
A Petri Net-based Model for Web Service Composition

Rachid Hamadi Boualem Benatallah

School of Computer Science and Engineering
The University of New South Wales

Sydney NSW 2052, Australia
{rhamadi,boualem}@cse.unsw.edu.au

Abstract

The Internet is going through several major changes. It has
become a vehicle of Web services rather than just a reposi-
tory of information. Many organizations are putting their core
business competencies on the Internet as a collection of Web
services. An important challenge is to integrate them to cre-
ate new value-added Web services in ways that could never be
foreseen forming what is known as Business-to-Business (B2B)
services. Therefore, there is a need for modeling techniques
and tools for reliable Web service composition. In this paper,
we propose a Petri net-based algebra, used to model control
flows, as a necessary constituent of reliable Web service com-
position process. This algebra is expressive enough to capture
the semantics of complex Web service combinations.

Keywords: Web services, Petri net, Web service com-
position.

1 Introduction

In order to survive the massive competition created
by the new online economy, many organizations are
rushing to put their core business competencies on
the Internet as a collection of Web services for more
automation and global visibility. The concept of Web
service has become recently very popular, however,
there is no clear agreed upon definition yet. Typical
examples of Web services include on-line travel reser-
vations, procurement, customer relationship manage-
ment (CRM), billing, accounting, and supply chain.
In this paper, by Web service (or simply service) we
mean an autonomous software application or compo-
nent, i.e., a semantically well defined functionality,
uniquely identified by a Uniform Resource Locator
(URL).

The ability to efficiently and effectively share ser-
vices on the Web is a critical step towards the de-
velopment of the new online economy driven by the
Business-to-Business (B2B) e-commerce. Existing
enterprises would form alliances and integrate their
services to share costs, skills, and resources in offer-
ing a value-added service to form what is known as
B2B services. Briefly stated, a B2B service is a con-
glomeration of mostly outsourced services working in
tandem to achieve the business goals of the desired en-
terprise. An example of an integrated B2B service is
a financial management system that uses payroll, tax
preparation, and cash management as components.
The component services might all be outsourced to
business partners.

Copyright c©2003, Australian Computer Society, Inc. This pa-
per appeared at Fourteenth Australasian Database Conference
(ADC2003), Adelaide, Australia. Conferences in Research and
Practice in Information Technology, Vol. 17. Xiaofang Zhou
and Klaus-Dieter Schewe, Ed. Reproduction for academic, not-
for profit purposes permitted provided this text is included.

To date, the development of B2B services has been
largely ad-hoc, time-consuming, and requiring enor-
mous effort of low-level programming (Benatallah,
Medjahed, Bouguettaya, Elmagarmid & Beard 2000,
Benatallah, Dumas, Sheng & Ngu 2002). This task
would obviously be tedious and hardly scalable be-
cause of the volatility and size of the Web. As ser-
vices are most likely autonomous and heterogeneous,
building a B2B service with appropriate inter-service
coordination would be difficult. More importantly,
the fast and dynamic composition of services is an
essential requirement for organisations to adapt their
business practices to the dynamic nature of the Web.

As pointed out before, Internet and Web technolo-
gies have opened new ways of doing business more
cheaply and efficiently. However, for B2B e-commerce
to really take off, there is a need for effective and effi-
cient means to abstract, compose, analyze, and evolve
Web services in an appropriate time-frame. Ad-hoc
and proprietary solutions on the one hand, and lack
of a canonical model for modeling and managing Web
services on the other hand, have largely hampered a
faster pace in deploying B2B services. Current tech-
nologies based on Universal Description, Discovery,
and Integration (UDDI)1, Web Service Description
Language (WSDL)2, and Simple Object Access Pro-
tocol (SOAP)3 do not realize complex Web service
combinations, hence providing limited support in ser-
vice composition. SOAP is a standard for exchanging
XML-formatted messages over HTTP between appli-
cations. WSDL is a general purpose XML language
for describing what a Web service does, where it re-
sides, and how to invoke it. UDDI is a standard for
publishing information about Web services in a global
registry as well as for Web service discovery.

In this paper, we propose a Petri net-based al-
gebra for modeling Web services control flows. The
model is expressive enough to capture the semantics
of complex service combinations and their respective
specificities. The obtained framework enables declar-
ative composition of Web services. We show that the
defined algebra caters for the creation of dynamic and
transient relationships among services.

The remainder of this paper is organized as fol-
lows. Web service modeling and specification using
Petri nets are presented in Section 2. Section 3 is de-
voted to the algebra for composing Web services and
its Petri net-based formal semantics. Section 4 dis-
cusses the analysis and verification of Web services.
Section 5 gives a brief overview of related work. Fi-
nally, Section 6 provides some concluding remarks.

1http://www.uddi.org/.
2http://www.w3.org/TR/wsdl/.
3http://www.w3.org/TR/soap12-part1/.

2 Web Services as Petri Nets

Petri nets (Petri 1962, Peterson 1981) are a well-
founded process modeling technique that have for-
mal semantics. They have been used to model and
analyze several types of processes including proto-
cols, manufacturing systems, and business processes
(Aalst 1999). A Petri net is a directed, connected,
and bipartite graph in which each node is either a
place or a transition. Tokens occupy places. When
there is at least one token in every place connected to
a transition, we say that the transition is enabled.
Any enabled transition may fire removing one to-
ken from every input place, and depositing one to-
ken in each output place. For more elaborate in-
troduction to Petri nets, the reader is referred to
(Murata 1989, Reisig 1985, Peterson 1981).

The use of visual modeling techniques such as Petri
nets in the design of complex Web services is justified
by many reasons. For example, visual representations
provide a high-level yet precise language which allows
to express and reason about concepts at their natural
level of abstraction.

A Web service behavior is basically a partially
ordered set of operations. Therefore, it is straight-
forward to map it into a Petri net. Operations are
modeled by transitions and the state of the service is
modeled by places. The arrows between places and
transitions are used to specify causal relations.

We can categorise Web services into material ser-
vices (e.g., delivery of physical products), informa-
tion services (create, process, manage, and provide
information), and material/information services, the
mixture of both.

