4=12 will receive activation to the
degree that 3 and 4 are active as sources and to the degree
they are strongly associated to the chunk.

The level of activation of a chunk determines not only
its probability of retrieval but also the retrieval time.  The
latency is defined as inversely proportional to the
exponential of the chunk activation (and the production
strength).  This means that direct retrievals, which gather
high levels of activation, will take a relatively short time
whereas indirect retrievals will take increasingly long as
their activation level decreases.  It seems natural to
impose a cutoff time on how long a retrieval can take.  If
a chunk cannot gather enough activation, its retrieval will
exceed the latency threshold and will fail.  To
introduce some randomness in this deterministic behavior,
it is necessary to add some noise to the chunk activations.
This Gaussian noise mechanism is a standard ACT-R
feature.  Increasing the noise or decreasing the activation
threshold will increase the number of errors.  At equal
error frequencies, the former will increase the randomness
of the errors while the latter will decrease it.

Finally, to ensure that this threshold applies equally in
all situations, it is necessary to make one additional
assumption regarding activation: that the total source level
is constant.  Anderson et al (in prep.) discuss the
implications of this assumption and its relationship to the
working memory limitations of Just & Carpenter (1992).
Our model contains many sources of activation: the goal
(as usual), the digits of the memory span, and the
elements of the equation to solve.  The total source level
will be divided as follows: the source level of the goal is
constant, and the rest is divided equally among span digits
and equation elements.  The more complex the equation
and the longer the span, the lower the source level of their
components.

Anderson et al (in prep.) show that this mechanism can
yield the error pattern observed in the previous section.
First, consider how it applies to the equation-solving task.
The only indirect retrievals needed are for the arithmetic
facts.  A previous section reported that the error rate for
simple equations is 3.1% and  for complex equations
9.2%.  One reason for this difference in error rates is that
simple equations require one indirect retrieval of an
arithmetic fact while complex equations require two.
Another factor is that the extra components to the
equation lower levels for all sources.  Any given fact
gathers less activation, and the probability that it fails to
be retrieved increases.  Similarly for the span effect on
equation solutions: increasing the length of the span
decreases the level of all sources, including the equation
digits used to retrieve arithmetic facts.

                                                
2In the Bayesian framework of ACT-R, IA values can be

interpreted as the log likelihood ratio measure of how much
the presence of a chunk in the context will increase the
probability that the other is needed.  The exact equations and
Bayesian estimation formula for this parameter can be found
in section 4.2.2 of (Anderson, 1993).

Similar considerations apply to the span recall task.
Equation complexity lowers the source level of span digits
and increases the likelihood of misretrieval.  Longer spans
mean both lower source levels and more retrievals, which
produces the larger drop-off from 4 to 6 digits than 2 to 4
digits.  Finally, complexity and span effects are additive
because increases in equation complexity and length of
span both add to the total number of sources, which
determines their source level.

Qualitative Error Patterns
The model as described simulates errors by failing to
retrieve a chunk, thereby bringing the process (equation-
solving or span recall) to a halt and failing to provide an
answer.  That is not, however, how most actual errors
occur.  Subjects sometimes give erroneous answers, but
only rarely fail to give an answer or retrieve a full span.

Let us concentrate on errors in the equation-solving
task.  By far the most common error (125 or 61%)
occurred in algebraic transformations (e.g. forgetting to
invert a sign).  The second-most common error category
(17 or 8%) were arithmetic errors, where subjects retrieve
the wrong fact in the addition or multiplication table.  We
found, like Siegler (1988), that close errors (e.g. 6*8=54)
were generally more common than wild ones (e.g.
6*8=19).  The remaining errors (63 or 31%) did not seem
to fall into any particular pattern.  It is interesting to
further examine the algebraic errors.  The six
transformation rules necessary to solve the problems in
Table 1, with their most frequent errors and their
frequency, are described in Table 3.

