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The world is an ever-changing place, and tasks that we
perform repeatedly frequently change in their character-
istics. How do we adapt to such a changing world? One
method is by changing our strategy for performing the task
at hand. As aspects of a task change, the optimal strategy
often changes, so adapting one’s strategies is helpful. For
example, using the World-Wide Web to answer a question
is becoming an increasingly successful strategy in many
domains.

There is an important twist in this characterization of
how people adapt through changing strategies: Any given
person almost never switches from using only one single
strategy A to using only a different single strategy B. In-
stead, examinations of performance in a wide range of
domains have shown that almost everyone uses many dif-
ferent strategies for a given task at a given point in time
(Reder, 1982; Siegler, 1996). Thus, when people adapt to
changing task characteristics, there is change in the dis-
tributionof how they use their strategies. For example, sev-
eral years ago, a person searching for a new phone number
might have used the strategy of calling directory assis-
tance 50% of the time and using a phone book 50% of the

time, whereas today that same person might call direc-
tory assistance 20% of the time, use a phone book 30% of
the time, and use http://bigfoot.com 50% of the time. The
important consequence of multiple-strategy use is that a
model of changing strategy selections must be imbedded
within a model of distributional strategy selection. 

Researchers have proposed several different models of
strategy choice and strategy change (Anderson & Lebiere,
1998; Lovett & Anderson, 1996; Reder, 1982, 1987, 1988;
Reder & Schunn, 1996; Siegler & Shipley, 1995; Siegler
& Shrager, 1984). Although there are significant differ-
ences among these models, there is an important com-
monality: Each model assumes that people keep track of
the base rates of success of the different strategies and pre-
fer the strategies that have higher success base rates (simi-
lar to Thorndike’s, 1913, law of effect). This account of
processing implies that, as the task characteristics change,
the individual will experience different success base rates
for each strategy and so learn to prefer different strategies.

Despite the existence of several models of strategy
choice, many basic questions remain about the mecha-
nism by which people adapt their strategy use in response
to changing success base rates. This paper attempts to
address two of these basic questions. One question con-
cerns where the information about strategy success rates
is stored: explicitly in working memory or in some more
implicit long-term storage? Most models of strategy
choice do not describe where the information is stored.
However, since many of these models posit no decay or in-
terference to the base-rate information (Lovett & Ander-
son, 1996; Siegler & Shipley, 1995; Siegler & Shrager,
1984), one could reasonably conclude that the information
was assumed to be in long-term storage rather than in
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To further the understanding of the mechanisms of strategy choice, in three experiments, we inves-
tigate the role of explicit awareness and working memory in strategy adaptivity. Experiment 1 pro-
vided correlational evidence that individual differences in strategy adaptivity to changing base rates are
related to individual differences in awareness of those changes but appear not to be related to indi-
vidual differences in working memory capacity. Experiment 2 replicated the role of awareness, and the
results suggest that awareness at the time of the base-rate change, rather than afterwards, is related to
increased strategy adaptivity. Experiment 3 measured working memory capacity using a different pro-
cedure and manipulated working memory load with a dual-task procedure; again, no apparent role of
working memory capacity in strategy adaptivity was found. This juxtaposition of findings presents a
challenge for existing models of strategy choice.
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working memory. In the models of choice that do include
decay (Anderson & Lebiere, 1998), the decay is quite slow
and the base-rate information (that directly influences
strategy choices) is not stored in working memory; rather,
it is assumed that the information is stored directly in
with the long-term representation of the strategies (i.e.,
the production rules). The second question concerns
whether adapting to changing base rates requires explicit
awareness: Does it involve modifying implicit parameters
in a gradual implicit learning process, or does it involve
conscious effort triggered by noticing a change? Again,
most models of strategy choice do not describe the ac-
cessibility of the base-rate information. One exception is
the Lovett and Anderson (1996) account, which places the
success base-rate information as parameters associated
with production rules. According to this model, there is
no mechanism by which the system can directly access or
reason about these parameter settings. Thus, they are not
accessible to introspection and so must be considered im-
plicit. Consistent with the Lovett account, Reder and
Schunn (1996) argued that metacognitive control (i.e.,
strategy choice) was driven entirely by implicit memory
and implicit learning (see also Lemaire & Reder, 1999;
Spehn & Reder, 2000).

This implicit control view is directly opposed by a
number of accounts of metacognition (Davidson, Deuser,
& Sternberg, 1994; Metcalfe, 1994; Nelson & Narens,
1994). These accounts assume that we have metacognitive
awareness so that we can control and change our behav-
ior. For example, Nelson and Narens (1994) describe peo-
ple as “systems containing self-reflective mechanisms
for evaluating (and re-evaluating) their progress and for
changing their on-going processing” (p. 7).

The two questions are potentially related. One simple
and common view is that if adaptivity to changing base
rates requires explicit awareness, then it is likely that the
base-rate information is stored in working memory, at
least while it is being processed. Similarly, if the infor-
mation is stored in working memory, then it is more
likely to be available to explicit processing. Conversely,
if the information is not in working memory, then it is
likely to be processed implicitly, and if it is processed
implicitly, then it not likely to rely on working memory.
That is, a common assumption is that conscious access
requires working memory and that the contents of work-
ing memory are freely available to consciousness (see
Ericsson & Simon, 1993).

The goal of this paper is to examine these two ques-
tions. More specifically, we will examine the impact of
working memory capacity and explicit awareness of
base-rate shifts on strategy adaptivity to base-rate shifts.
Previous work by Schunn and Reder (1998, in press)
bears directly on these questions. They examined strat-
egy adaptivity in the context of a complex simulated Air
Traffic Control task. They found that individual differ-
ences in strategy adaptivity to base-rate shifts were most
strongly related to individual differences in inductive rea-
soning ability. They argued that inductive reasoning may

have been required for noticing the pattern of the base-
rate change. This account seems to invoke a role for ex-
plicit awareness of base-rate changes in adaptivity to those
changes. However, explicit awareness was never directly
examined in those studies. In the present experiments, we
examined explicit awareness directly.

Schunn and Reder (1998, in press) also found that in-
dividual differences in working memory capacity were
positively (but not as strongly) related to adaptivity. How-
ever, since working memory capacity is quite strongly
correlated with inductive reasoning ability (Carpenter,
Just, & Shell, 1990), it is unclear whether the relationship
between adaptivity and working memory capacity was
mediated through inductive reasoning ability. In the pre-
sent experiments, we examined the role of working mem-
ory capacity in strategy adaptivity in further depth.