We assume that a Petri net, which represents the
behavior of a service, contains one input place (i.e.,
a place with no incoming arcs) and one output place
(i.e., a place with no outgoing arcs). A Petri net with
one input place, for absorbing information, and one
output place, for emitting information, will facilitate
the definition of the composition operators (see Sec-
tion 3.2) and the analysis as well as the verification
of certain properties (e.g, reachability, deadlock, and
liveness). At any given time, a Web service can be in
one of the following states: NotInstantiated, Ready,
Running, Suspended, or Completed (similar to the
ones defined in (Schuster, Georgakopoulos, Cichocki
& Baker 2000)). When a Web service is in the Ready
state, this means that a token is in its corresponding
input place, whereas the Completed state means that
there is a token in the corresponding output place.

Definition 2.1 (Service Net)
A service net is a labeled Place/Transition net, i.e.,
a tuple SN = (P, T, W, i, o, `) where:

– P is a finite set of places,
– T is a finite set of transitions representing the

operations of the service,
– W ⊆ (P × T) ∪ (T × P) is a set of directed arcs

(flow relation),
– i is the input place with •i = {x ∈ P ∪T | (x, i) ∈

W} = ∅,
– o is the output place with o• = {x ∈ P ∪T | (o, x)

∈ W} = ∅, and
– ` : T → A∪{τ} is a labeling function where A is

a set of operation names. We assume that τ /∈ A
and denotes a silent operation. 2

The flow relation W can also be interpreted as
a function W : (P × T) ∪ (T × P) → {0, 1}. We
will use both interpretations throughout this paper.
Silent operations are transition firings that cannot be
observed. They are used to distinguish between ex-
ternal and internal behavior of the service. Note that

the service net, defined above, is an ordinary Petri
net, that is, there is at most one directed arc linking
a place to a transition or a transition to a place.

We give now a formal definition of a Web service.

Definition 2.2 (Web Service)
A Web service is a tuple S = (NameS, Desc, Loc,
URL, CS, SN) where:

– NameS is the name of the service, used as its
unique identifier,

– Desc is the description of the service provided.
It summarizes what the service offers,

– Loc is the server the service is located in,
– URL is the invocation of the Web service,
– CS is a set of its component services. If CS =

{NameS} then S is a basic service. Otherwise
S is a composite service, and

– SN = (P, T, W, i, o, `) is the service net modeling
the dynamic behavior of the service. 2

The place i is considered as the initial marking
of the service S (i.e., only i contains a token). The
execution of S starts when a token is in the place i
and terminates when a token reaches the place o.

3 Composing Web Services

A Web service has a specific task to perform and may
depend on other Web services, hence being composite.
For example, a company that is interested in selling
books could focus on this aspect while outsourcing
other aspects such as payment and shipment. The
composition of two or more services generates a new
service providing both the original individual behav-
ioral logic and a new collaborative behavior for car-
rying out a new composite task. This means that
existing services are able to cooperate although the
cooperation was not designed in advance. Service
composition could be static (service components in-
teract with each other in a pre-negotiated manner) or
dynamic (they discover each other and negotiate on
the fly).

In this section we present an algebra that allows
the creation of new value-added Web services using
existing ones as building blocks. Sequence, alterna-
tive, iteration, and arbitrary sequence are typical con-
structs specified in the control flow. More elaborate
operators, dealt with in this paper, are parallel with
communication, discriminator, selection, and refine-
ment. We also give a formal semantics to the pro-
posed algebra in terms of Petri nets as well as some
nice algebraic properties.

3.1 Web Service Algebra

We describe below the syntax and informal semantics
of the service algebra operators. The constructs were
chosen to allow common and advanced Web service
combinations. The set of services can be defined by
the following grammar in BNF-like notation:

S ::= ε | X | S � S | S ⊕ S | S3S | µS |
S ‖C S | (S|S) ; S |
[S(p, q) : S(p, q)] | Ref(S, a, S)

where:

• ε represents an empty service, i.e, a service which
performs no operation.

• X represents a service constant, used as an
atomic or basic service in this context.

• S1 � S2 represents a composite service that per-
forms the service S1 followed by the service S2,
i.e., � is an operator of sequence.

• S1 ⊕ S2 represents a composite service that be-
haves as either service S1 or service S2. Once
one of them executes its first operation the sec-
ond service is discarded, i.e., ⊕ is an alternative
(or a choice) operator.

• S13S2 represents a composite service that per-
forms either the service S1 followed by the service
S2, or S2 followed by S1, i.e., 3 is an unordered
sequence (or an arbitrary sequence) operator.

• µS represents a service that performs a certain
number of times the service S, i.e., µ represents
an iteration operator.

• S1 ‖C S2 represents a composite service that per-
forms the services S1 and S2 independently from
each other with possibilities of communication
over the set C of pairs of operations, that is, ‖C
is a parallel operator with communication.

• (S1|S2) ; S3 represents a composite service that
waits for the execution of one service (among the
services S1 and S2) before activating the subse-
quent service S3, i.e., ; is a discriminator op-
erator. Note that S1 and S2 are performed in
parallel and without communication.

• [S1(p1, q1) : Sn(pn, qn)] is a composite service
that dynamically selects one service provider
among n available services S1, . . . , Sn and exe-
cutes it. It behaves as follows: first a request
is sent by a composer to n available service
providers of a given trading community through
their entry access points p1, . . . , pn. Then based
on the received responses, from their exit access
points q1, . . . , qn, and according to given rank-
ing criteria (e.g. price, delivery date/time, or a
combination of both) the best service provider is
chosen. Finally the needed operations are per-
formed. [:] is an operator of selection.

• Ref(S1, a, S2) represents a composite service
that behaves as S1 except for operations in S1
with label a that are replaced by the non empty
service S2. Ref is a refinement operator.

The proposed algebra verifies the closure property.
It guarantees that each result of an operation on ser-
vices is a service to which we can again apply algebra
operators. We are thus able to build more complex
services by aggregating and reusing existing services
through declarative expressions of service algebra.

