Lecture Notes: Finite-State Machines (3)

Deterministic Finite-State Automata (review)

A DFSA can be formally defined as A = (Q, (, (, q0, F):

Q, a finite set of states

(, a finite alphabet of input symbols

q0 (Q, an initial start state

F (Q, a set of final states

((delta): Q x ((Q, a transition function
Pushdown Automata(review)

A pushdown automaton can be formally defined M = (Q,(,(,(,q0,F):

Q, a finite set of states

(, the alphabet of input symbols

(, the alphabet of stack symbols

(, Q x (x ((Q x (

q0, the initial state

F, the set of final states

Turing Machines

The basic model of a Turing machine has a finite control, an input tape that is divided into cells, and a tape head that scans one cell of the tape at a time. The tape has a leftmost cell but is infinite to the right. Each cell of the tape may hold exactly one of a finite number of tape symbols. Initially, the n leftmost cells, for some finite n >= 0, hold the input, which is a string of symbols chosen from a subset of the tape symbols called the input symbols. The remaining infinity of cells each hold the blank, which is a special symbol that is not an input symbol.

A Turing machine can be formally defined as M = (Q,(,(,(,q0,B,F):, where

Q, a finite set of states

(, is the finite set of allowable tape symbols
B, a symbol of (, is the blank

(, a subset of (not including B, is the set of input symbols
(: Q x ((Q x (x {L, R} ((may, however, be undefined for some

 arguments)

q0 in Q is the initial state

F (Q is the set of final states

Turing Machine Example

The design of a Turing Machine M to accept the language L = {0n1n, n >= 1} is given below. Initially, the tape of M contains 0n1n followed by an infinity of blanks. Repeatedly, M replaces the leftmost 0 by X, moves right to the leftmost 1, replacing it by Y, moves left to find the rightmost X, then moves one cell right to the leftmost 0 and repeats the cycle. If, however, when searching for a 1, M finds a blank instead, then M halts without accepting. If, after changing a 1 to a Y, M finds no more 0’s, then M checks that no more 1’s remain, accepting if there are none.

Let Q = { q0, q1, q2, q3, q4 }
, (= {0,1}, (= {0,1,X,Y,B} and F = {q4}

(is defined with the following table:

 INPUT SYMBOL

STATE

0

1

X

Y

B

q0
(q1,X,R)
-

-

(q3,Y,R)
-

q1

(q1,0,R)
(q2,Y,L)
-

(q1,Y,R)
-

q2

(q2,0,L)
-

(q0,X,R)
(q2,Y,L)
-

q3

-

-

-

(q3,Y,R)
(q4,B,R)

q4

-

-

-

-

-

As an exercise, draw a state diagram of this machine and trace its execution through 0011, 001101 and 001.

The Turing Machine as a computer of integer functions

In addition to being a language acceptor, the Turing machine may be viewed as a computer of functions from integers to integers. The traditional approach is to represent integers in unary; the integer i >= 0 is represented by the string 0i. If a function has more than one argument then the arguments may be placed on the tape separated by 1’s.

For example, proper subtraction m – n is defined to be m – n for m >= n, and zero for m < n. The TM

M = ({q0,q1,...,q6}, {0,1}, {0,1,B}, (, q0, B, {})

defined below, if started with 0m10n on its tape, halts with 0m-n on its tape. M repeatedly replaces its leading 0 by blank, then searches right for a 1 followed by a 0 and changes the 0 to a 1. Next, M moves left until it encounters a blank and then repeats the cycle. The repetition ends if

i) Searching right for a 0, M encounters a blank. Then, the n 0’s in 0m10n have all been changed to 1’s, and n+1 of the m 0’s have been changed to B. M replaces the n+1 1’s by a 0 and n B’s, leaving m-n 0’s on its tape.

ii) Beginning the cycle, M cannot find a 0 to change to a blank, because the first m 0’s already have been changed. Then n >= m, so m – n = 0. M replaces all remaing 1’s and 0’s by B.

The function (is described below.

