
The QoSbox: A PC-Router for Quantitative Service
Differentiation in IP Networks ∗

Technical Report: University of Virginia, CS-2001-28

Nicolas Christin J̈org Liebeherr
Department of Computer Science

University of Virginia
Charlottesville, VA 22904

Abstract

We describe the design and implementation in UNIX-based PCs of the QoSbox, a configurable IP
router that provides per-hop service guarantees on loss, delays and throughput to classes of traffic. There
is no restriction on the number of classes or the specific service guarantees each class obtains. The
novel aspects of the QoSbox are that (1) the QoSbox does not rely on any external component (e.g.,
no traffic shaping and no admission control) to enforce the desired service guarantees, but instead, (2)
dynamically adapts packet forwarding and dropping decisions as a function of the instantaneous traffic
arrivals; also, (3) the QoSbox can enforce both absolute bounds and proportional service guarantees on
queueing delays, loss rates, and throughput at the same time. We evaluate the QoSbox in a testbed of
PC-routers over a FastEthernet network, and show that the QoSbox is a possible solution allowing for
incremental deployment to the problem of providing service differentiation in a scalable manner.

Key Words: High-Speed Networks, Quality-of-Service, Service Differentiation, BSD, PC-Routers.

∗This work is supported in part by the National Science Foundation through grants ANI-9730103 and ANI-0085955.

1 Introduction

Since its creation in the early 1970s, the Internet has adopted a “best-effort” service, which relies on the
following three principles: (1) No traffic is denied admission to the network, (2) all traffic is treated in
the same manner, and (3) the only guarantee given by the network is that traffic will be transmitted in the
best possible manner given the available resources, that is, no artificial delays will be generated, and no
unnecessary losses will occur.

The best-effort service is adequate as long as the applications using the network are not sensitive to
variations in losses and delays (e.g., electronic mail), the load on the network is small, and pricing by
network providers is not service-based. These conditions held in the early days of the Internet, when the
Internet only consisted of network connections between a handful of universities. However, since the late
1980s, these conditions do not hold anymore, for two main reasons. Firstly, an increasing number of different
applications, such as real-time video, peer-to-peer networking, or the World-Wide Web, to name a few, have
been using the Internet. These different applications have different needs in the service they must receive
from the network. Secondly, the Internet has switched from a government-supported research network to a
commercial entity in 1994. Economics indicate that there may be a need for service-based pricing schemes
that can better recover cost and maximize revenue than a best-effort network [26]. These two factors have
created a demand for different levels of service, and it can be argued that finding a solution to the problem
of service differentiation in the network became critical to ensure the survival of the Internet.

The issues of service differentiation in the network are subsumed by the termQuality-of-Service(QoS).
One could think that QoS issues can be resolved by increasing the capacity of the network. Unfortunately,
this solution faces a major problem. The QoS received by an end-to-end traffic flow is bounded by the QoS
received at the link with the smallest capacity (i.e., bottleneck) on the end-to-end path. Thus, augmenting
the capacity of some links only moves the bottleneck to another part of the network, and consequently, only
changes the location of the problem, e.g., from the core to the edge of a network. In fact, the capacity of
the network links of the Internet has steadily increased in the past couple of years and only resulted in an
increase of the traffic that uses these links, without any QoS.

Numerous architectures for providing QoS have been proposed over the past decade. However, only
very few proposals have actually been deployed to some extent, in large part due to scalability concerns.
A large number of QoS proposals rely on complex arithmetic manipulations, which may cause scalability
problems on the data path, and/or complex state information, which may cause scalability problems on the
control path.

Nowadays, with the increasing computational power of regular PCs, and the understanding of the afore-
mentioned scalability issues, one can use PCs as routers to implement prototypes of scalable QoS archi-
tectures. In this paper, we describe the design and implementation in UNIX-based PCs of the QoSbox, a
configurable IP router that provides per-hop service guarantees to classes of traffic. The novel aspects of the
QoSbox are that (1) the QoSbox does not rely on any external component such as traffic shaping or admis-
sion control to enforce the desired service guarantees, which allows for deploying a network of QoSboxes
in an incremental manner, but instead, (2) adapts dynamically packet forwarding and dropping decisions
dependent on the instantaneous traffic arrivals; and (3) the QoSbox can enforce both absolute bounds and
proportional service guarantees on queueing delays, loss rates, and throughput at the same time.

This paper is organized as follows. In Section2, we present an overview of the QoSbox, and describe
the mechanisms used by the QoSbox. In Section3, we discuss implementation issues. In Section4, we

2

assess the efficiency of the QoSbox in a testbed of PC-routers. In Section5, we discuss the limitations of
our architecture and lessons learned from the implementation. In Section6, we present the related work.
Finally, we summarize the current status of the project and draw brief conclusions in Section7.

2 The QoSbox

In this section, we discuss the architecture of the QoSbox. To that effect, we first present a high-level
overview of the QoSbox. We then describe the requirements the QoSbox architecture has to satisfy, and
outline the mechanisms the QoSbox relies on.

2.1 Overview

The QoSbox is a configurable IP router that provides per-hop service differentiation to classes of traffic
flows with similar QoS requirements. More specifically, the QoSbox can provide any mix of the following
per-class guarantees at a given output link:

• Upper bound on the queueing delay encountered by packets from the same class. For instance, Class-1
Delay≤ 5 ms means that no Class-1 packet should experience a queueing delay exceeding 5 ms.

• Upper bound on the loss rate. For instance, Class-3 Loss Rate≤ 1%.

• Lower bound on the throughput. For instance, Class-1 Throughput≥ 10 Mbps.

• Proportional differentiation between the delays of two classes. For instance, Class-3 Delay≈ 2·Class-
2 Delay.

• Proportional differentiation between the loss rates of two classes. For instance, Class-2 Loss Rate≈
2·Class-1 Loss Rate.

All service guarantees are provided over a finite-length time interval, orepoch, whose beginning is
defined as the last time the output queue was not backlogged. Similarly, the loss rate and throughput are
computed over the current epoch.

The key difference between the QoSbox and other QoS architectures is that the QoSbox does not rely
on any external mechanism or component to enforce the desired service guarantees. Different from the
Differentiated Services architecture (DiffServ, [8]), for instance, there is no need for bandwidth brokers,
or traffic shapers, which regulate the traffic arrivals at a given router. Instead, the QoSbox adapts packet
scheduling and dropping decisions in function of the instantaneous traffic arrivals. The main limitation of
an approach dynamically adapting to the instantaneous traffic arrivals is that, in cases caused for instance by
a sudden large burst of traffic, it may be impossible to satisfy all delay bounds and loss rate bounds at the
same time. In such cases, some bounds have to be temporarily relaxed. Thus, an order of relaxation of the
service guarantees must be chosen at design time. We will further discuss the limitations of our architecture
in Section5.

To illustrate the difference between the QoSbox and other available QoS architectures, suppose one
wants to provide a given class of traffic, say Class 1, a minimum throughput off1 = 10 Mbps and a delay
bound ofd1 = 10 ms at a given router in the network. Using existing schedulers such as Class-Based

3

(1) interface fxp0 bandwidth 100M qlimit 200 jobs

(2) class jobs fxp0 high_class NULL priority 0\

adc 2000 rdc -1 alc 0.01 rlc -1 arc 10M

(3) class jobs fxp0 med2_class NULL priority 1\

adc -1 rdc 2 alc -1 rlc 2 arc -1

(4) class jobs fxp0 med1_class NULL priority 2\

adc -1 rdc 2 alc -1 rlc 2 arc -1

(5) class jobs fxp0 low_class NULL priority 3 default\

adc -1 rdc 2 alc -1 rlc 2 arc -1

(6) filter fxp0 high_class 0 0 0 0 0 tos 1

(7) filter fxp0 med2_class 0 0 0 0 0 tos 2

(8) filter fxp0 med1_class 0 0 0 0 0 tos 3

(9) filter fxp0 low_class 0 0 0 0 0 tos 4

Figure 1:Example of a QoSbox configuration file.The configuration file defines (1) the properties of the
output interface, (2) the guarantees each class of traffic receives and (3) the filters used by the classifier to
map packets to given classes of traffic. Line numbers are not part of the configuration file, but are used here
for readability purposes.