3.2 Formal Semantics

In this section, we give a formal definition, in terms
of Petri nets, of the composition operators. Let Si =
(NameSi, Desci, Loci, URLi, CSi, SNi) with SNi =
(Pi, Ti, Wi, ii, oi, `i) for i = 1, .., n be n Web services
such that Pi ∩ Pj = ∅ and Ti ∩ Tj = ∅ for i 6= j.

It is important to note that service composition, as
will be described below, applies to syntactically dif-
ferent services. This is due to the fact that the places
and transitions of the component services must be
disjoint for proper composition. However, a service
may be composed with itself. Typically, this situation
occurs when services describe variants of the same op-
eration (e.g., normal execution and exceptional situ-
ations) or, for instance, if a single supplier offers two
different goods, the requests may be handled indepen-
dently, as though they were from two different sup-
pliers. In this case, the overlapping must be resolved

prior to composition. This can be accomplished by re-
naming the sets P and T of one of the equal services.
The two services remain equal up to isomorphism on
the names of transitions and places. Note also that,
in case of silent operations, we represent graphically
the corresponding transitions as black rectangles.

3.2.1 Basic Constructs

Empty Service. The empty service ε is a service
that performs no operation. It is used for technical
and theoretical reasons.

Definition 3.1 The empty service ε is defined as ε =
(NameS, Desc, Loc, URL, CS, SN) where:

– NameS = Empty,
– Desc = “Empty Web Service”,
– Loc = Null, stating that there is no server for

the service,
– URL = Null, stating that there is no URL for

ε,
– CS = {Empty}, and
– SN = ({p}, ∅, ∅, p, p, ∅). 2

Graphically, ε is represented by the Petri net of
Figure 1 containing only one place.

o2

.

o3

���
�

�������
�

�������
�

������������

i2

. . .

i1

.

i3

p

. .
 .

. .
 .

α

. .
 .

. . .

. .
 .

o1

. .
 .

γ

. .
 .

β

. .
 .

. .
 .

. .
 .

S2 S3S1

ε

Figure 1: Services ε, S1, S2, and S3

Sequence. The sequence operator allows the execu-
tion of two services S1 and S2 in sequence, that is,
one after another. S1 must be completed before S2
can start. This is typically the case when a service
depends on the output of the previous service. For
example, the service Payment is executed after the
completion of the service Delivery.

Definition 3.2 The service S1�S2 is defined as S1�
S2 = (NameS, Desc, Loc, URL, CS, SN) where:

– NameS is the name of the new service,
– Desc is the description of the new service,
– Loc is the location of the new service (may be

at the same server as one of the two component
services),

– URL is the invocation of the new service,
– CS = CS1 ∪ CS2,
– SN = (P, T, W, i, o, `) where:

• P = P1 ∪ P2,
• T = T1 ∪ T2 ∪ {t},
• W = W1 ∪ W2 ∪ {(o1, t), (t, i2)},
• i = i1,
• o = o2, and
• ` = `1 ∪ `2 ∪ {t, τ}. 2

Graphically, given S1 and S2 (see Figure 1),
S1 � S2 is represented by the Petri net shown in
Figure 2.

Alternative. The alternative operator permits,
given two services S1 and S2, to model the exe-
cution of either S1 or S2, but not both. For in-
stance, the assess claim service is followed by ei-
ther the service indemnify customer or the service
convoke customer.

������������

������������������������������

������������������������������

. .
 .

. .
 .

. . .

.

. . .

. .
 . . .
 .

.

. . .

S2

i2

o = o2

γ

βo1

α

S1

i = i1

Figure 2: Service S1 � S2

Definition 3.3 The service S1⊕S2 is defined as S1⊕
S2 = (NameS, Desc, Loc, URL, CS, SN) where:

– NameS is the name of the new service,
– Desc is the description of the new service,
– Loc is the location of the new service,
– URL is the invocation of the new service,
– CS = CS1 ∪ CS2,
– SN = (P, T, W, i, o, `) where:

• P = P1 ∪ P2 ∪ {i, o},
• T = T1 ∪ T2 ∪ {ti1, ti2, to1, to2},
• W = W1 ∪ W2 ∪ {(i, ti1), (i, ti2), (ti1, i1),

(ti2, i2), (o1, to1), (o2, to2), (to1, o), (to2, o)},
and

• ` = `1 ∪ `2 ∪ {(ti1, τ), (ti1, τ), (to1, τ),
(to2, τ)}. 2

Graphically, given S1 and S2 (see Figure 1),
S1 ⊕ S2 is represented by the Petri net shown in
Figure 3(a).

���
�

���
�

	
	
		
	
		
	
	
�
�
��
�
��
�
�

�
�
�
��
�
�
��
�
�
�

�
�
��
�
��
�
�
�
�
��
�
��
�
�

�
�
��
�
��
�
�
�
�
��
�
��
�
�

�
�
��
�
��
�
��
�
�
�
�
��
�
��
�
��
�
�

�
�
��
�
��
�
�
�
�
��
�
��
�
�

�
�
��
�
��
�
�
�
�
��
�
��
�
�

�
�
��
�
��
�
�
�
�
��
�
��
�
�

�
�
�
��
�
�
��
�
�
�
�
�
��
�
��
�
�

�
�
��
�
��
�
�
�
�
��
�
��
�
�

(b)

(a)

i1

. . .

. . .

. .
 .

. .
 .

. .
 .

i2

. . .

. . .

. .
 .

. .
 .

. .
 .

. .
 .

α β γ

S1 S2

p3
p1 p2

i

o1 o2

o

p5p4

o1

i1

. . .

. . .

. .
 .

. .
 .

. .
 .

o2

i2

. . .

. . .

. .
 .

. .
 .

. .
 .

. .
 .

α β γ

i

S1 S2

o

Figure 3: Services (a) S1 ⊕ S2 and (b) S13S2

Arbitrary Sequence. The arbitrary sequence oper-
ator specifies the execution of two services that must
not be executed concurrently, that is, given two ser-
vices S1 and S2, we have either S1 followed by S2 or
S2 followed by S1. Suppose, for instance, that there
are two goods, then acquiring a single good is useless
unless the rest of the conjuncts can also be acquired.
Moreover, without a deadline, there is no benefit by
making the two requests in parallel, and doing so may
lead to unnecessary costs if one of the conjuncts is
unavailable or unobtainable. Therefore, the optimal
execution is necessarily an arbitrary serial ordering of
requests to suppliers.