It seems at first that the subjects simply forget to invert
the operator, but the pattern does not extend to rules (5)
and (6).  In fact, there is a clear pattern of pairwise
interaction: the most common error for rule (1) is the
answer for rule (2) and vice versa, and similarly for rule
(3) and (4), and (5) and (6).  In particular, it is interesting
to note that although rule (1) and (5) have the same
solution, their most frequent errors are different.
Altogether, these errors account for three quarters of the
total.  This suggests that they are produced by a
misretrieval of the transformation rule to apply.  Also, the
error rate for the addition and subtraction rules are equal,
and much larger than the rate for the multiplication and
division rules (by a factor of 5 for the best subjects and 10
for all subjects).

Table 3
# Equation Solution Error Frequency
(1) x + a = b x = b - a x = b + a 46 / 56
(2) x - a = b x = b + a x = b - a 20 / 23
(3) x * a = b x = b / a x = b * a 3/ 4
(4) x / a = b x = b * a x = b / a 7 / 9
(5) a + x = b x = b - a x = a - b 10 / 14
(6) a - x = b x = a - b x = b - a 3 10 / 24

                                                
3The most common error among all subjects was in fact

"x=-a-b", but it was skewed by a particularly bad subject.
Among other subjects, "x=b-a" was the most frequent.



The errors in the digit span task also were largely errors
of commission.  Some of these errors were systematic.
Subjects showed a tendency to recall a digit from a near
position in the span producing a generalization effect
(Nairne, 1992).   Also, digits were not equally frequent
and subjects showed a tendency to intrude the more
frequent digits.

Mismatch Penalty and Errors of
Commission

Allowing more active but only partially matching chunks
to be retrieved instead of the correct ones can account for
these errors of commission.  Partial matching has received
support, both empirically and computationally in recent
work of Reder (Reder & Cleeremans, 1990; Reder &
Kusbit, 1991; Reder & Ritter, 1992; Reder, Richards &
Stroffolino, in prep.).  We changed ACT-R's pattern-
matcher so that rather than retrieving all combinations of
chunks that matched the condition of a production, it
selected the most active chunk.  Chunks accumulate
activation from sources in the environment.  If there is a
mismatch of a chunk to a production pattern, its
activation level will be reduced by a mismatch penalty.  A
mismatch takes the form of a contradiction between what
is required by a slot value in the pattern and the actual slot
value of the matching chunk.  For instance, the pattern
may be looking for 3+4 and the chunk 3+5=8 will have 5
where 4 is required.  The mismatch penalty is proportional
to the degree of mismatch between the desired and actual
slot values.  The IA values between desired chunks and the
actual chunks are interpreted as their degree of similarity.

Let us first see how this mechanism can account for the
pattern of arithmetic errors.  When retrieving the sum of 2
and 5, both numbers are made sources and contribute
activation to the correct fact: 2+5=7.  Many other facts
also receive activation from these and other numbers and
might even gather more activation than the desired fact
because of the pattern of sources and the Gaussian noise in
the activation values.  To favor close matches, IA values
between numbers are set to reflect their similarity.4

Therefore, the penalty for 2+6=8 will be less than the
penalty for 2+1=3, because 6 is more similar to 5 than 1.
All things being equal, the former will be more active
than the latter and will have a better chance of being
retrieved (if a misretrieval occurs), which explains the
predominance of close matches.

To model transformation errors, we need to switch from
the model described in a previous section where each
transformation rule was encoded by its own production and
applied without indirect retrieval to one with only one
production retrieving a different algebraic rule for each
transformation.  A simplified version of such a production
is shown in the left-hand side of Table 4.

Essentially, the production retrieves by an indirect
match the declarative rule which best matches the left-hand
term of the equation, then constructs a new right-hand
term using the new operator provided by the rule.  Sample
                                                

4Specifically, IA(i,j) = exp(-|i-j|).