Queueing (CBQ, [17]), the router needs to know the maximum Class-1 backlog that can be present at any
time,maxtB1(t), and infer the minimum throughputmaxtB1(t)/d1 required to ensure that the delay bound
is never violated. Since the minimum throughput a class must receive is a parameter statically configured
in CBQ, such an approach requires to have a static description of the traffic arrivals available at network
configuration time, which in turn requires to have a traffic shaper located at the ingress of the network that
ensures actual traffic arrivals conform to the traffic description. Conversely, using a QoSbox, the network
operator only needs to specify the QoS parameters, by means of a configuration file, and turn on the QoSbox
to obtain the desired service guarantees.

We give an example of such a QoSbox configuration file in Fig.1. The configuration file contains the
properties of the output interface(s) on which QoSbox traffic control must be performed. In the example of
Fig. 1, the interface concerned,fxp0 , has a bandwidth of 100 Mbps and a buffer size of 200 packets. The
field jobs indicates that traffic control is performed by a variant of the JoBS algorithm [21] which is the
scheduling/dropping algorithm central to the QoSbox. The next set of configuration commands, in lines (2)–
(5) contains the service guarantees offered to each class. In this example, we see that Classhigh class

is given a delay bound, indicated by the keywordadc , of 2000 microseconds, no proportional delay differ-
entiation, as specified by the fieldrdc -1 , a loss bound of 1%, configured by the commandalc 0.01 ,
no proportional loss differentiation (rlc -1) and a guaranteed throughput of 10 Mbps (arc 10M). The
priority field simply indicates the class index. Classesmed1 class , med2 class , med3 class

are not offered delay or loss bounds, but are subject to proportional delay and loss differentiation, using a
factor of two in each case. For instance,med1 class packets should get queueing delays twice as long as
those experienced bymed2 class packets. Last, commands in lines (6)–(9) specify how packets should
be classified. In this example, we see that the only classification criterion is the Type-of-Service (TOS) field
of the IP header, recently renamed DiffServ Codepoint (DSCP, [22]). For instance, a value of 0x03 in the
DSCP field of an incoming packet indicates that the packet belongs to Classmed1 class .

4

Network B

Network C

Network D

Network A

bottleneck at the link
interconnecting Networks

B and C

bottleneck at the egress
link of Network D going to

Network C

bottleneck at the ingress
link of Network A

to end hosts
to end hosts

Figure 2:Positioning of the QoSboxes in a network of networks such as the Internet.The bottleneck
links are those at the entrance of Network A, connecting Networks B and C, and a link in the backbone of
Network D.

From this example, we infer that there are two immediate advantages of using a QoSbox. First, the
current trend of using TCP or TCP-friendly congestion control mechanisms [15] yields highly variable
sending rates at the sources. Consequently, the backlog at bottleneck links is generally highly variable.
A static configuration of the worst-case, as in CBQ, therefore results in under-utilizing network resources
such as bandwidth [30], and it is desirable to use instead an architecture dynamically adapting to changes
in the traffic load. Second, since the QoSbox does not require any external component, deployment and
configuration are relatively easy.

We present an example in Fig.2 to explain how the QoSbox can be deployed. First, we remark that QoS
is only needed at potential bottleneck points. Indeed, if a link is never congested, incoming packets can be
transmitted at once, using a First-Come-First-Served queueing policy, thereby getting a high-grade service
(no loss, low delay, high throughput). Hence, there is no reason to artificially delay the packets supposed
to travel on the link to satisfy service guarantees. Reports on the utilization of backbone links indicate that
backbone links are used at about 60% of their capacity on average [29], which tends to show that bottlenecks
are rarely present in the cores of the networks. Thus, we can identify three locations where a bottleneck can
occur: at the ingress link of a network, where all users may share a common trunk, as shown in the case of
Network A1 in Fig. 2, at the exchange points between two networks, such as the link between Networks B
and C, or at the egress link of a network, as shown for Network D. Placing QoSboxes to regulate the traffic
at the bottleneck links can ensure that QoS is enforced where it is needed, without generating any overhead
for links that are mostly idle. Additionally, the design of the QoSbox allows for incremental deployment,

1By “Network”, we refer here to what is generally called an Autonomous System (AS).

5

by first placing QoSboxes at the most severe bottlenecks, and, if feasible, generalize the use of QoSboxes to
links that are less likely to be congested.

Another potential use of the QoSbox concerns end-to-end service guarantees. By design, the QoSbox
only provides local, per-hop service guarantees. However, the service provided by a QoSbox, used in
conjunction with routing mechanisms that can perform route-pinning, such as MPLS [25], can be used to
infer end-to-end service guarantees, and select the most appropriate route for a particular application given
the service demands. A thorough inspection of the interaction of traffic engineering techniques (e.g., routing)
with the QoSbox to provide end-to-end service guarantees is outside the scope of this paper.

2.2 Requirements

With the objective of providing an easily deployable service architecture such as described above, the QoS-
box has to exhibit scalability properties, which are enforced by two scalability requirements. First, the state
information kept in the routers should be small (scalability on the control path). Second, the processing time
for QoS classification and scheduling should be small as well (scalability on the data path). The growing
number of flows present in the core of the network also suggests that there is a need for utilizing the existing
network resources as efficiently as possible, for instance, maximizing link utilization. We use the distinction
between control and data paths to refine the requirements the QoSbox has to satisfy.

Control path requirements. To limit the state information maintained on the control path, admission
control of traffic and/or traffic shaping are not permitted. In other words, noa priori traffic description is
made available to the QoSbox, which therefore has to dynamically adapt to the traffic demand. In a similar
effort to reduce control path complexity, we require that QoSboxes do not communicate control or signaling
information with their peers. In addition to limiting the processing overhead due to signaling, a second
advantage linked to this requirement is a more efficient use of bandwidth.

Data path requirements. We ensure scalability on the data path by first requiring that no per-flow packet
classification be performed. Per-flow classification means that each incoming packet must be inspected, in
order to be separated from packets belonging to other flows. As a second data path requirement, we need
to guarantee that the complexity of the scheduling primitives is independent of the number of packets or
flows backlogged at the router. Third, in an effort to maximize the utilization of the network resources,
the QoSbox must be able to support best-effort traffic. Therefore, (1) scheduling in the QoSbox must be
work-conserving, meaning that the backlog of packets at a QoSbox increases only at times when the output
link is busy transmitting, and (2) the dropping primitives must minimize packet losses.

The objective of the aforementioned requirements is to ensure that there exists some algorithm that can
adapt dynamically to the traffic demand, without suffering from any significant computational overhead,
regardless of the traffic demand. In this paper, we consider that computational overhead is negligible if
all operations performed on a per-packet basis (packet classification, packet enqueueing, and packet de-
queueing) can be carried out in less time than the average time needed to transmit a packet on the output
link.

6

Rate
allocation

and packet
dropping

�

(enqueue �)

Scheduler
(dequeue)

transmits
�

service
rates

service
guarantees

drops
�

classifier

incoming
packet

operations performed upon each
packet arrival

operations performed
upon each packet

departure

 reports queueing
delays

�

per-class
buffers

backlog,
loss rate,
arrivals

Figure 3:Architecture of an output queue in the QoSbox.The three main components are the packet clas-
sifier, in charge of storing incoming packets in the proper per-class buffer, the rate allocation and dropping
algorithm, and the scheduler, which forwards packets according to the service rates allocated.