Definition 3.4 The service S13S2 is defined as
S13S2 = (NameS, Desc, Loc, URL, CS, SN) where:

– NameS is the name of the composite service,
– Desc is the description of the composite service,
– Loc is the server where the composite service is

located,
– URL is the invocation of the composite service,

– CS = CS1 ∪ CS2,
– SN = (P, T, W, i, o, `) where:

• P = P1 ∪ P2 ∪ {i, o, p1, p2, p3, p4, p5},
• T = T1 ∪ T2 ∪ {ti, t1, t2, t3, t4, to},
• W = W1 ∪ W2 ∪ {(i, ti), (ti, p1), (ti, p2),

(ti, p3), (p1, t1), (p2, t2), (p3, t1), (p3, t2),
(p3, to), (t1, i1), (t2, i2), (o1, t3), (o2, t4),
(t3, p3), (t4, p3), (t3, p4), (t4, p5), (p4, to),
(p5, to), (to, o)}, and

• ` = `1 ∪ `2 ∪ {(ti, τ), (t1, τ), (t2, τ),
(t3, τ), (t4, τ), (to, τ)}. 2

Graphically, given S1 and S2 (see Figure 1),
S13S2 is represented by the Petri net shown in
Figure 3(b).

Iteration. The iteration operator models the execu-
tion of a service followed a certain number of times
by itself. Typical examples where iteration is required
are communication and quality control where services
are executed more than once. Another example is
when ordering several processors, the service Order
Processor is executed several times.

Definition 3.5 The service µS1 is defined as µS1 =
(NameS, Desc, Loc, URL, CS, SN) where:

– NameS is the name of the new service,
– Desc is the description of the new service,
– Loc is the location of the new service,
– URL is the invocation of the new service,
– CS = CS1,
– SN = (P, T, W, i, o, `) where:

• P = P1 ∪ {i, o},
• T = T1 ∪ {ti, to, t},
• W = W1 ∪ {(i, ti), (ti, i1), (o1, to), (to, o),

(o1, t), (t, i1)}, and
• ` = `1 ∪ {(ti, τ), (to, τ), (t, τ)}. 2

Graphically, given S1 (see Figure 1), µS1 is repre-
sented by the Petri net shown in Figure 4(a).

���������������
���������������

 � � � � � � � �

!�!�!!�!�!!�!�!!�!�!

"�"�"�""�"�"�""�"�"�"
#�#�##�#�##�#�#

$�$�$�$$�$�$�$$�$�$�$
%�%�%%�%�%%�%�%

&�&�&&�&�&&�&�&
'�'�''�'�''�'�'

(()
)

**+
+

. . .

. . .

. .
 .

. .
 .

. .
 . α

o

i

i1

o1

S1

(a) (b)

o1

i1

. . .

. . .

. .
 .

. .
 .

. .
 .

o2

i2

. . .

. . .

. .
 .

. .
 .

. .
 .

. .
 .

α β γ

p1

p2

o

i

S1 S2

Figure 4: Services (a) µS1 and (b) S1 ‖C S2

3.2.2 Advanced Constructs

Parallelism with Communication. The parallel
operator represents the concurrent execution of two
services. Concurrent services may synchronize and
exchange information. For instance, in an Online
Computer Store Web service, after receiving an or-
der for a computer from a customer, two parallel
services are triggered: Order Monitor and Order
Processor.

Definition 3.6 Let C = {(α, β) | (α, β) ∈ T1 ×
T2 ∪ T2 × T1} be a set of communication elements.
The service S1 ‖C S2 is defined as S1 ‖C S2 =
(NameS, Desc, Loc, URL, CS, SN) where:

– NameS is the name of the composite service,
– Desc is the description of the composite service,
– Loc is the location of the composite service,
– URL is the invocation of the composite service,
– CS = CS1 ∪ CS2,
– SN = (P, T, W, i, o, `) where:

• P = P1 ∪ P2 ∪ {i, o} ∪ {pi / (αi, βi) ∈ C},
• T = T1 ∪ T2 ∪ {ti, to},
• W = W1 ∪ W2 ∪ {(i, ti), (ti, i1), (ti, i2),

(o1, to), (o2, to), (to, o)} ∪ {(αi, pi), (pi, βi)
/ (αi, βi) ∈ C}, and

• ` = `1 ∪ `2 ∪ {(ti, τ), (to, τ)}. 2

Given S1, S2 (see Figure 1), and C = {(α, β),
(γ, α)}, S1 ‖C S2 is represented graphically by the
Petri net shown in Figure 4(b).

Discriminator. Web services are unreliable; they
have a relatively high probability of failing or of being
unacceptably slow. Delays of only a few seconds could
result in service providers losing significant sums of
money or disappointing their customers. Different
service providers may provide the same or similar ser-
vices. Therefore, it should be possible to combine
unreliable services to obtain more “reliable” services.
The discriminator operator is used, for instance, to
place redundant orders to different suppliers offering
the same service to increase reliability. The first to
perform the requested service triggers the subsequent
service and all other late responses are ignored for the
rest of the composite service process. This construct
is similar to the discriminator pattern introduced in
(Aalst, Hofstede, Kiepuszewski & Barros 2002) but
our implementation, in terms of Petri nets, is differ-
ent.