THE BUILDING STICKS TASK

Before turning to the experiments, we will introduce
the problem-solving task that was used in all of the ex-
periments. The building sticks task (BST; Lovett & An-
derson, 1996) is a problem-solving task similar to the
classic water jars task (Luchins & Luchins, 1950). For a
given BST problem, participants must add and subtract
an unlimited supply of three different-sized building
sticks to create a stick of the desired length (see Figure 1,
initial state). BST problems can be solved by one of two
strategies. The undershoot strategy involves starting
with a building stick that is shorter than the desired stick
and then lengthening that stick by additional building
stick lengths until the desired stick’s length is reached. In
contrast, the overshoot strategy involves starting with the
building stick that is longer than the desired stick and then
shortening that stick by the other building stick lengths.
As Figure 1 shows, participants choose between these two
strategies in their first step.

For example, suppose the desired stick was of length
14 units, and the three sticks, a, b, and c, were of lengths
2, 17, and 10, respectively (note that participants were
never given the exact numerical lengths of the sticks and
had to visually estimate the length of each stick). To ob-
tain the desired stick length of 14 units, the participants
might start with stick b of 17 units and remove segments
(the overshoot strategy), or the participants might start
with stick c of 10 units and add more segments (the un-
dershoot strategy). In this example, a solution can be ob-
tained only by the undershoot strategy (c + a + a = 10 +
2 + 2 = 14). The overshoot strategy will not work because
subtracting lengths a and c from b will never lead exactly
to a stick of length 14 units (because, in this case, b is
odd, and a, c, and the goal stick are all even). Of course,
in other problems, the overshoot strategy may be the cor-
rect one to use.

Within this task, it is easy to manipulate the base rates
of success of the undershoot and overshoot strategies.
Each problem can be designed to be solvable by either un-
dershoot or overshoot (but not both), and then the propor-
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tion of problems with each solution type can be varied
across blocks of time. In this way, it is possible to directly
control the success base rates of each strategy and thereby
clearly measure individual differences in adaptivity to
change success rates.

The basic template of the present experiments is as fol-
lows. Participants are given a large number (60–70) of
BST problems to solve, during which time the base rate of
success of the overshoot and undershoot problems is ma-
nipulated. Strategy adaptivity is defined as the amount of
change in overshoot strategy use in response to those
changing success base rates. Experiment 1 examined the
roles of both explicit awareness and individual differences
in working memory capacity and inductive reasoning abil-
ity in strategy adaptivity. Experiment 2 followed up on the
findings on the role of explicit awareness. Experiment 3
followed up on the role of working memory capacity.

EXPERIMENT 1

Method
Participants . Fifty-six Carnegie Mellon University (CMU) un-

dergraduates participated for course credit and were randomly as-
signed to the two conditions (50–80–20 or 50–20–80, to be de-
scribed below). Because of a software bug, the participants were

three times as likely to be assigned to the 50–80–20 condition, pro-
ducing 42 participants in the 50–80–20 condition and 14 in the
50–20–80 condition.

Procedure. The participants were first given several ability tests.
The working memory test was the Synthesis Add Matrices test
taken from the CAM4 (Kyllonen, 1993, 1994, 1995). This test was
designed to be a measure of spatial working memory. There were
also three short inductive spatial tests taken from the CAM4: Fig-
ure Sets, Figure Series, and Figure Matrices. The inductive reason-
ing tests were included to examine whether any correlations be-
tween adaptivity and working memory capacity are mediated
through inductive reasoning ability. The mean score across all three
tests was used as a measure of inductive reasoning ability. See Ap-
pendix A for a description of the working memory and inductive
reasoning tests.

Following the ability tests, the participants were given the BST.
Each participant was given 70 BST problems to solve. The problems,
although differing in absolute lengths (i.e., there were no duplicates),
were all “neutral” looking problems (i.e., undershoot and overshoot
appeared to bring one equally close to the goal). Auditory feedback
was used to signal to the participants whether they had solved a
problem within the desired f ive moves.

To measure strategy adaptivity, the base rates of success of the
undershoot and overshoot strategies were manipulated over time.
For 10 trials, both strategies were equally successful (i.e., 5 solved
by overshoot and 5 solved by undershoot). For the next 30 trials,
one strategy was successful on 80% of trials. For the final 30 trials,
the other strategy was successful on 80% of trials. Varied across two

Figure 1. Initial and subsequent states in a BST problem. The participant’s task is to build a current stick
(initially length 0) that matches the desired stick in length by adding and subtracting various combinations
of the building stick lengths. From “History of Success and Current Context in Problem Solving: Combined
Influences on Operator Selection,” by M. C. Lovett and J. R. Anderson, 1996, Cognitive Psychology, 31, p. 175.
Copyright 1996 by Academic Press. Reprinted with permission.
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conditions was which strategy was more successful first. That is, in
one condition (50–80–20), the undershoot strategy was successful on
50%, then 80%, then 20% of trials; in the other condition (50–20–80),
undershoot was successful on 50%, then 20%, then 80% of trials.
Strategy adaptivity was defined as the change in mean strategy use
from Block 4 (the end of the second phase) to Block 7 (the end of
the third phase).

To measure explicit awareness of base-rate change, the partici-
pants were asked a series of questions at the end of the experiment.
Specif ically, the overshoot and undershoot strategies were de-
scribed to the participants, and the participants were asked, “Did
there seem to be any pattern to which strategy worked?” and “Did
you notice any changes in the effectiveness of one strategy or the
other as the experiment progressed?”  The participants’  responses
were coded for awareness of the base-rate manipulation: 1 was
given if the participant reported awareness of a change and cor-
rectly described the direction of the change, and 0 was given other-
wise. Only a few participants had intermediate awareness: apparent
awareness of change, but inaccuracy in the reported direction.
These participants behaved like the unaware participants and thus
were pooled into that group. Sixty percent of the data was recoded
by a second coder, and the interrater reliability was 97%.

Results
Overall adaptivity. A participant’s f irst choice on

each trial was used to categorize that trial’s strategy use
as overshoot or undershoot. The 70 trials were divided
into blocks of 10 trials. Figure 2 illustrates the mean un-
dershoot use within each block within each condition, as
well as the manipulated success rates of undershoot
within each block for each condition. The 50–80–20
condition showed the expected increase in use of the un-
dershoot strategies in Blocks 2–4 and then the expected
decrease in use of the undershoot strategies in Blocks
5–7. The 50–20–80 condition showed the reverse pattern.
Thus, on average, the participants adapted to the base-rate
changes. Because the two conditions behaved so similarly,
the two conditions were pooled (to gain greater power
for the individual difference analyses) by reversing the
values for the 50–20–80 condition (i.e., subtracting the
proportions from 1).