2.3 Mechanisms

The mechanisms for service differentiation in the QoSbox are packet dropping and packet scheduling at the
output queues of the QoSbox. This is sufficient to achieve the desired service differentiation since traffic
control functions only at the entrance of a bottleneck link. In shared-memory routers such as PC-routers,
the throughput between the input queues and the output queues of a router is essentially determined by
processor speed and memory access speed, and is generally several orders of magnitude larger than the
throughput between the output queues and the next routers, which are limited by the output link capacities.
Therefore, the input queues are generally empty, and traffic control cannot be performed at the input queues.
Hence, from now on, we solely focus on the operations at the output queues.

All output queues in the QoSbox have the same structure, thus, without loss of generality, we now
consider a specific output queue. In Fig.3, we outline the architecture of such an output queue. Each class
of traffic is associated with a per-class buffer. When a packet is passed to the interface governing the output
link, a classifier looks up which class the packet belongs to and places the packet in the appropriate per-class
buffer. Note that the classifier does not need to identify the flow to which the incoming packet belongs,
but only the class to which the incoming packet belongs. We will see in Section3 that such an operation
is simple enough to be performed at high speeds. The per-class buffers have a finite size selected by the
network operator as follows. The maximum amount of traffic that can be held in each per-class buffer can
be fixed to a constant (separate buffers), or, alternatively, the maximum total amount of traffic backlogged
can be bounded (shared buffer).

After the incoming packet has been placed in a per-class buffer, the rate allocation and packet dropping
algorithm adjusts the service rates allocated to each class of traffic and possibly drops packets in order to
enforce the desired service guarantees. The computation of the service rates and packet drops is based on
the current backlog, arrivals, loss rate on the one hand, and on queueing delays reported by the scheduler on
the other hand. If needed, packets are dropped from the tail of each per-class buffer.

7

time

Bi(t)

total arrivals admitted
arrivals

transmissions
Dropped

t1 t2 t

C
la

ss
-

i T
ra

ffi
c

Di(t)

slope = service rate

t4t3
�

beginning of the current epoch

Figure 4: Overview of the dynamic service rate allocation and packet dropping algorithm.Di is the
delay andBi is the backlog. The service rate is dynamically adjusted at timest1, t2 andt4 in function of the
traffic arrivals, and traffic is dropped at timest2 andt3.

The key difference between the mechanisms used in the QoSbox and mechanisms used in other QoS
architectures is that here, a single algorithm is in charge of adapting to the current traffic demand both the
service rates and loss rates of all classes. The main argument in favor of using such a combined scheme lies
in the dependency between the backlog of a given class, the delay that packets from this class experience,
and the service rate allocated to this class. Indeed, the queueing delayDi experienced by the packet at
the tail of the Class-i buffer is equal toBi/ri if Bi is the Class-i backlog, andri the service rate allocated
to Classi. Thus, to reduceDi in order to satisfy a delay bound, one can either increaseri, or decrease
Bi. In other words, rate allocation and packet dropping can both be used as “handles” to provide service
differentiation.

As represented in Fig.4, we take a quantitative view of traffic to determine how to use these handles.
For each class, the QoSbox keeps track of the traffic arrivals, the arrivals that were admitted, and the trans-
missions since the beginning of the current epoch. As shown in Fig.4, at any time, the amount of traffic
dropped, from which the loss rate can be derived, is the vertical distance between the total arrivals curve and
the admitted arrivals curve. Similarly, the delay in Fig.4 is the horizontal distance between the admitted
arrivals curve and the transmission curve, and the backlog is the vertical distance between these two curves,
as illustrated for timet in Fig. 4. Additionally, the service rate is the slope of the transmission curve. With
these parameters, the rate allocation and dropping algorithm can dynamically decide whether to adjust the
service rate of a given class, or drop packets. In Fig.4, service rates are adjusted at timest1, t2 andt4, and
packets are dropped at timest2 andt3.

To calculate the service rate allocation and determine if packets need to be dropped, the algorithm first
computes, upon each packet arrival, the minimum service rate that is required to transmit the entire backlog

8

of each class within the specified delay bounds. For each class, the minimum service rate is lower bounded
by the throughput guarantee. If this minimum service rate is larger than the current rate allocation for some
classes, the algorithm tries to redistribute the service rates allocated to each class so that no delay bound
violations occur. If no service rate allocation can satisfy all delay bounds, or if a buffer overflow is detected,
the algorithm reduces the backlog of classes by dropping packets according to the loss guarantees specified.
Then, within the range of feasible service rates for each class, the algorithm selects a rate adjustment which
ensures that proportional delay guarantees will be met. Despite the apparent complexity of the algorithm, all
these operations can be carried out at high speeds with negligible overhead. In Section2.4, we will describe
in more details the rate allocation and packet dropping algorithm, which is an essential piece of the QoSbox
architecture.

The service rates calculated by the rate allocation algorithm must be translated into packet forwarding
decisions, which is the task of the packet scheduler. Schedulers translating service rates into packet forward-
ing decisions, such as Packetized-GPS [23] or Virtual Clock [31], have been proposed in the early 1990s.
However, these schedulers were designed for cases where the rate allocation is essentially static, that is, the
service rates allocated to each class of traffic only change when a class joins or leaves the scheduler. In the
context of a dynamic service rate adaptation such as the one we propose, these algorithms have a worst-case
complexity ofO(N) whereN is the number of packets backlogged in the system, and may thus be com-
putationally too expensive to be carried out at high speeds. For this reason, we propose anO(Q) heuristic,
whereQ is the number of classes in the system, inspired by the Deficit-Round Robin algorithm [27].

A counter recording the amount of traffic that has been transmitted in each class since the beginning of
the current epoch,Xmiti, is maintained by the scheduler. In parallel, every time a packet enters the output
queue, an auxiliary counterRouti is updated as follows

Routi ← Routi + ri ·∆t ,

where∆t corresponds to the amount of time that has elapsed since the last update ofRouti . Routi thus
corresponds to the amount of traffic that would have been transmitted since the beginning of the current
epoch if packet scheduling perfectly matched the service rate allocation. Every time the output link is
available for transmission of a packet, the scheduler computes, for each class, the differenceRouti −Xmiti.
Denoting byk the index of the class for which this difference is maximum, meaning that Classk is the
“most behind” its theoretical transmission rate, the scheduler chooses to transmit the packet at the head of
the Class-k buffer, and records the queueing delay experienced by the transmitted packet, by taking the
difference between the current time and the time this packet was enqueued.

2.4 Details of Rate Allocation and Packet Dropping

After having presented an overview of the QoSbox architecture, we now delve into the details of the algo-
rithm for dynamic rate allocation and packet dropping, which, as shown in Fig.3, is the central component
of the QoSbox. Note that the proposed algorithm is only an instance of a class of algorithms that can be
designed to dynamically adapt to an unknown traffic arrival pattern.

We present in Fig.5 the pseudo-code associated with the operations carried out by the rate adjustment
and dropping algorithm we propose. We refer to [12] for a theoretical justification of the operations dis-
cussed in this paragraph. Theenqueue procedure described in Fig.5 is called upon every packet arrival at
the output queue of the QoSbox.

9

(1) procedureenqueue(pkt)
(2) if (output link is idle())
(3) reset all counters();
(4) transmit(pkt);
(5) else
(6) if (classleft() or classjoined())
(7) reset rates();
(8) while (buffer overflow())
(9) i = selectdropped class();

(10) drop(i);
(11) compute min rates();
(12) while (

∑
min rates> C andcan drop())

(13) i = selectdropped class();
(14) drop(i);
(15) compute min rates();
(16) adjust rates();
(17) return;

Figure 5:Rate allocation and packet dropping in the QoSbox.This sequence of operations is performed
immediately after a packet arriving at the output queue has been classified. Line numbers are printed for
readability purposes.