Definition 3.7 The service (S1|S2) ; S3 is defined
as (S1|S2) ; S3 = (NameS, Desc, Loc, URL, CS,
SN) where:

– NameS is the name of the new service,
– Desc is the description of the new service,
– Loc is the location of the new service,
– URL is the invocation of the new service,
– CS = CS1 ∪ CS2 ∪ CS3,
– SN = (P, T, W, i, o, `) where:

• P = P1 ∪ P2 ∪ P3 ∪ {i, o, p1, p2},
• T = T1 ∪ T2 ∪ T3 ∪ {ti, t1, t2, t3, to},
• W = W1 ∪ W2 ∪ W3 ∪ {(i, ti), (ti, i1),

(ti, i2), (ti, p2), (o1, t1), (o2, t2), (t1, p1),
(t2, p1), (p1, t3), (p1, to), (p2, t3), (t3, i3),
(o3, to), (to, o)}, and

• ` = `1 ∪ `2 ∪ `3 ∪ {(ti, τ), (t1, τ), (t2, τ),
(t3, τ), (to, τ)}. 2

Graphically, given S1, S2, and S3 (see Figure 1),
(S1|S2) ; S3 is represented by the Petri net shown
in Figure 5(a). Note that |, in (S|S) ; S, is similar
to a parallel operator without communication, i.e.,
‖∅.

Selection. Relying on a single supplier puts a com-
pany at its mercy. To reduce risk, a company should
maintain relationships with multiple suppliers. These
suppliers may, e.g., charge different prices, propose
different delivery dates and times, and have different
reliabilities. The selection construct allows to choose
the best service provider, by using a ranking crite-
ria, among several competing suppliers to outsource
a particular operation.

Definition 3.8 Let pi, qi ∈ Pi be service access
points of Si for i = 1, .., n. The service [S1(p1, q1) :
Sn(pn, qn)] is defined as [S1(p1, q1) : Sn(pn, qn)] =
(NameS, Desc, Loc, URL, CS, SN) where:

– NameS is the name of the composite service,
– Desc is the description of the composite service,
– Loc is the location of the composite service,
– URL is the invocation of the composite service,

– CS =
n
⋃

i=1

CSi,

– SN = (P, T, W, i, o, `) where:

• P =
n
⋃

i=1

Pi ∪ {i, o, p, q},

• T =
n
⋃

i=1

Ti ∪ {t, u, v} ∪ {ti, t
′
i | 1 ≤ i ≤ n},

• W =
n
⋃

i=1

Wi ∪ {(i, t), (u, p), (q, v), (v, o)} ∪

{(t, pj), (qj , u), (p, t′j), (t
′
j , ij), (oj , tj), (tj , q)

| 1 ≤ j ≤ n}, and

• ` =
n
⋃

i=1

`i ∪ {(t,send req serv),

(u,select serv), (v, τ)} ∪ {(ti, τ), (t′i, τ)
| 1 ≤ i ≤ n}. 2

Graphically, given S1, . . . , Sn, and pi, qi ∈ Pi for
i = 1, .., n, [S1(p1, q1) : Sn(pn, qn)] is represented
by the Petri net shown in Figure 5(b). To allow
the discovery of the service, we assume that ser-
vice providers register their services with a particular
trading community (Benatallah et al. 2000, Benatal-
lah et al. 2002) and that information about available
services is known. We also assume that each ser-
vice provider contains two distinct parts, one part
to process the service request and the other part to
perform the service itself. The pair of operations
send req serv and select serv represents a prede-
fined selection strategy chosen, among others, by the
designer of the composite service.

The selection decision may also be based on
automated negotiation and auctions (e.g, sealed bid
and open-cry auctions) where the parties involved,
that is, the composer (auctioneer) and the service
providers, are automated. By doing so, automated
online auctions become a fundamental building block
for selection decision.

Refinement. The refinement construct, in which op-
erations are replaced by more detailed non empty ser-
vices, is used to introduce additional component ser-
vices into a service. Refinement is the transformation
of a design from a high level abstract form to a lower
level more concrete form hence allowing hierarchical
modeling.

Definition 3.9 Let a ∈ A. The service
Ref(S1, a, S2) is defined as Ref(S1, a, S2) =
(NameS, Desc, Loc, URL, CS, SN) where:

– NameS is the name of the refined service,
– NameS is the name of the refined service,
– Desc is the description of the refined service,
– Loc is the location of the refined service (may be

at the same location as S1),
– URL is the invocation of the refined service,

– CS =

{

CS1 ∪ CS2 if a ∈ `1(T1)
CS1 otherwise ,

– SN = (P, T, W, i, o, `) where:

• P = P1 ∪ {< p, t > | p ∈ P2 \ {i2, o2}, t ∈
`−1
1 (a)},

���������������
���������������

��������������������

��������������������

���������������
���������������

��������������������

��������������������

	�	�		�	�		�	�		�	�	

�
�

�
�

�
�

�
�

���������������
���������������

������������

������
������
������

���������������
���������������

������������������������������

������
������
������

���������������������
���������������������

���
�

���
�

i

. . .

o1

. . .

. . .

. .
 .

. .
 .

. .
 . α

S1
i1

o2

i2

. . .

. . .

. .
 .

. .
 .

. .
 .

. .
 .

β γ

S2

S3
i3

. .
 .

. .
 .

o

p1

p2

(a)

(b)

i1

.

i

. .
 .

. .
 .

.

. .
 .

. .
 .

send_req_serv

rec_req_1 rec_req_n

send_resp_nsend_resp_1

. .
 .

. .
 .

S1 Sn

o n

in

pn1p

t

o 1

. . .

. . .

q

p

o

. . .

u

qq 1 n

select_serv

. . .

o3

Figure 5: Services (a) (S1|S2) ; S3 and (b) [S1(p1, q1) : Sn(pn, qn)]

• T = T1 \ `−1
1 (a) ∪ {< x, t > | x ∈ T2, t ∈

`−1
1 (a)},

• W (x, y) =

W1(x, y) if x, y ∈ P1 ∪
T1 \ `−1

1 (a)
W2(x

′, y′) if x =< x′, t >,
y =< y′, t >
for t ∈ `−1

1 (a)
W1(x, t) if y =< y′, t >,

x ∈ •t for t ∈
`−1
1 (a) and

y′ ∈ i•2
W1(t, y) if x =< x′, t >,

y ∈ t• for t ∈
`−1
1 (a) and

x′ ∈ •o2
0 otherwise

• i = i1,
• o = o1, and

• `(t) =

`1(t) if t ∈ T1 \ `−1
1 (a)

`2(x) if t =< x, t′ > for x ∈ T2

and t′ ∈ `−1
1 (a)

2

Figure 6 shows an example of a refined service
where S2 (performing either assess simple claim or
assess complex claim) is a refinement (i.e., special-
ization) of the generic operation assess claim in S1.