Individual differences. Are there large individual dif-
ferences in strategy adaptivity? Using a Monte Carlo sim-
ulation (N = 1,000), we can establish the expected vari-
ation among participants assuming they all had true
probabilities of selecting undershoot in a block that cor-
responded to the mean undershoot use across participants
in each block. Because there were only 10 trials per block
and each trial produced a binary outcome (undershoot or
overshoot), one would expect a certain amount of vari-
ability due simply to sampling noise. Figure 3 plots the
observed frequency histogram of the participants’ adap-
tivity (as measured by the difference between an indi-
vidual’s mean strategy use in Blocks 4 and 7) and the ex-
pected distribution from the Monte Carlo simulation.

The observed distribution is flatter than the expected
distribution, indicating more variation among participants
than could be attributed to sampling noise. For example,
we would expect 9% of the participants to have zero or
less adaptivity by chance; 20% of the participants actually
fell into this group. At the other extreme, we would ex-
pect only 8% of the participants to have greater than .5
adaptivity by chance; in fact, 20% of the participants dis-
played this higher level of adaptivity. The observed dis-
tribution of adaptivity differed statistically from the ex-
pected distribution [c2 (df = 3; N = 56) = 13.0, p , .01].1
These comparisons establish that there are individual
differences in strategy adaptivity that are not attributable
to chance variation. In subsequent analyses, the partici-
pants whose adaptivity (as defined above) was at or below
zero will be called the nonadaptive participants.

Is it possible that these individual differences in adap-
tivity are due to floor or ceiling effects in strategy use
(i.e., always using undershoot or never using under-
shoot)? Examinations of the distribution of mean percent
undershoot across the 70 trials revealed that none of the
11 nonadaptive participants was outside of the 20%–80%
range, and only 2 were outside of the 25%–75% range.
Therefore, most of the nonadaptive participants did use
both overshoot and undershoot strategies regularly, just
not adaptively over time.

Figure 2. Mean (and SE ) use of the undershoot strategy within
each block in each condition of Experiment 1, along with the ma-
nipulated base rates.

Figure 3. Observed and predicted frequency histogram of
strategy adaptivity levels in Experiment 1.

(Block 4 - Block 7)
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Another possible explanation for why some partici-
pants may not have adapted is that they were simply
doing the task too quickly to notice the change in base
rates. To investigate this possibility, a block 3 adaptivity
(adaptive/nonadaptive) analysis of variance (ANOVA)
was conducted on the mean time to make the first move
(i.e., click on the desired first stick and click on its target
location). There was a speed-up over blocks [F(6,324) =
7.1, MSe = 1.5, p , .0001], as the mean time changed
from 5.7 sec in Block 1 to 4.5 sec in Block 7. However,
the effect of adaptivity was only marginally significant
[F(1,54) = 2.1, MSe = 36.7, p , .15]. If anything, the
adaptive participants were slightly faster (4.5 sec vs.
5.6 sec; and they maintained this speed advantage in all
7 blocks, although the difference decreased slightly in size
over blocks) [F(6,324) = 1.9, MSe = 1.5, p , .1]. There-
fore, the nonadaptive participants were not simply choos-
ing too quickly: 5.6 sec is a long time to make two mouse
clicks.

Awareness and adaptivity. How did explicit aware-
ness of the base-rate changes (as measured by the de-
briefing questions) relate to the strategy adaptivity? As
described earlier, the participants were divided into those
who explicitly noticed the direction of the shift (aware,
N = 18) and those who did not (unaware, N = 37). An
awareness 3 block ANOVA conducted on the mean strat-
egy use in each block revealed a significant interaction
[F(6,318) = 3.6, MSe = 0.02, p , .005]. The unaware par-
ticipants did adapt, but the aware participants made the
transition more precipitously (see Figure 4). Focusing on
the Block 4 to Block 7 transition, the aware participants
showed a greater transition than the unaware participants
(means of .44 and .17, respectively) [F(1,53) = 12.7, MSe =
0.07, p , .001].

Working memory, inductive reasoning, awareness,
and adaptivity. Were the psychometric tests predictive
of adaptivity or explicit awareness? Table 1 presents the
correlation matrix of working memory ability, inductive
reasoning, awareness, and strategy adaptivity. Working

memory and inductive reasoning appeared to be unrelated
to amount of adaptivity and negatively related to explicit
awareness of the shift. The relationship between working
memory and awareness appeared to be mediated through
inductive reasoning: (1) working memory and inductive
reasoning correlate quite well with one another; (2) induc-
tive reasoning contributes significant additional variance
when working memory is entered first into a regression on
awareness; and (3) working memory does not contribute
significant additional variance when inductive reasoning
is entered first. Thus, the overall model appears to be that
working memory is positively related to inductive reason-
ing, inductive reasoning is negatively predictive of aware-
ness, and awareness is positively predictive of adaptivity;
there is no direct role of working memory in awareness or
adaptivity.

Discussion
As found in other domains (Reder & Schunn, 1999;

Schunn & Reder, 1998, in press), there are meaningful
individual differences in adaptivity in the BST domain
that appeared not to be attributable to various artifacts.
Thus, even when strategy success rates are carefully con-
trolled across participants, participants appear to differ
significantly in their abilities to change strategy use in
response to shifting base rates of success.

This experiment provided a suggestion that the indi-
vidual differences may be related to explicit awareness of
base-rate change: Awareness is associated with faster or
larger changes. Of course, the present experiment did not
establish the causality of awareness in adaptivity. Be-
cause the relationship found thus far is only correlational,
all three logical interpretations remain as possibilities:
(1) explicit awareness leads to greater shifts in strategy
use; (2) greater shifts in strategy use are more likely to
lead to explicit awareness after the fact; and (3) some third
factor (e.g., working memory capacity or inductive rea-
soning skill) leads to both greater shifts in strategy use
and a greater likelihood of noticing the base-rate change.
The relationship between inductive reasoning and aware-
ness and the lack of a direct relationship between adap-
tivity and either working memory capacity or inductive
reasoning ability provide some evidence against the third
explanation. In Experiment 2, we attempted to provide
more information about the timing of the relationship be-

Table 1
Correlations Between Working Memory

Spatial, Inductive Reasoning Spatial (Mean Across
Three Tests), Explicit Awareness of the Base-Rate

Shift (Yes = 1, No = 0), and Amount of Strategy
Adaptivity (Block 4 Minus Block 7) in Experiment 1

Working Inductive Aware
Memory Reasoning of Shift?

Inductive reasoning .45
Aware of shift? 2.27 2.33
Adapt amount 2.06 2.08 .44

Note—Correlations with | r | . .26 and | r | . .35 are significant at p ,
.05 and p , .01, respectively.