((q0,0) = (q1,B,R) Begin. Replace the leading 0 by B.

((q1,0) = (q1,0,R) Search right looking for the first 1.

((q1,1) = (q2,1,R)

((q2,1) = (q2,1,R) Search right past 1’s until encountering a 0. Change that 0 to 1.

((q2,0) = (q3,1,L)

((q3,0) = (q3,0,L) Move left to a blank. Enter state q0 to repeat the cycle.

((q3,1) = (q3,1,L)

((q3,B) = (q0,B,R)

 If in state q2 a B is encountered before a 0, we have situation i

 described above. Enter state q4 and move left, changing all 1’s

 to B’s until encountering a B. This B is changed back to a 0,

 state q6 is entered and M halts.

((q2,B) = (q4,B,L)

((q4,1) = (q4,B,L)

((q4,0) = (q4,0,L)

((q4,B) = (q6,0,R)

 If in state q0 a 1 is encountered instead of a 0, the first block

 of 0’s has been exhausted, as in situation (ii) above. M enters

 state q5 to erase the rest of the tape, then enters q6 and halts.

((q0,1) = (q5,B,R)

((q5,0) = (q5,B,R)

((q5,1) = (q5,B,R)

((q5,B) = (q6,B,R)

As an exercise, trace the execution of this machine using an input tape with the symbols 0010.

Modifications To The Basic Machine

It can be shown that the following modifications do not improve on the computing power of the basic Turing machine shown above:

· Two-way infinite tape

· Multitape Turing machine with k tape heads and k tapes

· Nondeterministic Turing machine

· Multidimensional, Multiheaded, RAM, etc., etc.,...

Church-Turing Hypothesis

Try as one might, there seems to be no way to define a mechanism of any type that computes more than a Turing machine is capable of computing.

The Halting Problem

Consider the following algorithm A:

while(x != 1) x = x – 2;

stop

Assuming that its legal input consists of the positive integrs <1,2,3,...>,It is obvious that A halts precisely for odd inputs.

Consider Algorithm B:

while (x != 1) {

if (x % 2 == 0) x = x / 2;

 else x = 3 * x + 1;

 }

No one has been able to offer a proof that B always terminates. This is an open question in number theory.

The halting problem is undecidable, meaning that there is no algorithm that will tell, in a finite amount of time, whether a given arbitrary program R, will terminate on a data input X.

Suppose there were such an algorithm. Let’s call it Q.

 Program or algorithm R Input X

Build a new program S that uses Q in the following way. S first makes a copy of its input. It then passes both copies to Q. Q makes its decision as before and gives its result back to S. S halts if Q reports that Q’s input would loop forever. S itself loops forever if Q reports that Q’s input terminates.

 Program P

 Program S

 Program S

 Program S

The existence of S leads to a logical contradiction. If S terminates when reading itself as input then Q reports this fact and S starts looping and never terminates. If S loops forever when reading itself as input then Q reports this to be the case and S terminates.

The construction of S seems to be reasonable in many respects. It makes a copy of its input. It calls a function called Q. It gets a result back and uses that result to decide whether or not to loop (a bit strange but easy to program). So, the problem must be with Q. Its existence implies a contradiction. So, Q does not exist. The halting problem is undecidable.

No –S Loops forever on S.

S halts

Yes – S terminates on S

S goes into a self-imposed infinite loop

Algorithm Q

 copy of S copy of S

Yes – P terminates on P

S goes into a self-imposed infinite loop

No –P Loops forever on P.

S halts

 copy of P copy of P

Algorithm Q

Yes, R terminates when reading input X

No, R loops forever when reading input X

 Turing Machine Q

Finite Control

� Notes taken with modifications from “Introduction to Automata Theory, Languages, and Computation” by John Hopcroft and Jeffrey Ullman, 1979

� Notes taken from “The Turing Omnibus”, A.K. Dewdney

� Notes taken from “Algorithmics The Sprit of Computing” by D. Harel

90-723 Data Structures and Algorithms

Page 5 of 1