Table 4
p transform Chunks encoding rules:
   =goal>
        isa   solve-equation      x+a-rule
        lht   =term          isa   rule
        rht   =b          lho   x
   =term>          op   +
        isa   term          rho   a
        lho   =lho          new-op   -
        op   =op
        rho   =rho      x-a-rule
   =rule>          isa   rule
        isa   rule          lho   x
        lho   =lho          op   -
        op   =op          rho   a
        rho   =rho          new-op   +
        new-op   =new-op
==>      x*a-rule
   =new-term>          isa   rule
        isa   term          lho   x
        lho   =b          op   *
        op   =new-op          rho   a
        rho   =rho          new-op   /
   =goal>
        lht   =lho      ...
        rht   =new-term

chunks which encode the transformation rules in the right-
hand side of Table 3 are shown.  For instance, the first
rule encodes that - inverts +.

The pairwise nature of the errors is a direct consequence
of the structure of the rules.  Rules (5) and (6) in Table 3
apply to equations where the constant is the first part of
the left-hand term and the variable the second part, which
is the opposite of the other rules.  That double mismatch
will limit confusion between them and the other rules.
Rules (1) and (2) have connections from a set of operators
(+ and -) disjoint from those for rules (3) and (4) (* and /),
which means that a given operator will either activate one
pair of rules or the other pair.  In addition, mismatches
within these pairs of rules will be smaller than between
them, because the IA values between + and - (* and /) are
larger, reflecting the fact that these operators often appear
in the same context together.  This explains the pairwise
pattern of errors.  The higher error frequency involving +
and - can be attributed to a fan effect.  Since these two
operators are involved in twice as many rules, their IA
strengths to these rules are reduced.  The final activation
of these rules will then be diminished, and the probability
of error increased.

The position effect in the digit-span recall task can be
explained in the same way as the arithmetic errors: since
each memory is accessed by its index, small differences in
position will carry a lesser penalty than large ones.  The
frequency effect results because digits accessed more often
will have a higher base level activation (Anderson, 1993)
which will uniformly increase their probability of recall.
Finally, since this mechanism is also activation-driven,
the quantitative considerations that were discussed



regarding the latency threshold mechanism also apply
here.

Conclusion
We have introduced two ways to model errors in the ACT-
R production system.  Errors of omission occur when a
chunk present in long-term memory cannot gather enough
activation to be retrieved before a fixed latency threshold.
We have shown that this mechanism provides a very good
quantitative fit to the data.  Most of the actual subject
errors, however, involved retrieving the wrong data or
performing an incorrect operation.  These errors of
commission can occur if we replace the usual semantics of
the pattern-matcher with a new constraint-satisfaction
semantics where a matching pattern is not a series of
succeed/fail tests but a set of constraints to be maximized
in terms of the activation measure.  This explains the
qualitative as well as quantitative pattern of subject errors.

There are independent motivations for introducing a
partial-matching mechanism into ACT-R beyond
accounting for errors of commission.  In many situations
softer matching is required.  Often objects that we are
looking for are not exactly like their pattern specification.
For instance, people will wear hats or grow beards and we
still need to recognize their identity.  One might argue
that only in formal domains like mathematics does a
single mismatch disqualify an item from being useful.

Error modeling provides an additional advantage.  ACT-
R is a very general system which allows for many ways
to model a particular task.  Having to match not only the
subjects' rule-like behavior but also their occasional errors
provides an additional constraint on the form of the model.
In this case, for example, we had to switch from a
production-based representation of algebraic transformation
rules to a declarative chunk-based representation because
the former model could not produce the fan effects
necessary to account for the difference in error frequencies
among arithmetic operations.

By using ACT-R's concept of activation, not just as a
heuristic measure of the likelihood of a match, but as a
measure of the match itself, we have shown that the
occasional, gradual pattern of errors characteristic of
human performance can be effectively modeled by
production systems.
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