First, the algorithm checks the status of the output link. If the output link is not busy transmitting any
packets, a new epoch starts with the arrival of the packet. Since all service guarantees are provided over the
current epoch, all counters (on arrivals and transmissions) are reset, and the incoming packet is immediately
forwarded. This test ensures that scheduling in the QoSbox is work-conserving. Conversely, if the output
link is busy, the current epoch started in the past. In that case, the sequence of operations carried out starts
by a check on the traffic mix present in the QoSbox. If, since the last packet arrival, some classes are not
backlogged anymore, or if the incoming packet belongs to a class that was not previously backlogged, all
service rates are reset: classes which are not backlogged are assigned a service rate equal to zero, while
classes which are backlogged are all assigned the same service rate. This test is needed since, as we will see
later, service rates areadjustedinstead of being allocated. Therefore, an initial value on the service rates has
to be explicitly allocated.

Next, the algorithm tests if the incoming packet causes a buffer overflow. In the case of a shared buffer,
the test consists in checking that the total number of packets backlogged is less than a value seta pri-
ori by the network operator. In the case of separate buffers, the test consists in checking that the num-
ber of Class-i packets backlogged, wherei is the class index of the incoming packet, is less than a given
value. The algorithm repeatedly drops packets until the buffer overflow is resolved. To that effect, the
select dropped class function is called. This function computes, for each class, the difference be-
tween the actual loss rate of the class and the loss rate it should experience to satisfy to the proportional loss
guarantees, and returns the class index of the class for which this difference is the smallest, meaning that the
actual loss rate of that class is the “most behind” its theoretical value. Excluded from that computation are

10

classes for which dropping a packet would cause a violation of a loss rate bound. If no class can be dropped
without yielding a violation of a loss rate bound, theselect dropped class function selects the class
for which the violation is the smallest. Completing the dropping operation, the packet at the tail of the buffer
of the selected class is discarded.2

After possible buffer overflows have been resolved, the algorithm calls the functioncompute min rates

which determines the minimum service rate each class must be allocated to meet its delay bound and
throughput guarantee. For each backlogged Classi, the minimum service rate needed to meet the delay
bound of Classi is Bi

di−Di , whereBi represents the backlog of Classi, di represents the delay bound on
Classi, andDi represents the time the oldest Class-i packet still backlogged in the system has experienced
[12]. For each backlogged Classi, the minimum rate needed to meet the absolute delay bound and the
lower bound on throughput is therefore the maximum ofBidi−Di andfi wherefi is the minimum throughput
guaranteed to Classi. Finally, if di − Di ≤ 0 andBi > 0, meaning that a delay bound violation has
occurred, the minimum rate is set toC, the capacity of the output link. This limit case means that the entire
Class-i backlog is transmitted as soon as possible in an effort to resolve the situation in a timely manner.
Non-backlogged classes are assigned a minimum service rate of zero.

As long as the sum of the minimum service rates exceeds the capacity of the output link, packets have to
be dropped to decrease the minimum service rates required. Packets are dropped in the same manner as in
the case of a buffer overflow, and after each drop, since the Class-i backlogBi has decreased, the minimum
service rates are recomputed. It may happen that no packet can be dropped without violating a loss bound.
This condition is tested by thecan drop primitive. In such a case, it is impossible to meet at the same time
all bounds on delays and on loss rates. In the design of our algorithm we make the choice of giving higher
importance to loss rate bounds than to delay bounds, and thus, the algorithm stops dropping. This design
choice is motivated by the fact that over 90% of the traffic on the Internet uses the TCP transport protocol
[5]. Due to TCP congestion control mechanisms [6], a TCP source reduces its sending rate upon detection
of a packet drop. Thus, relaxing a loss rate bound may have the side-effect of starving some TCP flows,
while relaxing a delay bound does not have any such undesirable side-effect.

The final operation carried out in theenqueue procedure adjusts the service rates so that proportional
delay differentiation is achieved. Earlier work [12] showed that the service rate adjustment could be per-
formed by a simple multiplication∆ri = K · ei, where∆ri denotes the adjustment in the service rate of
Class-i, K is a time-dependent factor andei translates the difference between the queueing delay encoun-
tered the last Class-i packet to have been transmitted and the theoretical value this queueing delay should
have had to satisfy proportional delay differentiation guarantees. Hence,ei = 0 indicates perfect propor-
tional delay differentiation. The coefficientK is common to all classes, and its computation takes into
account the fact thatri + ∆ri has to be greater than the minimum rate of Classi.

3 Implementation

Next, we describe a set of issues we addressed during the course of our implementation. First, we ensure
that the algorithms used in the QoSbox have low complexity, which is a crucial prerequisite for an imple-
mentation with negligible computational overhead. However, having a low algorithmic complexity does

2One could drop the packet at the head of the buffer instead. Such a “Drop-From-Front” [20] strategy has the advantage of
lowering the queueing delays of all packets still backlogged, but has the major disadvantage of introducing a much more complex
coupling between queueing delays and loss rates.

11

not necessarily guarantee that the computational overhead is negligible. Indeed, the algorithmic complexity
evaluation does not take into account the computational cost of some operations, for instance, floating-point
divisions, which may consume a large number of CPU cycles. Hence, we next focus on the specifics of the
implementation we carried out for BSD kernels using the ALTQ [10] package. To that effect, we first pro-
vide a short review of how ALTQ operates, before turning to a discussion of the implementation constraints
we had to tackle.

3.1 Algorithmic Complexity

Recall from Section2 the three main components in the QoSbox architecture: the packet classifier, which
maps incoming packets to per-class buffers, the algorithm which adjusts service rates and drop packets, and
the packet scheduler which maps the service rate allocation to scheduling decisions.

The only operation performed by the packet classifier is a lookup of the class index carried by an in-
coming packet, to determine in which buffer the packet should be stored. This lookup is performed by a
linear search, thus the algorithmic complexity associated with the packet classifier isO(Q) in the worst-
case, whereQ is the number of classes supported by the QoSbox. In general, we expectQ to be small, e.g.,
between 2 and 16, and thus, packet classification can be carried out at high speeds. Similarly, the packet
scheduler should be implementable at high speeds, since, by design, the scheduler used has a worst-case
complexity ofO(Q).

Therefore, the algorithmic complexity in the QoSbox is directly linked to the operations occurring during
the enqueueing of an incoming packet, that is, the operations performed by the rate allocation and packet
dropping algorithm. Clearly, the proposed algorithm is more complex than its counterparts relying on static
descriptions of traffic arrivals. The question is then to know whether this algorithm is still simple enough to
be implementable at high speeds.

The first set of operations, represented by lines (2)–(7) in Figure5, only operates on a per-class basis,
and all operations are linear. Thus, the worst-case complexity of this set of operations isO(Q). Next, in
lines (8)–(10), packets are dropped in case a buffer overflow occurs. Thewhile statement indicates that
the worst-case complexity of the operation isO(SQ), with S equal to the maximum number of packets
backlogged in each class. However, since this operation is performed upon each packet arrival,S is in
fact bounded to the number of packets that have arrived since the last packet arrival. Thus,S > 1 only if
more than one packet arrive exactly at the same time in the output queue, which is extremely rare, if not
impossible, in practice. Therefore, the average-case complexity of lines (8)–(10) isΘ(Q), which indicates
that this segment of code can likely be implemented at high speeds. The computation of the minimum
service rates, in line (11), only takesO(Q) as well.

In lines (12)–(15), we find a secondwhile loop, which may present higher computational overhead
than the firstwhile loop discussed above. Here again, the worst-case complexity of this operation is
O(SQ) whereSQ is the number of packets backlogged in the output queue, but, different from the buffer
overflow resolution, we cannot guarantee that thewhile loop is executed only once on average. We thus
propose a simple optimization that can be used to ensure a worst-case complexity ofO(Q). Instead of
choosing which class to drop to respect proportional loss differentiation, one can redistribute the service
rates in a greedy manner to minimize the difference between service rates and minimum service rates, and
then, for each class whose service rate is less than the minimum service rate required, drop as much traffic
as needed to have the minimum service rate equal to the service rate allocated. This approach, initially

12

presented in [21], has the advantage of having a worst-case complexity ofO(Q), but has the disadvantage
of relaxing proportional loss differentiation guarantees when packets are dropped to meet delay bounds.