Figure 4. Mean (and SE ) strategy use for the aware and un-
aware participants within each block of Experiment 1.
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tween adaptivity and awareness, thus providing relevant
information regarding the causality of the relationship.

A second contribution of Experiment 1 was that it pro-
vided some evidence against a direct relationship between
working memory and strategy adaptivity—in other words,
strategy selection appears to not require storing detailed
information about strategy successes and failures in work-
ing memory. Of course, one must be careful about con-
clusions drawn from null results, especially in a correla-
tional study with N = 56. The 95% confidence interval for
the correlation between working memory and adaptivity
is (2.32, .21). Thus, it is possible that there is actually a
small positive correlation. In Experiment 3, we reexam-
ined this relationship by using a different estimator of
working memory capacity and by manipulating working
memory load with a secondary task.

The negative correlation between awareness and in-
ductive reasoning deserves further comment. Why would
apparently more intelligent people seem to have per-
formed worse in the task? In resolving this puzzle, there
are several additional pieces needed. First, this task was
quite difficult overall, and there is no trick that will guar-
antee very good performance. Overall, the participants
had solved the problems in fewer than five moves for only
51% of the problems. In this kind of situation, the more
intelligent participants may have been busy trying to fig-
ure out a good strategy in a situation in which there was
no good strategy and thus may have missed the relatively
simple strategy of just following the base rates. Alterna-
tively, the more intelligent participants might have be-
come bored by this task in which all the problems essen-
tially look alike and there is no clear basis for picking one
strategy over another. For this reason, in Experiments 2
and 3, we used a set of problems that varied in terms of
which strategy looked better. Finally, although adaptivity
was positively related to overall task performance (r =
.47, p , .001, with mean success rate across all blocks),
inductive reasoning was weakly positively related to over-
all task performance (r = .2, p , .15). Thus, more intel-
ligent people did not perform worse overall.

EXPERIMENT 2

The goal of Experiment 2 was to provide more infor-
mation about the role that awareness plays in strategy
adaptivity. In the posttask debriefing, participants were
again asked whether they were aware of the base-rate shift,
but this time they were also asked at what point they came
to this awareness: in the middle of the task, toward the
end of the task, or only by thinking back on their experi-
ences in response to the question. If participants primar-
ily became aware of the change toward the end of the ex-
periment or in the debriefing, or if those participants who
had a very late awareness were just as adaptive as those
having an early awareness, then it is very unlikely that
awareness actually produces the increases in adaptivity.

A second feature of Experiment 2 was that the prob-
lems varied more in their appearance than did those in
Experiment 1 in a particular way: Rather than having all
neutral problems, half the problems were biased toward
overshoot and half the problems were biased toward un-
dershoot. Previous research has shown that participants’
BST strategy selections are very sensitive to the looks of
the problem (Lovett & Anderson, 1996). It was possible
to have the problem looks be predictive or unpredictive
of which strategy is correct. Because both kinds of situ-
ations are interesting cases, this was manipulated across
participants. For the participants in the predictive condi-
tion, the problems could generally, but not always, be
solved using the strategy indicated by the problem looks.
For the participants in the nonpredictive condition, the
looks of the problem did not at all predict which strategy
should be selected. Previous research has established that
participants come to rely on the looks of the problem much
less when they prove to be unpredictive (Lovett & Schunn,
1999). In such a situation, participants may rely more
heavily on base-rate information and may be more aware
of shifts in base rates.

Method
Participants . Forty-six CMU undergraduates participated for

course credit and were randomly assigned in equal numbers to one
of two conditions (predictive or nonpredictive, to be described
below). Due to a computer problem, BST data were not collected
from 1 participant in the predictive condition.

Procedure. The BST was the same as that in Experiment 1, with
the following exceptions. Because the focus was on the transition
between the strongly overshoot-biased  block and the strongly
undershoot-biased block, Experiment 2 used only 60 BST problems
(i.e., deleted the first 10 problems at 50/50 success rates). Because
all previous studies with the BST have found no difference between
the ordering of undershoot first versus overshoot first, one fixed
order was selected for all participants: Overshoot was 70% success-
ful for the first 30 problems, and undershoot was 70% successful for
the second 30 problems.

Within each block of 10 problems, half the problems were per-
ceptually biased toward overshoot and half were biased toward un-
dershoot. If the three sticks have lengths a, b, and c, and the goal
stick has length g, this bias was operationalized as having (b 2 g) 2
( g 2 c) in the range [45,55] pixels for undershoot biased problems
and in the range [255, 245] pixels for overshoot biased problems.
For example, a problem with building sticks of lengths 16, 256, and
60 and a goal length of 133 is biased toward undershoot, because
the stick c brings one 50 pixels closer to the goal than does stick b.
Again, problems did not repeat. In the predictive condition, the looks
of the problem were 73% predictive in each block (i.e., problems
could be solved by the strategy suggested by the perceptual cues
73% of the time). In the nonpredictive condition, the looks of the
problem were 53% predictive in each block—it was impossible to
achieve exactly 50% predictivity using 30 problems and success
base rates of 30% or 70% overshoot.

Rather than assessing awareness of the base-rate changes with
open-ended questions administered verbally, Experiment 2 used a
written multiple-choice format precisely targeting awareness of
base-rate changes in overshoot and undershoot proportions. Specif-
ically, the participants were given a brief definition of the undershoot
and overshoot strategies and were then asked whether the propor-
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tion of problems that could be solved by undershooting was higher,
lower, or the same at the end of the experiment as at the beginning
(three-alternative forced choice). Next, the participants were asked
when they noticed this pattern: “just now by thinking back over my
experience,” “in the middle of the experiment,” “towards the very end
of the experiment,” or “not applicable— there wasn’t any pattern.”

The participants were not given any psychometric tests in this ex-
periment. 

Results
Sensitivity to problem looks. In contrast to Experi-

ment 1, all of the problems in Experiment 2 were biased
such that either undershoot or overshoot looked like it
would be the more successful strategy. The participants
were quite sensitive to this aspect of the task. They usually
selected overshoot when overshoot looked best (mean
overshoot rate = .82) and usually selected undershoot
when undershoot looked best (mean overshoot rate = .26).
This bias held even when the looks were not predictive
of which strategy would be correct (means of .83 and .25
in the predictive condition, and .81 and .26 in the nonpre-
dictive condition).

