
Finite State Machines 1

95-771 Data Structures and
Algorithms for Information

Processing

195-771 Data Structures and Algorithms for
Information Processing

Some Results First
Computing
Model

Finite
Automata

Pushdown
Automata

Linear
Bounded
Automata

Turing
Machines

Language Class Regular
Languages

Context-Free
Languages

Context-
Sensitive
Languages

Recursively
Enumerable
Languages

Non-
determinism

Makes no
difference

Makes a
difference

No one knows Makes no
difference

95-771 Data Structures and Algorithms for
Information Processing 2

Alphabets

• S (sigma): a finite (non-empty) set of symbols
called the alphabet.

• Each symbol in S is a letter.

• Letters in the alphabet are usually denoted by
lower case letters: a, b, c, …

395-771 Data Structures and Algorithms for
Information Processing

Strings

• A word w is a string of letters from S in a linear
sequence.

• We are interested only in finite words (bounded
length).

• |w| denotes the length of word w.

• The empty string contains no letters and is

written as e.
495-771 Data Structures and Algorithms for

Information Processing

Languages

• A language L is a set (finite or infinite) of
words from a given S.

• The set of all strings over some fixed alphabet
S is denoted by S*.

• For example, if S = {a},
 then S* = {e, a, aa, aaa, …}.

595-771 Data Structures and Algorithms for
Information Processing

Languages

• The set of all strings of length i over some
fixed alphabet S is denoted by Si.

• For example, let S = {a, b}.
• Then L = S2 = {aa, ab, ba, bb} is the set of

words w such that |w| = 2.

695-771 Data Structures and Algorithms for
Information Processing

Operations on Words and Languages

• Concatenation: putting two strings together
 x = aa; y=bb; x.y = xy = aabb

• Power: concatenating multiple copies of a letter or word
 an = a.an-1; a1 = a; a2 = a.a; etc.
 x = ab; x3 = ababab

• Kleene Star: zero or more copies of a letter or word
 a* = {e, a, aa, aaa, …}
 x = ab; x* = {e, ab, abab, ababab, …}

795-771 Data Structures and Algorithms for
Information Processing

Deterministic, Finite State Automata

• A finite-state automaton comprises the
following elements:
– A sequence of input symbols (the input “tape”).
– The current location in the input, which indicates

the current input symbol (the read “head”).
– The current state of the machine (denoted

q0,q1,…,qn).
– A transition function which inputs the current

state and the current input, and outputs a new
(next) state.

895-771 Data Structures and Algorithms for
Information Processing

During computation,
v The FSA begins in the start state (usually, q0).
v At each step, the transition function is called on

the current input symbol and the current state,
the state is updated to the new state, and the
read head moves one symbol to the right.

v The end of computation is reached when the FSA
 reaches the end of the input.
One or more states may be marked as final states,

such that the computation is considered
successful if and only if computation ends in a
final state.

995-771 Data Structures and Algorithms for
Information Processing

An Example

• An FSA can be represented graphically as a
directed graph, where the nodes in the graph
denote states and the edges in the graph
denote transitions. Final states are denoted by
a double circle.

• For example, here is a graphical
representation of a DFSA that accepts the
language L = {a2n : n ³ 1} :

1095-771 Data Structures and Algorithms for
Information Processing

• Input: aaa
 States: q0, q1, q2, q1 (not accepted)

• Input: aaaa
 States: q0, q1, q2, q1, q2 (accepted)

1195-771 Data Structures and Algorithms for
Information Processing

DFSA Definition

A DFSA can be formally defined as
 A = (Q, S, ¶, q0, F):
– Q, a finite set of states
– S, a finite alphabet of input symbols
– q0 Î Q, an initial start state
– F Í Q, a set of final states

– ¶ (delta): Q x S ® Q, a transition function

1295-771 Data Structures and Algorithms for
Information Processing

Transition function - ¶

• We can expand the notion of ¶ on letters to ¶
on words, ¶w, by using a recursive definition:

• ¶w : Q x S* ® Q - (a function of (state, word) to a state)

• ¶w(q,e) = q - (in state q, output state q if word is e)

• ¶w(q,xa) = ¶(¶w(q,x),a) - (otherwise, use ¶ for one step
and recurse)

1395-771 Data Structures and Algorithms for
Information Processing

Language Recognition

• For an automaton A, we can define the language
of A:

 - L(A) = {wÎ S* : ¶w(q0,w) Î F }
 - L(A) is a subset of all words w of finite length

over S, such that the transition function ¶w(q0,w)
produces a state in the set of final states (F).

 - Intuitively, if we think of the automaton as a
graph structure, then the words in L(A) represent
the “paths” which end in a final state. If we
concatenate the labels from the edges in each
such path, we derive a string w Î L(A).

1495-771 Data Structures and Algorithms for
Information Processing

Another Example

 Q = { q0, q1, q2 }
S = { R,0,1,2 }

 q0 : the start state
F = { q0 }
¶ (delta): Q x S ® Q

Next, we define delta with a directed graph.

1595-771 Data Structures and Algorithms for
Information Processing

This automaton keeps a running count of the sum of the numerical input symbols it reads, modulo 3.
Every time it receives the R (reset) symbol it resets the count to 0. It accepts the if the sum is 0,
modulo 3, or in other words, if the sum is a multiple of 3.
This automaton is from “Introduction to the Theory of Computation” by Michael Sipser

1695-771 Data Structures and Algorithms for
Information Processing

Homework Questions (not to be turned in
but to prepare for exam)

Give state diagrams for DFA’s recognizing the following
languages. S = { 0,1 }.

1. { w | w begins with a 1 and ends with a 0 }
2. { w | w contains at least three 1’s }
3. { w | the length of w is at most 5 }
4. { w | w contains at least two 0’s and at most one 1. }
5. { w | w contains an even number of 0’s, or exactly two

1’s }
6. { w | w is not e }

1795-771 Data Structures and Algorithms for
Information Processing