The final step, described in line (16), which adjusts the service rates subject to proportional delay dif-
ferentiation constraints has an algorithmic complexity ofO(Q). However, some concerns may be raised
by the fact that theadjust rates operation relies on the computation of the parameterK, common to
all classes. We showed in [12] that the expression ofK only required to use some per-class parameters
(backlog, delay, minimum service rate and previous service rate allocation). In fact, the computation ofK

has a worst-case complexity ofO(Q), and only requires two divisions. Thus, this segment of code should
not cause implementation concerns. It can be pointed out, though, that the rate adjustment for proportional
delay differentiation does not need to be performed for every packet arrival. In [21], performing such an
adjustment everyT arrivals, withT in the order of 10–100, managed to achieve almost the same results as
adjusting the service rates upon each packet arrival. Hence, if processor time is scarce, sampling the rate
adjustment may be an option, which comes at the expense of degraded performance with respect to QoS
guarantees.

With the assurance that the algorithms at stake present low algorithmic complexity (Θ(Q) in the average-
case, withQ the number of classes), we now turn to the actual implementation.

3.2 ALTQ

The implementation in PC-routers of the QoSbox uses the Alternate Queueing framework (ALTQ, [10]),
which is an extension to the FreeBSD, OpenBSD and NetBSD operating system kernels. In addition to
various bug fixes to networking devices drivers, ALTQ provides a modular framework for replacing the
default FIFO queueing discipline by custom-designed queueing disciplines.

ALTQ operates on output interfaces as follows. In BSD kernels, an output networking interface is
governed by theif output and if start functions, which enqueue and dequeue packets from the
transmission queue, respectively. The transmission queue is represented by theifqueue structure. As
illustrated in Figure6, ALTQ replaces these functions and structure by user-defined transmission queue
structures and functions included in dynamically loadable kernel modules that implement a specific queueing
discipline, such as CBQ. Additionally, ALTQ provides a classifier that is used to map incoming packets to
classes of traffic. We refer to [10] and [11] for more details on the implementation of ALTQ.

3.3 Implementation Constraints

From what precedes, ALTQ basically provides a way for replacing the standardenqueue anddequeue

functions at an output interface. However, even if theenqueue anddequeue functions in the QoSbox
have relatively low algorithmic complexity, their implementation is not straightforward, since a kernel-level
implementation of these functions is subject to three constraints. First, the only clocking mechanism avail-
able is the CPU clock. Second, we cannot arbitrarily modify the structure of the IP header. Third, floating-
point arithmetic is not usable at the kernel level for efficiency purposes, and counter overflows may occur
and have to be addressed. We now describe in more details the approach we used in our implementation to
overcome these constraints.

Time measurements. To measure delays and throughput, the algorithm needs to access the CPU clock.
A simple solution is to use themicrotime() system call provided in BSD, which returns the time offset

13

ip_output

if_output

if_start

IF_ENQUEUE

IF_DEQUEUE

altq_enqueue disc_enqueue

altq_dequeue disc_dequeue

Standard BSD ALTQ-enabled BSD

ip_output

if_output

if_start

kernel module

struct�

ifqueue
struct�

ifaltq

IF_ENQUEUE

IF_DEQUEUE

Figure 6:Functions and structures associated with the output queue in BSD and ALTQ-enabled BSD.
An incoming packet is passed toip output which, after looking up the route, filling the IP header, and
possibly fragmenting the packet passes it toif output ; if output enqueues the packet in aifqueue

structure. When the output link is available for transmission, a packet is dequeued from theifqueue

structure by theif start function. ALTQ provides a way of replacing the operations performed by
if output andif start by enqueue and dequeue functions specific to a particular queueing discipline,
as denoted bydisc enqueue anddisc dequeue , as well as a custom-designed packet queue structure
(struct ifaltq) as a replacement to theifqueue structure.

14

from 1970 in microseconds. This approach has the advantage of portability, since all BSD systems im-
plement themicrotime() system call since 4.4-BSD, but has several drawbacks:microtime() only
provides microsecond granularity, the value returned bymicrotime() is periodically adjusted to account
for possible clock skews, and usingmicrotime() generates the overhead of the system call (approxi-
mately 450 nanoseconds on a PentiumPro 200 MHz [10]). 3 A more efficient solution is to directly read the
timestamp counter (TSC) register available in the Pentium series processors [14], and compatible architec-
tures such as recent AMD processors (e.g., Athlon). This register is an unsigned 64-bit precision integer,
and gives the number of cycles elapsed since the machine has been turned on. Thus, the resolution of the
counter is much finer than that provided bymicrotime() . A similar counter (processor cycle counter,
PCC) can be found on DEC Alpha architectures, but only provides a 32-bit precision [13]. Our approach
is to read the TSC or PCC registers if they are available, and if not, roll back tomicrotime() to ensure
portability of our implementation.

IP header limitations. The second issue to be addressed is the fact that the structure of the IP header
cannot be modified at will in a kernel-level implementation. This limitation translates into two constraints
for implementing the queueing scheme we described in Section2. First, the only field available in an IPv4
packet header to indicate to which class of traffic a particular packet belongs is the DSCP. In practice, we
rely on the ALTQ classifier to read the DSCP and classify the packet in the corresponding per-class buffer.
This operation is a linear search, and is thus computationally efficient since the number of classes is expected
to be small.

Second, we need to record the arrival times of each packet, since arrival times are required to com-
pute queueing delays which are a key metric in the QoSbox algorithms. To that effect, we can use the IP
header timestamp option field, but, in case an IP packet is fragmented, only the first fragment will carry the
timestamp. Thus, we prefer the following solution. Each class of traffic is associated with a linked list of
timestamps, which is manipulated as follows. Every time a Class-i packet arrives at the output interface, the
current time is recorded and enqueued at the tail of the timestamp list. Whenever a Class-i packet is trans-
mitted, the timestamp located at the head of the Class-i timestamp list is removed and used for computation
of the queuing delay experienced by the transmitted packet, by simply subtracting the timestamp from the
current time. Finally, when a Class-i packet is dropped, the timestamp at the tail of the Class-i timestamp
list is discarded as well. Using these operations on the timestamp lists, each Class-i timestamp list matches
exactly the corresponding Class-i packet buffer, because interrupts are disabled during theenqueue and
dequeue procedures, and therefore, no race condition can occur.

Arithmetic limitations. The last constraint on the implementation regards arithmetic operations. The rate
allocation and dropping algorithm relies on several arithmetic operations (e.g., computation ofK). In a
network simulator such asns-2[4], these operations can be performed using double precision floating-point
numbers. In the case of a kernel-level implementation, floating-point operations should be avoided, because
the hardware floating-point unit (FPU) is generally not supported due to the prohibitive cost of storing and
restoring the FPU state upon each arithmetic computation, and floating-point operations using the FPU
emulation library are extremely slow compared to fixed-point arithmetic that can be performed in hardware.

3As of 4.4-BSD, ananotime() system call is also available.nanotime() provides nanosecond granularity, but suffers the
same overhead and clock skew adjustment problems asmicrotime() .

15

Bottleneck Bottleneck

Source
1

Source
2

QoSbox
1

QoSbox
2 Sink 1QoSbox

3

Sink 3Sink 2

Source
3

Figure 7:Network Topology. All links have a capacity of 100 Mbps. We measure the service provided by
QoSboxes 1 and 2 at the indicated bottleneck links.

Class Service Guarantees
di Li fi ki k′i

1 8 ms 1 % – – –

2 – – 35 Mbps 2 2

3 – – – 2 2

4 – – – N/A N/A

Table 1: Service guarantees.di denotes a delay bound,Li denotes a bound on the loss rate,fi denotes
a minimum throughput guarantee, andki (resp. k′i) denotes the desired ratio of delays (resp. loss rates)
between Class(i+ 1) and Classi. The guarantees are identical at all QoSboxes.