Overall adaptivity. Figure 5 presents the mean pro-
portion of overshoot strategy use within each block of 10
trials for each condition. The participants began the exper-
iment with no bias toward either strategy and gradually de-
veloped a preference for the more successful strategy. As
the figure demonstrates, there was a significant effect of
block [F(5,215) = 13.7, MSe = 0.020, p , .0001], no ef-
fect of condition (predictive/nonpredictive) [F(1,43) , 1],
and a nonsignificant interaction [F(5,215) = 1.7, MSe =
0.02, p , .15]. More specifically, there was no difference
between the conditions in the size of the strategy shift
between the third and sixth blocks (mean strategy shifts
of .18 and .21 in the predictive and nonpredictive condi-
tions, respectively) [F(1,43) , 1, MSe = 0.06]. For the
remaining analyses, we pooled across the predictive and
nonpredictive conditions, since the behavior in the two
conditions was quite similar and there were no significant
interactions.

Awareness and adaptivity. On the basis of their re-
sponses to the awareness questionnaire, the participants
were divided into four groups: those indicating the cor-
rect direction of change and reporting awareness of this
pattern in the middle of the experiment (correct imme-
diate, n = 13), those indicating the correct direction of
change and reporting awareness at the end of the exper-
iment or just when the question was asked (correct later,
n = 11), those indicating the wrong direction of change
(incorrect, n = 10), and those reporting that no change
had occurred (unaware, n = 11).

Figure 6 presents the mean adaptivity (proportion
overshoot use in Block 3 minus proportion overshoot use
in Block 6) as a function of awareness. An ANOVA of
awareness on adaptivity was only marginally significant
[F(3,41) = 2.1, MSe = 0.052, p , .1]. However, as Fig-
ure 6 reveals, there was considerable variability in the in-
correct group, which likely reflected a mixture of partic-
ipants who were actually aware of the correct change but
misremembered or misresponded on the questionnaire
and participants who were unaware of a change. Remov-
ing the incorrect participants, the overall ANOVA was sta-
tistically significant [F(2,32) = 4.9, MSe = 0.036, p , .02].
Although all groups showed nonzero mean adaptivity, only
the participants in the correct immediate group showed
higher levels of adaptivity (Bonferroni–Dunn ps , .05,
for both contrasts against correct later and unaware). The
participants who became aware of the change only at the
end of the experiment or when asked the awareness ques-
tion showed no more adaptivity than those participants
unaware of the change (Bonferroni–Dunn p . .9).

Discussion
In Experiment 2, awareness was again correlated with

adaptivity, even when a more complex set of non-neutral
problems was used. Thus, even when participants have
relevant information to which they can attend, awareness
of base-rate changes is an important correlate of adaptiv-
ity. More importantly, in Experiment 2, there was evi-
dence that only immediate awareness was correlated with
greater adaptivity. However, it is important to note that
this evidence was only a correlation and did not establish
a causal relationship between awareness and adaptivity.

EXPERIMENT 3

The goal of Experiment 3 was to further investigate
the apparent lack of a relationship between working
memory and adaptivity from Experiment 1. First, rather
than simply examining the correlations between individ-
ual differences in capacity and individual differences in
strategy adaptivity, we manipulated available working
memory through a dual-task manipulation in Experi-
ment 3. Second, we used a verbal working memory test
in Experiment 3 (in contrast to the spatial working mem-
ory test of Experiment 1) and a different method for es-
timating individual differences in working memory ca-
pacity. Instead of administering a psychometric test and

Figure 5. The mean proportion (and SE ) of overshoot use
within each block for each condition in Experiment 2.



AWARENESS, WORKING MEMORY, AND ADAPTIVITY 261

using a summary of each participant’s results to measure
working memory capacity, we compared each partici-
pant’s results on a memory task with the output of a com-
putational model. The model posits that working mem-
ory capacity is a special kind of attentional activation
directed at memory items related to the current goal,
hence making these items more accessible relative to
other items in memory. Within the model, there is a very
precise quantitative relationship between the attentional/
working memory parameter (W ) and accuracy of recall,
and this precise relationship depends on the precise tim-
ing details of the experiment (i.e., interstimulus delays,
study–test lags, etc.). Thus, one can easily estimate the W
parameter for a given person using his or her accuracy data
in a well-controlled situation. Estimating working mem-
ory capacity in this fashion has been found to produce
highly accurate and cross-situationally predictive estimates
of working memory (Daily, Lovett, & Reder, in press;
Lovett, Reder, & Lebiere, 1999).

Method
Participants . Forty-four CMU undergraduates participated for

course credit and were randomly assigned in equal numbers to one
of two conditions (high load or low load, to be described below).
Due to a computer problem, BST data were not collected from 2 of
the participants in the low-load condition.

Procedure. The problems for the BST were taken from the pre-
dictive condition of Experiment 2 (i.e., 60 problems that were all bi-
ased in looks, the looks were 73% predictive, and base rates shifted
from 70% overshoot to 30% overshoot across blocks). 

The same awareness-debriefing questionnaire was used as that in
Experiment 2. In addition to this awareness questionnaire, the par-
ticipants were asked to rate the frequencies with which they used
four common strategies. Although the strategies were explained in
more detail to the participants, the four strategies, briefly named,
were the following: undershoot, overshoot, hill-climbing (i.e., se-
lect the stick that looks like it will bring you closest to the goal
length), and select what worked on the previous trial. The participants

rated their use of each strategy on a 5-point Likert scale, with the
five points labeled: always, usually , fairly often, rarely, and never.
The participants’  responses were then recoded as a number from
1(always) to 5(never). The goal of asking the participants about
their strategies was to examine whether the strategies that they used
were systematically different as a function of working memory ca-
pacity or load condition.

All participants were given a secondary task to perform while
solving the BST problems. This task involved processing and re-
sponding to auditorally presented items and, depending on the con-
dition, maintaining certain items in memory. The items were a list
of as and bs presented at the rate of one every 3 sec. The partici-
pants in the low-load condition were asked to press the “z” key
whenever an a was heard and the “x” key whenever a b was heard.
The participants in the high-load condition were asked to press the
“z” key whenever the current letter was the same as the previous let-
ter and the “x” key whenever the current letter was not the same as
the previous letter. Thus, the participants in the low-load condition
did not need to remember what the auditory stimulus was after a re-
sponse was made, whereas the participants in the high-load condi-
tion always had to remember what the previous auditory stimulus was.

As soon as a letter was presented auditorally, a red circle ap-
peared at the bottom of the computer screen. The red circle indi-
cated that a key response was required. If the participant made a
correct response, the circle disappeared. If the participant made an
incorrect response, the circle remained and the participant could
make another response. The keypresses were made with the left
hand; the right hand controlled the mouse, which was used for solv-
ing the BST problems.