Another interesting use of the refinement op-
erator is its combination with the selection op-
erator for best outsourcing operations. In

�������
�

���
�

��
�
��
�

o

i

assess_simple_claim

convoke_customer

assess_complex_claim

indemnify_customer

Ref(S1,assess_claim,S2)

i2
assess_simple_claim assess_complex_claim

o2

S2

indemnify_customer

i1

assess_claim

convoke_customer

o1

S1

Figure 6: An Example of Refinement

Ref(S1, assess claim, [A1 : An]), for instance,
assess claim is performed by the suitable service
chosen among n available assessors.

The composite Web service generated by using the
above constructs is a service net that has two special
places, which correspond to the beginning and termi-
nation of the processing of the composite Web service.
This interesting property relates to the structure of
the underlying Petri net.

Proposition 3.1 (Preservation)
The service net of a composite Web service S obtained
using the above defined constructs contains one input
place i and one output place o.

Proof. Immediate consequence of Definition 2.2
and of the definitions of the composition constructs
defined previously. 2

In what follows, we give an example of a composite
service modeled as a Petri net to illustrate some of the
constructs defined above.

Example 3.1
Figure 7 shows a Web service composed of three ba-
sic services, OCS representing an Online Computer
Store and SM and IP , representing respectively the
Sony Monitors and the Intel Processors. Upon
reception of an order rec ord PC for a computer
from a customer, OCS starts, in parallel, the out-
sourced services SM to order a monitor and IP
to order a processor by performing the operations
send ord mon and send ord pr respectively. The set
of communication elements are C1 = {(send ord mon,
rec ord mon), (send del mon, rec del mon)} and
C2 = {(send ord pr, rec ord pr), (send del pr,
rec del pr)}. Once the requested items are received,
OCS performs the assemble PC operation.

Note that, for the sake of simplicity and clarity,
not all the operations of the scenario (e.g, delivery and
billing) are represented and labels are used instead of
names for the transitions.

���
�

������������

������������

������������

	�		�	
�

�

i

o

rec_ord_pr
rec_ord_mon

send_ord_mon

send_del_pr
rec_del_mon

rec_del_prsend_del_mon

SM
IP

COS

C2

assemble_PC

send_ord_pr

rec_ord_PC

OCS || IP

Figure 7: Service SM ‖C1
(OCS ‖C2

IP)

Let us assume now that, instead of a basic ser-
vice Sony Monitors, we use a composite service
Monitors. The monitor provider can be dynam-
ically selected among the available services (e.g.,
M1, . . . , Mn) which are members of Monitors (see
Figure 8). Note that C3 = {(send ord mon,
send req serv), (τ , rec del mon)}. 2

3.3 Algebraic Properties

Our semantics can be used to prove algebraic prop-
erties of the constructs. As a general observation,
it may be the case that a designer produces a com-
plex Web service by combining a set of existing Web
services using the algebra operators. The algebraic
properties could then be used to transform and op-
timize composed Web services based on component
Web services’ operational metrics such as cost and
duration, although not investigated in this paper.

A description of the algebraic properties of the op-
erators introduced above is given in Table 1 (where
n
∏

i=1

Si stands for [S1(p1, q1) : Sn(pn, qn)]). The alge-

braic operators satisfy some usual properties, such as
commutativity, associativity, and reflexivity.

S1 � (S2 � S3) = (S1 � S2) � S3 (1)
ε � S = S (2)
S � ε = S (3)

S1 ⊕ S2 = S2 ⊕ S1 (4)
S1 ⊕ (S2 ⊕ S3) = (S1 ⊕ S2) ⊕ S3 (5)

S ⊕ S = S (6)
(S1 ⊕ S2) � S3 = (S1 � S3) ⊕ (S2 � S3) (7)

S13S2 = (S1 � S2) ⊕ (S2 � S1) (8)
µε = ε (9)

S1 ‖C S2 = S2 ‖C S1 (10)
S1 ‖∅ (S2 ‖∅ S3) = (S1 ‖∅ S2) ‖∅ S3 (11)

S ‖∅ ε = S (12)
(S1|S2) ; S3 = (S2|S1) ; S3 (13)

(S1|ε) ; S2 = S1 ‖∅ S2 (14)
(S1|S2) ; ε = S1 ‖∅ S2 (15)

∀{i1, ..., in} = {1, ..., n}
∏

i∈{i1,...,in}

Si =
n
∏

i=1

Si (16)

If Sj = ε then
n
∏

i=1

Si =
n
∏

i=1,i6=j

Si (17)

Ref(S1, a, S2) = S1 if a /∈ `1(T1) (18)
S13S2 = S23S1 (from (8) and (4)) (19)
S3S = S � S (from (8) and (6)) (20)

S3ε = S (from (8), (2), (3), and (6)) (21)

Table 1: Desired Properties of the Service Algebra

Simple properties can be easily derived, for exam-
ple (2), (3), (9), and (12). A range of other equations
can be derived, each by an easy case analysis.

An interesting observation is that our semantics
equates the services S13S2 and (S1 � S2) ⊕ (S2 �
S1) (property (8)). This means that arbitrary se-
quence can be expressed using sequence and alter-
native. However, it is still useful to include the arbi-
trary sequence operator in the algebra since the obvi-
ous implementation will be inefficient for the service
(S1 � S2) ⊕ (S2 � S1).

4 Web Service Analysis

A composite Web service is a system that consists
of several conceptually autonomous but cooperating
units. It is difficult to specify how this system should
behave and ensure that it behaves as required by the
specification. The reason is that, given the same in-
put and initial state, the system may produce several
different outputs.

Web services interact with each other for conduct-
ing a specific task although they are created and de-
ployed by independent service providers. The pieces
of work within the specific task are tightly coupled.
For example, an Online Computer Store may need
services provided by Monitor and Processor Web
services. The business logic of those two Web ser-
vices are independent of each other but, for a partic-
ular computer request, the two pieces of work, that
is, the monitor ordering and the processor ordering,
are related. Since Web services which contain errors
may lead to angry customers and loss of goodwill, it
is thus important to analyze Web services before they
are put into operation. The goal is to provide mech-
anisms to support correct Web service composition.