Hence, we should only use fixed-point arithmetic in the computations required by the QoSbox algo-
rithms. To that effect, we use 64-bit unsigned integers, which have a high precision, and, yet, can be
manipulated with relatively low-cost arithmetic operations. Using fixed-point arithmetic requires to adopt
some internal units that differ from “standard units”. Namely, in our implementation, delays are expressed
in clock ticks, service rates are expressed in bytes per clock tick scaled by a factor of232, and loss rates
are expressed as fractions of232. With these units, we can achieve precise calculations using only 64-bit
unsigned integers. 64-bit unsigned integers have a very large maximum integer (≈ 2 · 1019), but, for the
sake of robustness of our implementation, we reset all counters and assume a new epoch starts whenever a
counter overflow occurs.

We have shown that the algorithms in the QoSbox have a relatively low computational complexity, and
can be realized using low-cost instructions, which allowed us to implement a prototype of the QoSbox in
UNIX-based PCs.

16

Class No. of Type
flows Protocol Traffic

1 6 UDP On-off

2 6 TCP Greedy/On-off

3 6 TCP Greedy/On-off

4 6 TCP Greedy/On-off

Table 2:Traffic mix. The traffic mix is identical for each source-sink pair. The on-off UDP sources send
bursts of 20 packets during an on-period, and have a 150 ms off-period. TCP sources are greedy during time
intervals[0s, 10s], [20s, 30s], and[40s, 50s], and transmit chunks of 8 KB with a pause of 175 ms between
each transmission during time intervals[10, 20s], [30, 40s], and[50s, 60s]. TCP sources run theNewReno
congestion control algorithm.

4 Performance Evaluation

We present experimental measurements of our implementation on a testbed of PC-routers used as QoSboxes.
The PCs are Dell PowerEdge 1550 with 1 GHz Intel Pentium-III processors and 256 MB of RAM. The
system software is FreeBSD 4.3 [1] and ALTQ 3.0. Each system is equipped with five 100 Mbps-Ethernet
interfaces.

We first determine if and how well the QoSbox provides the desired service differentiation on a per-node
basis. We then present an evaluation of the overhead associated to the enqueue and dequeue operations of
the QoSbox.

4.1 Configuration

We consider a local network topology with multiple nodes and point-to-point Ethernet links, as shown in
Fig. 7. All links are full-duplex and have a capacity ofC = 100 Mbps. Three PCs are set up as routers,
indicated in Fig.7 as QoSbox 1, 2 and 3. Other PCs are acting as sources and sinks of traffic. The topology
has two bottlenecks: the link between QoSboxes 1 and 2, and the link between QoSboxes 2 and 3. The
buffer at the output link of each router is shared, and its total size is set toB = 200 packets.

We consider four traffic classes with service guarantees as summarized in Table1. Class 1 gets absolute
service guarantees, while Classes 2, 3 and 4 get proportional service differentiation.

Sources 1, 2 and 3 send traffic to Sinks 1, 2 and 3, respectively. Each source transmits traffic from all
four classes. The traffic mix, the number of flows per class, and the characterization of the flows is identical
for each source, and as shown in Table2. Traffic is generated using thenetperfv2.1pl3 traffic generator
[19]. Each source transmits six flows from each of the classes. Class 1 traffic consists of on-off UDP flows,
and the other classes consist of TCP flows. UDP sources start transmitting packets with a fixed size of 1024
Bytes at timet = 0 until the end of the experiment att = 60 seconds. We configured the TCP sources to
be greedy during time intervals[0s, 10s], [20s, 30s] and[40s, 50s]. In the remaining time intervals, the TCP
sources send chunks of 8 KB of data and pause for 175 ms between the transmission of each chunk. The
chosen traffic mix results in an highly variable offered load at QoSboxes 1 and 2, which we present in Fig.8.

17

0

20

40

60

80

100

120

140

10 200
Time (s)

30 40 50 60

O
ff

er
ed

 lo
ad

 in
 %

 o
f

lin
k

ca
pa

ci
ty

Figure 8: Offered Load. The graph shows the offered load at QoSbox 1. The offered load is similar at
QoSbox 2.

4.2 Service Guarantees

In Figs.9 and10, we present our measurements of the service received at the bottleneck links of QoSboxes 1
and 2, respectively. Figs.9(a) and10(a) depict the ratios of the delays of Classes 4 and 3, and the ratios
of the delays of Classes 3 and 2. Each datapoint is an average over a sliding window of size 0.5 s. The
plots show that the target value ofk = 2 (from Table1) is achieved when the load is high. Conversely,
when the link is underloaded, we observe oscillations in the ratios of delays. This result is due to the fact
that proportional delay differentiation cannot be achieved by a work-conserving scheduler when the link is
underloaded. In fact, all classes experience queueing delays close to zero when the link is underloaded, and
one can therefore argue that there is no need for differentiation since all classes get a high-grade service.
We also see that, at timest = 0, t = 20, andt = 40, when the load increases abruptly over a short period
of time, the delay differentiation is realized almost immediately, which shows that the algorithm used in the
QoSbox is efficient at providing differentiation as soon as possible.

In Figs. 9(b) and10(b) we show the individual delays of Class-1 packets at QoSboxes 1 and 2. The
delay bound ofd1 = 8 ms is satisfied most of the time. We note that there are a few (< 1.5%) delay bound
violations. These delay bound violations are due to the fact that it may be impossible to satisfy delay and
loss bounds at the same time, since traffic arrivals are not regulated. As explained in Section2, when such is
the case, loss guarantees are given precedence over delay guarantees. Note however, that no Class-1 packet
ever experiences a delay higher than 10 ms at either QoSbox 1 or 2. Delay values of other classes, not shown
here, are in the range 10–50 ms. We refer to [12] for additional plots.

Figs.9(c) and10(c) represent plots of ratios of loss rates averaged over a sliding window of size 0.5 s,
and show that proportional loss differentiation is realized, with the desired factork′ = 2, at times of packet
losses. Figs.9(d) and10(d) show the loss rate experienced by Class-1 traffic, and we see that, even at times
of packet drops, the loss rate of Class 1 remains below the loss guarantee of 1%. Loss rates of other classes
(not shown) are generally below 1% [12] which indicates that traffic is mostly dropped to satisfy the delay
bound on Class 1.

Last, Figs.9(e) and10(e) present throughput measurements obtained by each class, averaged over a
sliding window of size 0.5 s, as well as the aggregate throughput at QoSboxes 1 and 2. We see that whenever
Class 2 sources send traffic at a rate of at least 35 Mbps, the minimum throughput guarantee of 35 Mbps on
Class 2 is enforced at QoSboxes 1 and 2. Furthermore, we see that the QoSboxes manage to transmit data

18

Time (s)
30 40 50 6020100

4

2

0

R
at

io
of

 D
el

ay
s

Class 4/Class 3
Class 3/Class 2

(a) Ratios of Delays.

Delay Bound Class 112

4
8

00 10 20 30 40 50 60

D
el

ay
 (

m
s)

Time (s)

(b) Class-1 Delays (individual).

Time (s)
30 40 50 6020100

4

2

0

R
at

io
 o

f
L

os
s

R
at

es

Class 4/Class 3
Class 3/Class 2

(d) Ratios of Loss Rates.

Loss Rate BoundClass 1
2

1

0L
os

s
R

at
e

(%
)

10 20 30 40 50 60
Time (s)

0

(e) Loss Rates.

Total
Class 4

Class 2Class 3

Class 1

T
hr

ou
gh

pu
t (

M
b/

s)

0

20

40

60

80

100

0 10 20 30 40 50 60
Time (s)

(f) Throughput.

Figure 9: QoSbox 1. The graphs show the ser-
vice obtained by each class at the output link of
QoSbox 1.

Time (s)
30 40 50 6020100

4

2

0

R
at

io
of

 D
el

ay
s

Class 4/Class 3
Class 3/Class 2

(a) Ratios of Delays.