The participants were given instructions and practice on the sec-
ondary task before beginning instructions on the BST. They prac-
ticed the secondary task until they made 20 consecutively correct
responses or until 120 trials had passed. During the BST problem
trials, the participants were given a self-timed rest period every 10
BST problems. During the rest period, the participants were also
presented with statistics regarding their performance on both tasks:
proportion of BST problems solved in five or fewer moves, pro-
portion of secondary task trials answered correctly, and proportion
of secondary task trials answered on time (i.e., before the next stim-
ulus occurred). If less than 90% of responses (to the secondary task)
were on time or if less than 80% of them were correct, the partici-
pants were encouraged to try harder.

The working memory task was also administered on the com-
puter. This task was a modified digit span (MODS) task developed
by Lovett et al. (1999) that is a variant of one developed by Oakhill
and her colleagues (Yuill, Oakhill, & Parkin, 1989). In general,
modif ied span tasks require participants to perform some other ac-
tivity concurrently with the test of memory span (Daneman & Car-
penter, 1980; Turner & Engle, 1989), and, as such, they tend to pre-
vent participants from using different strategies that obscure
differences in working memory capacity. In the MODS task, par-
ticipants must read a sequence of letters and digits aloud while
maintaining the digits in memory for later recall. Trials vary in the
number of digits that must be recalled (from 3 to 6), and perfor-
mance is measured as a proportion of trials at each set size that the
participant recalls perfectly (i.e., correct digits in the exact order of
presentation). These performance data are then used in conjunction
with the computational model of the MODS task in order to esti-
mate the best-fitting working memory capacity parameter for that
individual (see Appendix B). The MODS task and the BST were ad-
ministered in counterbalanced order across participants.

Results
Manipulation check. As an indication that the high-

load condition was more difficult, the participants made

Figure 6. Mean strategy adaptivity (proportion overshoot in
Block 3 minus proportion overshoot in Block 6) and SE for each
explicit awareness group in Experiment 2.
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significantly more errors on the secondary task in the high-
load condition than in the low-load condition (mean error
rates of .26 and .11, respectively) [F(1,40) = 7.2, MSe =
0.028, p , .01].

Overall adaptivity. To examine the effects of individ-
ual differences in working memory capacity, the partici-
pants were divided into high- and low-capacity groups
using a median split on the W estimates obtained from
the computational modeling fit, as described earlier.2 A
2 (high capacity/low capacity) 3 2 (high load/low load)
ANOVA on adaptivity (mean overshoot use in Block 3
minus mean overshoot use in Block 6) found no effect of
working memory capacity, no effect of condition, and no
interaction (Fs , 1). As Figure 7 reveals, the only hint of
an effect is that high-capacity participants in the high-load
condition were less adaptive than were the low-capacity
participants.

One might argue that the range of working memory
capacity is restricted because all the participants were
undergraduates at CMU. Yet, there have been many suc-
cessful studies of individual differences in working mem-
ory using this same participant pool (e.g., Just & Car-
penter, 1992; Lovett et al., 1999; Shah & Carpenter, 1995).
Alternatively, one might argue that the large clumping of
participants in a middle range of capacity dilutes the analy-
ses. However, even if an extreme groups design is used in
the analyses, throwing out the middle third of the working
memory capacity participants, the effect of working
memory capacity remains nonsignificant [F(1,28) , 1],
with mean adaptivity levels of .11 and .12 for high- and
low-capacity participants, respectively. Moreover, the cor-
relation between adaptivity and working memory capac-
ity is r = 2.02.

Were the high- and low-capacity participants differ-
entially allocating their resources? Examining perfor-
mance on the secondary task, the high-capacity partici-
pants had neither higher accuracies (mean accuracies of
.82 for both groups) nor faster latencies (mean median la-

tencies of 0.83 and 0.84 sec for the high- and low-capacity
groups, respectively) than the low-capacity participants
(Fs , 1). Thus, both groups of participants appeared to
devote equal resources to the secondary task. However,
examining performance on the secondary task only in the
high-load condition alone, the high-capacity participants
had a weak trend toward higher accuracies (.81 vs. .69)
[F(1,16) = 1.99, MSe = 0.03, p , .2] and faster latencies
(0.91 vs. 1.01 sec) [F(1,16) = 1.51, MSe = 0.03, p , .25].
One could interpret this as simply a consequence of their
higher capacities. Alternatively, one might interpret this
trend as a tendency for the high-capacity participants to
devote more resources to the secondary task in the high-
load condition (and thus fewer resources to the primary
task). Yet, if we remove any accuracy and latency differ-
ences by restricting our analyses to the participants with
mean accuracies higher than .8, the high-capacity partici-
pants were still just as adaptive (if anything less adaptive)
as the low-capacity participants in the high-load condition
(mean adaptivities of .05 and .12; F , 1). Thus, it appears
that the lack of differences in adaptivity is not likely to be
attributable to differential allocation of resources.

Ideally, one would have wanted to have identical
performance in the secondary task. Unfortunately, the
high-load condition had lower performance levels on the
secondary task. Thus, one might argue that the lack of
differences in the BST across conditions was due to these
performance differences (i.e., the participants adjusted
their secondary task performance to maintain equal pri-
mary task performance levels). Subjectively, this explana-
tion seems unlikely, since the high-load task was a much
harder task than the low-load task, even with these com-
pensations. The participants often reported forgetting how
they had started a problem in the high-load condition,sug-
gesting that it had effectively targeted working memory.
Yet, to examine statistically whether the differences in sec-
ondary task performance could explain the lack of condi-
tion effects, an analysis of covariance was conducted
predicting strategy adaptivity in the BST, with condition
as a factor and secondary task accuracy as a covariate.
Although there is a marginal predictiveness of secondary
task accuracy [F(1,37) = 1.97, p , .2], there continues to
be no suggestion of an effect of condition [F(1,37) , 1].
The same result was obtained when secondary task laten-
cies were used as a covariate. Thus, the lack of differences
in adaptivity across conditions appears not to be attribut-
able to differences in secondary task performance.

Another possibility is that the high-capacity partici-
pants were using more demanding strategies to solve the
building sticks problems than were the low-capacity par-
ticipants. Similarly, the participants in the high-load con-
dition may have switched to using less demanding strate-
gies for the building sticks task. Thus, they may have
been no more likely to notice the base-rate shifts, not be-
cause working memory capacity is irrelevant to strategy
adaptivity but because of differential strategy use. To ad-
dress this issue, the participants’ were asked about their
use of four different strategies: overshoot, undershoot,

Figure 7. Mean strategy adaptivity (proportion overshoot in
Block 3 minus proportion overshoot in Block 6) and SE as func-
tion of working memory capacity and condition in Experiment 3.
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hill-climbing, and select what worked on the previous
trial. Always selecting either overshoot or undershoot is
the less demanding strategy, whereas hill-climbing re-
quires spatial comparisons between goal and target, and
selecting what worked previously requires a memory re-
trieval. However, there were no differences between ei-
ther the high-capacity or low-capacity participants or the
high-load or the low-load conditions in terms of the use of
these four strategies (c2s , 1). Thus, it appears unlikely
that the lack of differences among participant types or
groups was caused by changes in strategy use.