The properties to be verified may be general, such
as absence of deadlocks and livelocks, or application-
specific, such as if a customer keep reserving and
canceling the reservation indefinitely, in an Online
Ticket Sales Web service, a sophisticated system
might deny serving such a customer after a certain

���
�

������������

������������

������������

	�	�		�	�	
�
�

�
�
��
��
�

��
��
�

��
��

���������������
���������������

��
��

��
��

���������������
���������������

i

rec_ord_pr

send_ord_mon

send_del_pr
rec_del_mon

. . .

rec_req_1 rec_req_n

o

send_req_serv

send_resp_1 send_resp_n

. .
 .

. .
 .

. .
 .

. .
 .

rec_ord_mon_nrec_ord_mon_1

send_del_mon_1 send_del_mon_n

send_ord_pr

rec_del_pr

select_serv

. . .

. . .

p

q

p1

q1

n

n

M1 Mn
COS

IP

C2

assemble_PC

rec_ord_PC

OCS || IP

[M1(p1,q1):Mn(pn,qn)]

Figure 8: Service [M1(p1, q1) : Mn(pn, qn)] ‖C3
(OCS ‖C2

IP)

number of reservation or cancellation requests. The
correctness of services is vital to companies. A Web
service which contains errors (e.g., a deadlock) may
lead to angry customers and loss of goodwill. It is
thus important to analyze a service before it is put
into operation. The correct termination, is one of the
main properties a proper Web service should satisfy.
The verification of the correctness property consists
in checking whether the underlying Petri net is live
and bounded (Murata 1989).

Behavioral equivalences are useful in verification
as they lay the conceptual basis for deciding that
the behavior of two Web services can be consid-
ered to be “the same”. They can also be used as
a tool for reducing verification effort by replacing
the Petri net of a service by a smaller (in size),
but “equivalent” one. The bisimulation equivalence
(Park 1981, Milner 1989) between two Web services
is a relation between their evolutions such that for
each evolution of one of the services there is a corre-
sponding evolution of the other service such that the
evolutions are observationally “equivalent” and lead
to services which are again bisimilar. This charac-
terization of the behavior of Web services using the
notion of bisimulation helps service designer optimize
composite services by, e.g., changing their component
Web services with “equivalent” ones. Another moti-
vation is customization of services. To enhance com-
petitiveness a service provider may modify his/her
service for a customer’s convenience (e.g., to conform
to his/her own business model) and this customized
service must conform to the original one.

5 Related Work

Several approaches investigated the issue of sharing
Web services. However, none of them offers a gen-
eral theoretical framework for the composition of Web

services. In this section, we briefly overview the ap-
proaches that are closely related to our work.

Workflow management systems (Georgakopoulos,
Hornick & Sheth 1995, WfMC 1999) are based on
the premise that the success of an enterprise re-
quires the management of business processes in their
entirety. Indeed, an increasing number of organi-
zations have already automated their internal pro-
cess management using workflow technology and en-
joyed substantial benefits in doing so. However, B2B
e-commerce requires the flexible support of cross-
enterprises relationships. Current research efforts in
the workflow area promise to deliver a next gener-
ation workflow systems that has the ability to eas-
ily thread together cross-organizational business pro-
cesses, supporting the integration of diverse users,
applications, and systems. The purpose of cross-
organization workflows is to automate business pro-
cesses that interconnect and manage communication
among disparate systems. Early projects in this direc-
tion focus mostly on the integration of small numbers
of tightly coupled business processes. Recent emerg-
ing workflow projects such as CMI (Georgakopoulos,
Schuster, Cichocki & Baker 1999), eFlow (Casati, Il-
nicki, Jin & Shan 2000), and CrossFlow (Ludwig &
Hoffner 1999, Hoffner, Ludwig, Gulcu & Grefen 2000)
focus on loosely coupled processes. However, they
lack a formal model for specifying and verifying Web
services. They also do not address the semantics of
Web service composition operators.

Other approaches modeling business processes us-
ing Petri nets are in the workflow setting. Workflow
nets, a class of Petri nets similar to our service net,
have been introduced in (Aalst 1997, Aalst 1998) for
the representation and verification of workflow pro-
cesses. In (Adam, Alturi & Huang 1998), the authors
developed a Petri net-based approach that uses sev-
eral structural properties for identifying inconsistent
dependency specification in a workflow, testing for

its safe termination, and checking for the feasibility
of its execution for a given starting time when tem-
poral constraints are present. An implementation is
provided for conducting the above analyses. How-
ever, the approach is restricted to acyclic workflows.
Nevertheless, these previous approaches treat every
workflow process as a separate entity. They do not
consider business process composition.

Web service integration requires more complex
functionality than SOAP, WSDL, and UDDI can pro-
vide. The functionality includes transactions, work-
flow, negotiation, management, and security. There
are several efforts that aim at providing such func-
tionality, for example, the recently released Busi-
ness Process Execution Language for Web Services
(BPEL4WS)4, which represents the merging of IBM’s
Web Services Flow Language (WSFL) (Leymann
2001) and Microsof’s XLANG (Thatte 2001), is po-
sitioned to become the basis of a standard for Web
service composition. These languages are based on
SOAP+WSDL+UDDI basic stack, are complex pro-
cedural languages, and very hard to implement and
deploy. There are also some proposals such as DAML-
S5 which is a part of DARPA Agent Markup Lan-
guage project that aims at realizing the Semantic Web
concept. However, DAML-S is a complex procedural
language for Web service composition.

6 Conclusions

In this paper, we proposed a Petri net-based algebra
for composing Web services. The formal semantics
of the composition operators is expressed in terms of
Petri nets by providing a direct mapping from each
operator to a Petri net construction. Thus, any ser-
vice expressed using the algebra constructs can be
translated into a Petri net representation. By means
of a set of algebra properties, we are able to transform
and optimize Web service expressions guaranteeing
the same semantics of initial expressions. In addi-
tion, the use of a formal model allows the verification
of properties and the detection of inconsistencies both
within and between services.