Delay Bound Class 112

4
8

00 10 20 30 40 50 60

D
el

ay
 (

m
s)

Time (s)

(b) Class-1 Delays (individual).

Time (s)
30 40 50 6020100

4

2

0
R

at
io

 o
f

L
os

s
R

at
es

Class 4/Class 3
Class 3/Class 2

(d) Ratios of Loss Rates.

Loss Rate BoundClass 1
2

1

0L
os

s
R

at
e

(%
)

10 20 30 40 50 60
Time (s)

0

(e) Loss Rates.

Class 3
Class 2

Class 1

Total

Class 4

T
hr

ou
gh

pu
t (

M
b/

s)

0

20

40

60

80

100

0 10 20 30 40 50 60
Time (s)

(f) Throughput.

Figure 10:QoSbox 2. The graphs show the ser-
vice obtained by each class at the output link of
QoSbox 2.

19

Set enqueue dequeue Pred.
fpred

X s X s (Mbps)

1 15347 2603 4053 912 186

2 11849 2798 3580 970 234

3 2671 1101 3811 826 557

4 2415 837 3810 858 580

Table 3:Overhead Measurements.This table presents, for the four considered sets of service guarantees,
the average number of cycles (X) consumed by theenqueue and dequeue operations, the standard
deviation (s), and the predicted throughputfpred (in Mbps) that can be achieved. In the 1 GHz PCs we use,
one cycle corresponds to one nanosecond.

at 100 Mbps when needed. Hence, we can infer that the time needed to run theenqueue anddequeue

functions is less than the average transmission time of a packet, and thus, that the overhead associated to the
algorithms running in the QoSbox can be considered negligible for this experiment.

In summary, this experiment on a network with multiple bottlenecks and varying load shows that the
QoSbox achieves the desired service differentiation and utilizes the entire link capacity when needed.

4.3 Overhead

We saw that our implementation can fully utilize the capacity of a 100 Mbps link, without overloading the
QoSbox. We next present an analysis of the overhead of our implementation, where we attempt to predict the
data rates that can be supported by this implementation of the QoSbox, and where we measure the sensitivity
of our implementation to the number of service constraints. We will show measurements of theenqueue

anddequeue operations for four different sets of service guarantees, tested for four traffic classes.

Set 1: Same guarantees as in Table1.
Set 2: Set 1 with absolute guarantees from Set 1 removed.
Set 3: Set 2 with proportional guarantees from Set 1 removed.
Set 4: No service guarantees.

In the measurements we determine the number of cycles consumed for theenqueue anddequeue

procedures. The TSC register of the Pentium processor is read at the beginning and at the end of the
procedures, for each execution of the procedure.

We compiled our implementation with a code optimizer, in our case, we use thegccv2.95.3 compiler
with the “-O2” flag set. The results of our measurements are presented in Table3, where we include the
machine cycles consumed by theenqueue anddequeue operations. The measurements are averages
of over 500,000 datagram transmissions on a heavily loaded link, using the same topology as in Fig.7.
The measurements in Table3 were collected at QoSbox 1. Measurements collected at QoSbox 2 showed
deviations of no more than±5% compared to QoSbox 1.

20

Since theenqueue anddequeue operations are invoked once for each IP datagram, we can predict
the maximum throughput of a PC-router to be

fpred =
F

nenqueue+ ndequeue
· P ,

whereF denotes the CPU clock frequency in Hz,nenqueuedenotes the number of cycles consumed by the
enqueue operation,ndequeuedenotes the number of cycles consumed by thedequeue operation, andP
is the average size of a datagram. The equation given above neglects operations that occur in an interrupt
context (e.g., arrival of a packet at the input link) and is thus an estimate. Note, however, that operations
performed in an interrupt context must have a negligible overhead for the router to operate properly. In the
case of our implementation in 1 GHz PCs, we haveF = 109. Data from a recent report [5] indicates that the
average size of an IP datagram on the Internet isP = 451.11 bytes. Using these values forP andF in the
above equation shows that, in the four sets of constraints considered, we estimate that our implementation
can be run at data rates of at least 186 Mbps.

We next evaluate the sensitivity of the performance as a function of the number of constraints. Note
from Section2 that the number of cycles consumed by the dequeue operation is independent of the set of
constraints. From Table3, we see that the overhead associated to the absolute service guarantees (Set 3)
is approximately 10% compared to a set with no service guarantees (Set 4). The overhead is 29% when
comparing a set with absolute and proportional service guarantees (Set 1) to a set with proportional guar-
antees only (Set 2). Thus, the overhead incurred by absolute constraints is dependent on the presence of
proportional guarantees. This result shows that the computation of the coefficientK, used for proportional
differentiation, is more complex when absolute guarantees are present. Proportional guarantees seem to
incur more overhead than absolute guarantees, which is essentially due to the computations that need to be
performed to dynamically update the value of the coefficientK. However, in the set of constraints consid-
ered, there is a larger number of classes with proportional guarantees than classes with absolute guarantees,
and thus, more computations are needed to enforce proportional guarantees.

5 Discussion

We next provide a brief discussion of the limitations and ongoing work in the design and implementation of
the QoSbox, based on our implementation and experiments.

First, we note that our implementation of the QoSbox using PC-routers has some limitations inherent
to the fact that this implementation is a prototype. For example, the flexibility provided by the use of
regular PCs as routers comes at the expense of a lack of dedicated hardware, such as multiprocessor systems
that can provide true parallelism for tasks such as service rate calculation or packet dequeueing. We are
currently working on optimizing the code implemented in our prototype, in order to compensate for this
lack of parallelism. With the preliminary experiments run on our testbed, and illustrated in Section4, we
are confident that the algorithms used in the QoSbox do not present any conceptual limitation that would
prevent us from obtaining throughputs in the order of 1 Gbps, using specialized hardware such as the Intel
IXP 1200 programmable router [2].

More importantly, service limitations are inherent to our decision to avoid to use admission control or
traffic shaping. The example of Section4 showed that, in some rare cases, due to our choice of not per-
forming traffic regulation, enforcing both delay and loss rate bounds at the same time was not feasible.

21

Our current work focuses on preventing such cases from happening, by relying on TCP congestion control
algorithms, which have the sending rate of a source decrease when a packet drop is detected. Thus, we
conjecture that, by dropping proactively, i.e., before the traffic arrivals generate an infeasible system of QoS
constraints, one can regulate traffic arrivals dynamically, and avoid conflicts between absolute service guar-
antees. Such a proactive approach has been successfully used in the context of active queue management,
e.g., by the RED algorithm [16].

Lastly, we currently trust each incoming packet for carrying the right class index in the DSCP field
of the IP header. While this assumption may hold in private networks, some form of security mechanism
ensuring that each packet is appropriately marked is required in a public network. To that effect, performing
a check on a sample of packets may be an option that we are interested in investigating. On a related note,
we are also working on defining a standard set of DSCP values to denote QoSbox classes, in an effort to be
compatible with the proposals for Differentiated Services architectures.

6 Related Work

The implementation of QoS architectures using PC-routers is not new. For instance, the ALTQ package
itself supports natively the CBQ and HFSC [28] schedulers. However, without external admission control,
the ALTQ implementations of these QoS schedulers are in practice essentially used to control the bandwidth
individual users can receive.

With respect to building fully functional QoS networks, one can cite the attempts at creating DiffServ
networks using PC-routers. Implementations of DiffServ components in the Linux 2.1 kernel are for instance
discussed in [9]. The authors of [9] integrate traffic policing and scheduling/dropping in the same router.
However, the DiffServ architecture only supports quantitative differentiation for the Assured Forwarding
(AF) classes, e.g., one class gets higher loss rates than another class, without quantifying the service differ-
entiation. Expediting Forwarding (EF) classes are provided with throughput guarantees, but require the use
of admission control and traffic policing. Furthermore, in the implementation described by [9], traffic can
only be forwarded at approximately 20 Mbps. A similar effort to implement DiffServ components in the
Linux kernels has been recently pursued by [7].