Awareness and adaptivity. In contrast to Experi-
ment 2, the great majority of the participants in Experi-
ment 3 were unaware of the base-rate changes. Table 2
presents the number of participants with each level of
awareness. Only 12% of the participants fell into the cor-
rect immediate group. This rate is considerably lower than
the 28% categorized correct immediate in Experiment 2
[c2 (1) = 3.6, p , .06], which used essentially the same
BST problems. Thus, the secondary task kept many of
the participants from being able to attend to the base-rate
changes.

Because so few participants were in the correct imme-
diate group, there was little power in the analysis of the
relationship between awareness and adaptivity. There-
fore, it is not surprising that the effect of awareness on
adaptivity (difference in overshoot use between Blocks 3
and 6) was not significant [F(3,28) = 1.4, MSe = 0.058,
p , .3] (see Figure 8). As in Experiment 2, the incorrect
participants were likely to have been a mixture of correct
immediate and unaware participants, and this may explain
their high performance. Also as in Experiment 2, the cor-
rect later participants had adaptivity levels more similar
in adaptivity to the unaware participants than to the cor-
rect immediate participants.

Discussion
Experiment 3 provided further evidence that working

memory may not play a large role in adaptivity. As in Ex-
periment 1, individual differences in working memory
capacity did not correlate with individual differences in
adaptivity. Moreover, the working memory load manipula-
tion did not produce changes in strategy adaptivity either.

The adaptivity and awareness results were consistent
with those of Experiment 2, although not as strong. The
demands of the secondary task seemed to reduce aware-
ness of the base-rate change. These same demands may
also have reduced the ability of the aware participants to
use the explicit awareness to influence their behavior

(mean adaptivity levels of .33 and .22 for correct imme-
diate participants in Experiments 2 and 3, respectively).
By contrast, for the unaware participants, there were no
differences in adaptivity (mean adaptivity levels of .10
and .09 in Experiments 2 and 3, respectively). Thus, it
appears that, for unaware participants, the presence of a
secondary task does not affect their more implicit strat-
egy adaptivity.

One possible explanation of the reduction in explicit
awareness in Experiment 3 is that working memory ca-
pacity is important for gaining explicit awareness. How-
ever, the addition of a secondary task does more than im-
pact working memory resources; it also manipulates
attentional focus and the amount of spare processing time
one has. These other factors are plausible candidates for
the source of the reduction in awareness. Moreover, the
working memory capacity explanation is inconsistent
with the lack of differences in awareness levels between
the two conditions in Experiment 3.

GENERAL DISCUSSION

Across the three experiments, a consistent set of re-
sults emerged. First, strategy adaptivity does not appear
to be directly related to working memory capacity (either
individual differences in working memory capacity or
through dual-task manipulations of available working
memory). Second, explicit awareness of changes in the
base rates of success appears to be related to larger strat-
egy adaptivity to those changes. However, it is important
to note that even the unaware do adapt to changes in base
rates of success.

Both sets of findings come with a cautionary note. Al-
though approached from a variety of methods, the results
regarding memory capacity are null results and thus
must be treated carefully. For example, we have not ruled
out the possibility that base rates of success are stored in
working memory but require so little resources that even

Table 2
Number of Participants With Each Level of Awareness of the
Base-Rate Changes Within Each Condition of Experiment 3

Correct Correct
Condition Immediate Later Incorrect Unaware Total

Low load 3 3 6 10 22
High load 2 5 3 10 20
Total 5 8 9 20 42

Figure 8. Mean strategy adaptivity (proportion overshoot in
Block 3 minus proportion overshoot in Block 6) and SE for each
explicit awareness group in Experiment 3.
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low working memory span individuals in high memory
load conditions still have enough working memory to
store the base-rate information or that there were other
tradeoffs (as suggested in Figure 7) that we were unable
to identify statistically.

With respect to the role of awareness, it is important to
note that all of our evidence is correlational and involves
self-report data. It remains possible that increases in adap-
tivity produce increases in awareness level—that partic-
ipants were simply reflecting on their own behavior and
making attributions rather than noticing changes in the
environment per se. Future research will have to study the
effects of manipulating awareness on strategy adaptivity.

Similar to our findings, the implicit learning literature
indicates a partial role for awareness in learning. For ex-
ample, sequence learning can occur without explicit
awareness of what is being learned (Nissen & Bullemer,
1987), but it does require that some attention is given to
the items to be learned (Hartman, Knopman, & Nissen,
1989). Clark and Squire (1998, 1999) found that partici-
pants can be conditioned to noncontiguous eye-blink puffs
and tones if and only if the participants are aware of the
relationship between the tones and the puffs (although see
LaBar & Disterhoft, 1998, for an alternative view).

Our findings suggest the following account of strat-
egy choice. With enough time and thought, some partic-
ipants (possibly the participants with greater inductive
reasoning ability) become aware of base-rate changes.
This awareness causes them to undergo a stronger shift
in strategy preference, similar to Reder’s (1988) findings
that, with explicit instructions, participants can change
their strategy preferences. By contrast, when participants
are unaware of the base-rate changes, the strategy prefer-
ences do change, in a weaker more implicit fashion. This
implicit strategy adaptivity is unaffected by differences
in working memory capacity or by dividing attention with
a secondary task.

Different aspects of this account are consistent with
each of the previous accounts of strategy selection. The
role of explicit awareness is consistent with the meta-
cognitive accounts of cognitive control (Koriat, 1993;
Metcalfe, 1994; Nelson & Narens, 1990). However, strat-
egy adaptivity even in the absence of explicit awareness
is consistent with the implicit accounts of strategy se-
lection (Anderson & Lebiere, 1998; Lovett & Anderson,
1996).

Our present findings appear to be inconsistent with the
claims that we have made previously that metacognitive
control should be entirely implicit (Reder & Schunn,
1996). In that paper, we argued that strategy selection
was governed by implicit memory, whereas here we have
evidence that suggests a role of explicit awareness. How-
ever, the implicit control account is not entirely inconsis-
tent with the present findings. First, people do adapt, even
when unaware. In other words, we were partially correct.
Second, in the present study, we focused only on strategy
adaptivity to changes in base rates of success. People
must also adapt their strategy use to other factors. For ex-

ample, the looks of a problem, called an intrinsic factor
(Reder, 1987), also influences strategy choice. For exam-
ple, in our Experiments 2 and 3, the participants were in-
fluenced by whether the problem looked like it could be
solved more quickly using undershoot versus overshoot
strategies. In the BST domain, participants come with the
prior expectations that the looks of the problem will pre-
dict which strategy will be successful. In other domains,
however, participants must learn which features are pre-
dictive. It is differences in this learning that we call dif-
ferences in intrinsic adaptivity. Schunn and Reder (1998)
found that individual differences in intrinsic adaptivity
appeared to be attributable entirely to differences in task
expertise and speed–accuracy tradeoffs, whereas indi-
vidual differences in extrinsic adaptivity were not attrib-
utable to those two factors. Thus, intrinsic adaptivity may
be purely implicit, whereas extrinsic adaptivity is typically
implicit but may be circumvented by awareness.