There are other issues in B2B e-commerce which,
we believe, could be successfully addressed by extend-
ing the framework presented in this paper, e.g., to in-
clude management of time and resources. We expect
that these problems can be dealt with using a suitable
high-level Petri net, such as timed and coloured Petri
nets (Jensen 1997). Another issue is that a strong
link with process algebras, such as CCS (Milner 1989)
and ACP (Bergstra & Klop 1985), should allow one to
import process algebra specific verification techniques
(e.g., axiomatizations of behavioral equivalences) into
the Petri net based framework. Finally, composing
Web services that satisfy requirements such as trans-
actional process, negotiation, exception handling, and
security through externally visible interaction or con-
versation is a challenging issue.

Acknowledgments

The authors would like to thank Associate Professor
Arthur ter Hofstede from Queensland University of
Technology for his constructive criticisms on an ear-
lier version of this paper.

References

Aalst, W. v. d. (1997), Verification of Workflow Nets,
in P. Azema & G. Balbo, eds, ‘Proceedings of

4http://www.ibm.com/developerworks/library/ws-bpel/.
5http://www.daml.org/services/.

the Application and Theory of Petri Nets’97’,
Toulouse, France.

Aalst, W. v. d. (1998), ‘The Application of Petri Nets
to Workflow Management’, The Journal of Cir-
cuits, Systems and Computers 8(1), 21–66.

Aalst, W. v. d. (1999), ‘Interorganizational Work-
flows: An Approach based on Message Sequence
Charts and Petri Nets’, Systems Analysis - Mod-
elling - Simulation 34(3), 335–367.

Aalst, W. v. d., Hofstede, A. t., Kiepuszewski, B. &
Barros, A. (2002), Workflow Patterns, Technical
Report FIT-TR-2002-02, Queensland University
of Technology, Brisbane, Australia.

Adam, N., Alturi, V. & Huang, W.-K. (1998), ‘Mod-
eling and Analysing of Workflows Using Petri
Nets’, Journal of Intelligent Information Sys-
tems 10(2), 131–158.

Benatallah, B., Dumas, M., Sheng, Q. & Ngu, A.
(2002), Declarative Composition and Peer-to-
Peer Provisioning of Dynamic Web Services, in
‘Proceedings of the 18th International Confer-
ence on Data Engineering (ICDE’02)’, IEEE
Computer Society, California, USA, pp. 297–308.

Benatallah, B., Medjahed, B., Bouguettaya, A., El-
magarmid, A. & Beard, J. (2000), Composing
and Maintaining Web-based Virtual Enterprises,
in ‘Proceedings of the Workshop on Technologies
for E-Services (in Cooperation with VLDB’00)’,
Cairo, Egypt.

Bergstra, J. & Klop, J. (1985), ‘Algebra of Communi-
cating Processes with Abstraction’, TCS 37, 77–
121.

Casati, F., Ilnicki, S., Jin, L. & Shan, M.-C. (2000),
An Open, Flexible, and Configurable System for
E-Service Composition, Technical Report HPL-
2000-41, HP Labs.

Georgakopoulos, D., Hornick, M. & Sheth, A. (1995),
‘An Overview of Workflow Management: From
Process Modeling to Workflow Automation In-
frastructure’, Distributed and Parallel Databases
3(2).

Georgakopoulos, D., Schuster, H., Cichocki, A. &
Baker, D. (1999), ‘Managing Process and Service
Fusion in Virtual Enterprises’, Information Sys-
tems, Special Issue on Information Systems Sup-
port for Electronic Commerce 24(6), 429–456.

Hoffner, Y., Ludwig, H., Gulcu, C. & Grefen, P.
(2000), Architecture for Cross-Organizational
Business Processes, Research report, IBM,
Zurich, Switzerland.

Jensen, K. (1997), Coloured Petri Nets: Basic Con-
cepts, Analysis Methods and Practical Use. Vol.
1, Basic Concepts, EATCS Monographs on The-
oretical Computer Science, Springer-Verlag.

Leymann, F. (2001), Web Services Flow Language
(WSFL) version 1.0, IBM Software Group.
http://ibm.com/software/solutions/webservices
/pdf/WSFL.pdf/.

Ludwig, H. & Hoffner, Y. (1999), Contract-based
Cross-Organisational Workflows - The Cross-
Flow Project, in D. Georgakopoulos, W. Prinz
& A. Wolf, eds, ‘Proceedings of the International
Joint Conference on Work Activities Coordina-
tion and Collaboration (WACC’99)’, San Fran-
sisco, USA.

Milner, R. (1989), Communication and Concurrency,
Prentice Hall Int.

Murata, T. (1989), Petri Nets: Properties, Analysis
and Applications, in ‘Proceedings of the IEEE’,
Vol. 77(4), pp. 541–580.

Park, D. (1981), Concurrency and Automata on Infi-
nite Sequences, in P. Deussen, ed., ‘Proceedings
of the 5th GI Conference’, LNCS 104, Springer
Verlag.

Peterson, J. (1981), Petri Net Theory and the Model-
ing of Systems, Prentice Hall, Englewood Cliffs.

Petri, C. (1962), Kommunikation mit Automaten,
PhD thesis, University of Bonn, Germany. (In
German).

Reisig, W. (1985), Petri Nets: An Introduction,
EATCS Monographs on Theoretical Computer
Science Vol.4, Springer-Verlag, Berlin, Germany.

Schuster, H., Georgakopoulos, D., Cichocki, A.
& Baker, D. (2000), Modeling and Compos-
ing Service-based and Reference Process-based
Multi-enterprise Processes, in ‘Proceedings of
the 12th Conference on Advanced Information
Systems Engineering (CAiSE’00)’, Stockholm,
Sweden.

Thatte, S. (2001), XLANG: Web Services for Busi-
ness Process Design, Microsoft Corporation.
http://www.gotdotnet.com/team/xml wsspecs
/xlang-c/default.htm/.

WfMC (1999), Workflow Management
Coalition, Terminology and Glossary,
Document Number WFMC-TC-1011.
http://www.wfmc.org/standards/docs.htm/.