More recently, the Alternative Best-Effort (ABE, [18]) service has been proposed. ABE considers only
two classes of traffic, and uses the Duplicate Scheduler with Deadlines (DSD) to provide strict delay bounds
to one class of traffic, at the expense of a higher loss rate. Note that ABE does not quantify the differentiation
in the loss rates obtained by both classes. Similar to the QoSbox, no traffic policing or admission control are
required. Implementations of DSD in Dummynet [24] for FreeBSD and in the Linux kernel are in progress
[18].

7 Conclusion

We presented the design and implementation of the QoSbox, a configurable IP router that provides propor-
tional and absolute service differentiation to classes of traffic on a per-hop basis, by dynamically adapting
to the traffic demand. There is no restriction on the number of classes or the service guarantees each class
obtains, and no admission control or traffic policing is required, making the proposed QoS architecture easy
to deploy. We evaluated the potential of the QoSbox using PC-routers, and showed that the QoSbox was a

22

promising solution to the problem of providing service differentiation in a scalable manner.
A version of the QoSbox for BSD kernels is available to the public, along with the source code and

documentation athttp://qosbox.cs.virginia.edu/software.html . The software has been
available under the BSD license since late October 2001. We are currently running extensive tests, and are
pursuing a distribution as part of the ALTQ and KAME [3] packages.

Acknowledgments

We wish to thank Kenjiro Cho for his invaluable advice during the course of the ALTQ implementation.

References

[1] The FreeBSD project.http://www.freebsd.org .

[2] Intel’s IXP 1200 network processor. http://developer.intel.com/design/network/

products/npfamily/ixp1200.htm .

[3] The KAME project.http://www.kame.net .

[4] ns-2network simulator.http://www.isi.edu/nsnam/ns/ .

[5] Packet sizes and sequencing, May 2001.http://www.caida.org/outreach/resources/learn/

packetsizes .

[6] M. Allman, V. Paxson, and W. Stevens. TCP congestion control. IETF RFC 2581, April 1999.

[7] W. Almesberger, J. H. Salim, and A. Kuznetsov. Differentiated services on Linux, June 1999. IETF draft,
draft-almesberger-wajhak-diffserv-linux-01.txt. See alsohttp://diffserv.sourceforge.net .

[8] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An architecture for differentiated services.
IETF RFC 2475, December 1998.

[9] R. Bless and K. Wehrle. Evaluation of differentiated services using an implementation under Linux. InProceed-
ings of IWQoS 1999, pages 97–106, London, UK, June 1999.

[10] K. Cho. A framework for alternate queueing: towards traffic management by PC-UNIX based routers. In
Proceedings of USENIX ’98 Annual Technical Conference, New Orleans, LA, June 1998.

[11] K. Cho. Notes on the new ALTQ implementation, July 2000. Documentation included in the ALTQ 3.0 package.
http://www.csl.sony.co.jp/person/kjc/software.html .

[12] N. Christin, J. Liebeherr, and T. Abdelzaher. A quantitative assured forwarding service. Technical Report CS-
2001-21, University of Virginia, August 2001.ftp://ftp.cs.virginia.edu/pub/techreports/

CS-2001-21.pdf . Short version to appear inProceedings of IEEE INFOCOM 2002.

[13] Compaq Computer Corporation.Alpha Architecture Handbook, 4th edition, 1998.

[14] Intel Corporation.Pentium Pro Family Developer’s Manual. Volume III: Operating System Writer’s Guide. 1995.

[15] S. Floyd and K. Fall. Promoting the use of end-to-end congestion control in the Internet.IEEE/ACM Transactions
on Networking, 7(4):458–472, August 1999.

[16] S. Floyd and V. Jacobson. Random early detection for congestion avoidance.IEEE/ACM Transactions on
Networking, 1(4):397–413, July 1993.

23

http://qosbox.cs.virginia.edu/software.html
http://www.freebsd.org
http://developer.intel.com/design/network/products/npfamily/ixp1200.htm
http://developer.intel.com/design/network/products/npfamily/ixp1200.htm
http://www.kame.net
http://www.isi.edu/nsnam/ns/
http://www.caida.org/outreach/resources/learn/packetsizes
http://www.caida.org/outreach/resources/learn/packetsizes
http://diffserv.sourceforge.net
http://www.csl.sony.co.jp/person/kjc/software.html
ftp://ftp.cs.virginia.edu/pub/techreports/CS-2001-21.pdf
ftp://ftp.cs.virginia.edu/pub/techreports/CS-2001-21.pdf

[17] S. Floyd and V. Jacobson. Link-sharing and resource management models for packet networks.IEEE/ACM
Transactions on Networking, 3(4):365–386, August 1995.

[18] P. Hurley, J.-Y. Le Boudec, P. Thiran, and M. Kara. ABE: providing low delay service within best effort.IEEE
Networks, 15(3):60–69, May 2001. See alsohttp://www.abeservice.org .

[19] R. Jones. netperf: a benchmark for measuring network performance - revision 2.0. Information Networks
Division, Hewlett-Packard Company, February 1995. See alsohttp://www.netperf.org .

[20] T.V. Lakshman, A. Neidhardt, and T. Ott. The drop from front strategy in TCP and in TCP over ATM. In
Proceedings of IEEE INFOCOM ’96, pages 1242–1250, San Francisco, CA, March 1996.

[21] J. Liebeherr and N. Christin. JoBS: Joint buffer management and scheduling for differentiated services. In
Proceedings of IWQoS 2001, pages 404–418, Karlsruhe, Germany, June 2001.

[22] K. Nichols, S. Blake, F. Baker, and D. Black. Definition of the differentiated services field (DS field) in the IPv4
and IPv6 headers. IETF RFC 2474, December 1998.

[23] A. K. Parekh and R. G. Gallagher. A generalized processor sharing approach to flow control in integrated services
networks: The single-node case.IEEE/ACM Transactions on Networking, 1(3):344–357, June 1993.

[24] L. Rizzo. Dummynet: a simple approach to the evaluation of network protocols.ACM Computer Communication
Review, 27(1):31–41, January 1997.

[25] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol label switching architecture. IETF RFC 3031, January
2001.

[26] S. Shenker, D. Clark, D. Estrin, and S. Herzog. Pricing in computer networks: reshaping the research agenda.
ACM Computer Communication Review, 26(2):19–43, April 1996.

[27] M. Shreedhar and G. Varghese. Efficient fair queueing using deficit round-robin.IEEE/ACM Transactions on
Networking, 4(3):375–385, June 1996.

[28] I. Stoica, H. Zhang, and T. S. E. Ng. A hierarchical fair service curve algorithm for link-sharing, real-time and
priority services. InProceedings of ACM SIGCOMM ’97, pages 249–262, Cannes, France, August 1997.

[29] N. Taft, S. Bhattacharyya, J. Jetcheva, and C. Diot. Understanding traffic dynamics at a backbone POP. In
Proceedings of SPIE ITCOM Workshop on Scalability and Traffic Control in IP Networks, number 4526, Denver,
CO, August 2001.

[30] D. E. Wrege, E. W. Knightly, H. Zhang, and J. Liebeherr. Deterministic delay bounds for VBR video in
packet-switching networks: fundamental limits and practical trade-offs.IEEE/ACM Transactions on Networking,
4(3):352–362, June 1996.

[31] L. Zhang. Virtual clock: A new traffic control algorithm for packet switched networks.ACM Trans. Comput.
Syst., 9(2):101–125, May 1991.

24

http://www.abeservice.org
http://www.netperf.org

	Introduction
	The QoSbox
	Overview
	Requirements
	Mechanisms
	Details of Rate Allocation and Packet Dropping

	Implementation
	Algorithmic Complexity
	ALTQ
	Implementation Constraints

	Performance Evaluation
	Configuration
	Service Guarantees
	Overhead

	Discussion
	Related Work
	Conclusion