Our findings on the role of explicit awareness may
have methodological consequences for both experimen-
tal and computational work on strategy adaptivity. It ap-
pears that aggregate performance data will always con-
tain a mixture of aware and unaware participants, whose
performance differs substantially. By modeling the ag-
gregate, researchers may develop models of strategy se-
lection that reflect the performance of no subgroup (Estes,
1956; Maddox, 1999; Siegler, 1987). Even worse, con-
sider the case of a manipulation that has its effect primar-
ily on whether participants are aware of a base-rate change
rather than directly on the amount by which they adapt
(e.g., the addition of a secondary task). A model that at-
tempts to capture the effect of such a manipulation with-
out taking into account the mediating awareness variable
may be inaccurate.

The apparent lack of a relationship between working
memory and explicit awareness in our f indings is sur-
prising. Initially, one might have expected either that
both working memory and explicit awareness play a role
in strategy selection or that neither play a role. However,
our evidence suggests that explicit awareness, but not
working memory, appears to play a role. Our findings
raise the possibility that explicit awareness can act on in-
formation stored outside of working memory, a contro-
versial claim that deserves additional research.
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NOTES

1. For this goodness-of-fit test, the .75–1.0 bin was pooled into the
.50–.75 bin because the expected frequency was less than 5 for the
higher bin.

2. The same results are found when working memory is treated as a
continuous variable.
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APPENDIX A
Individual Difference Tests Used in Experiment 1

In the spatial working memory test, participants must pro-
cess and remember a sequence of three 3 3 3 square matrices,
each of which has only one square (of the nine possible) col-
ored in. On a given trial, the participants are shown three ma-
trices and must f irst decide whether the equation Matrix 1 +
Matrix 2 = Matrix 3 is true or false (e.g., upper-left filled-in
plus center filled-in equals a matrix with upper-left and center
f illed-in). After several such matrix equation trials are an-
swered, participants are prompted to recall the matrices (each
sum of Matrix 1 + Matrix 2) from that group of trials. A 3 3 3
matrix with numbers (1–9) in each square appears. Participants
must type in the numbers one at a time corresponding to each
of the squares shaded in the memorized matrices (e.g., 1 and 5
for a matrix with upper-left and center filled-in). To receive full
credit, these numbers must be in the sequence in which the ma-
trices were originally presented. The test is divided into two
sets, each made up of groups of items containing 3, 4, and 5
memorized matrices and solved equations. The primary mea-
sure is the mean percentage of matrices recalled with all items
in the correct order.

The three inductive spatial tests were as follows. In the fig-
ure sets test, participants are presented with three sets of fig-
ures. Two of the sets will be related according to various themes.

Participants must determine which set is the odd set. Some of
the various patterns include figures formed with straight lines
as opposed to curved lines, internal shading versus no shading,
and so on. There are 10 items that must be solved within a 5-
min period. In the figure series test, participants are shown a
series of shapes at the top of the screen and must choose the
next shape occurring in the series from three numbered alter-
natives. As a simplified example, if the series was: “/ * // ___ ,”
the answer would be “**.” There are 10 problems that must be
solved within a 5-min period. In the figure matrices test, par-
ticipants are shown a 3 3 3 matrix in which a figure is con-
tained in all but one of the cells, similar to the Raven’s pro-
gressive matrices (Raven, Court, & Raven, 1977). There are
patterns or rules that apply across the rows and down the
columns of each matrix from which participants must induce
what figure belongs in the empty cell. For example, if the three
rows were “> >> >>>, | || |||, < << ___,” then the answer would
be “<<<.” The matrix and eight alternative responses are shown
on the screen simultaneously. Some of the rules and patterns
used involve gradual shading of f igures, successive additions or
deletions to figures, rotation of figures, and so on. There are 9
problems that must be solved within a 10-min period.

APPENDIX B
The Procedure Used to Estimate Working Memory Capacity Parameter, W

The first steps in estimating the W parameter were com-
pleted before this experiment was conducted. These first steps
include developing a computational model of the MODS task
and establishing values for the other parameters in the model.
Developing the model consists of specifying a set of processes
for performing the MODS task that are designed to mimic
those that participants use. These processes are specified in the
ACT-R framework (Anderson & Lebiere, 1998). When the
model is run through the simulated experiment (with the exact
same timing details as the participants experienced), these pro-
cesses are executed by a general set of mechanisms (provided
by ACT-R) that enable the model to produce simulated actions
(e.g., reading a letter, outputting a recalled digit) with particu-
lar probabilities and latencies. These simulated data (e.g., prob-
ability of digit recall) are then analyzed in a fashion similar to
the participants’ data. Past research has shown that the model’s
predictions offer a good fit to participants’ data, at both the ag-
gregate level and the individual subject level (Daily et al., in
press; Lovett, Daily, & Reder, 2000; Lovett et al., 1999).

Because our Experiment 3 used the same procedure and tim-
ing as this past work, the model and the global parameter val-
ues used previously could be used here without modification.

We then apply the model to the present data set and estimate a
best-fitting value of the W parameter for each participant’s in-
dividual data. This was accomplished by varying W from 0.7 to
1.3 (in increments of 0.05) and generating the model’s perfor-
mance profile under each value of W. Here, a profile consisted
of four numbers: the percentages of trials recalled perfectly for
set sizes 3, 4, 5, and 6. These profiles were then matched to the
corresponding data from participants in the present experi-
ment. The W value that produced the smallest sum of squared
errors between the model profile and each participant’s data
was defined to be that participant’s estimated W value. 

In simplest terms, the W value for each participant provides
an overall measure of his/her performance on the MODS task.
This measure is not equivalent to a simple average, however. W
is a theoretically motivated measure of attentional capacity that
relates to performance in a nonlinear way. Moreover, the W
value estimated for a particular participant’s data takes into ac-
count the shape of his/her profile (i.e., the amount of decrease
in performance for higher set sizes). Other work has shown that
people with high versus low working memory capacity exhibit
different performance profiles as working memory demands
increase (Just & Carpenter, 1992).
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