Basics -- 2

From: Data Structures and Their Algorithms, by Harry R. Lewis and Larry Denenberg (Harvard University: Harper Collins Publishers)

Review: Logarithms, Powers and Exponentials

Let \boldsymbol{b} be any real greater than 1 and let \boldsymbol{x} be any real greater than 0 . The logarithm to the base b of x, denoted $\log _{b} x$ is defined to be the number \boldsymbol{y} such that

$$
b^{y}=x
$$

$\log _{b} 1=0$
$\log _{b} x>0$ if $x>1$
$\log _{b} \boldsymbol{b}=1$
$\log _{b} x<0$ if $0<x<1$
Any logarithmic function is a monotone increasing function of its argument, that is

$$
\log _{b} x_{1}>\log _{b} x_{2} \text { provided that } x_{1}>x_{2}
$$

Doubling the argument increases the base 2 logarithm by 1. That is,

$$
\log _{2} 2 x=\left(\log _{2} x\right)+1
$$

Why?

$$
\begin{aligned}
& \mathbf{2}^{\left(\log _{2} x\right)+1}=\mathbf{2}^{\log _{2} x} \cdot 2^{1}=\mathbf{2 x} \\
& \mathbf{2}^{\log _{2} 2 x}=\mathbf{2 x}
\end{aligned}
$$

Carnegie
Mellón

Review: Logarithms

$$
\begin{aligned}
& \log _{b}\left(x_{1} \cdot x_{2}\right)=\log _{b} x_{1}+\log _{b}\left(x_{2}\right) \\
& \log _{b}\left(x_{1} / x_{2}\right)=\log _{b} x_{1}-\log _{b} x_{2} \\
& \log _{b} x^{c}=c \cdot \log _{b} x
\end{aligned}
$$

Suppose a and b are both greater than 1 , what is the relation of $\log _{a} x$ to $\log _{b} x$?

Since $\boldsymbol{x}=\boldsymbol{a}^{\log _{a} x}$
This is a constant. So, any

$$
\log _{b} x=\log _{b}\left(a^{\log _{a} x}\right)
$$

$$
=\log _{a} x \cdot \log _{b} a
$$

For example, suppose we know that an algorithm executes $\lg x$ instructions, where x is the size of the input. $\lg x=\lg \left(10^{\left.\log _{10}{ }^{x}\right)}\right.$

$$
\begin{aligned}
& =\log _{10} x \cdot \lg 10 \\
& =\log _{10} x * \sim 3.32
\end{aligned}
$$

The number of bits in the usual binary notation for the positive integer N is $\lfloor\operatorname{Lg} N\rfloor+1$.

For example, how many bits are required to represent
$41 \quad \begin{array}{lllllllll}0 & 1 & 0 & 1 & 0 & 0 & 1 \\ & 64 & 32 & 16 & 8 & 4 & 2 & 1\end{array}$
$3 \begin{array}{llll}0 & 1 & 1 \\ 4 & 2 & 1\end{array} \quad 2$ bits $\lfloor\lfloor\mathrm{Lg} 3\rfloor+1=1+1=2$

Carnegie
Mellog

The number of digits in the usual base 10 notation for the positive integer N is $\left\lfloor\log _{10} N\right\rfloor+1$.

For example, how many digits are required to represent 31?

31	3	1
10	1	$\quad 2$ digits $\left\lfloor\log _{10} 31\right\rfloor+1=1+1=2$

Carnegie Mellg̀n

Any function from reals to reals of the form $g(x)=x^{\alpha}$ for some constant $\alpha>0$ is called a simple power. Any simple power is an increasing function of its argument.

Examples:

$$
x^{2}, x^{3} \text { and } x^{1 / 3} \text { are simple powers }
$$

Carnegie
Mellog

An exponential function is one of the form $\boldsymbol{h}(\boldsymbol{x})=\boldsymbol{c}^{\boldsymbol{x}}$ for some constant $c>1$.

Examples:
2^{x} and 100^{x} are exponential functions of x

Carnegie
Mellón

Dominates

\cdot Let f and g be functions from reals to reals. f dominates g if the ratio $f(n) / g(n)$ increases without bound as n increases without bound. In other words, if for any $\boldsymbol{c}>\boldsymbol{0}$ there is an $n_{0}>0$ such that $f(n)>c \cdot g(n)$ for all $n>n_{0}$.

- Examples: $f(n)=n^{2}$ dominates $g(n)=2 n$ since for any c $n^{2}>c \cdot 2 n$ whenever $n>2 c$.
- $f(n)=10 n$ does not dominate $g(n)=2 n$ since the ratio of $f(n) / g(n)$ is never larger than 5.

Theorem:

Any exponential function dominates any simple power, any simple power dominates any logarithmic function.

Let N be the set of nonnegative integers $\{0,1, \ldots\}$. Let R be the set of real numbers and let R^{*} be the set of nonnegative real numbers.

Let g be a function from N to R^{*}. Then $O(g)$ is the set of all functions f from N to R^{*} such that, for some constants $c>0$ and $N_{0} \geq 0$.

$$
f(N) \leq c \cdot g(N) \text { for all } N \geq N_{0}
$$

In other words, $f \in \boldsymbol{O}(\boldsymbol{g})$ if the value of \boldsymbol{f} is bounded from above by a fixed multiple of the value of \boldsymbol{g} for all sufficiently large values of the argument.

Examples:

For any f it is the case that $f \in O(f)$. Any constant multiple of \boldsymbol{f} is in $\boldsymbol{O}(\boldsymbol{f})$. $F(n)=13 n+7$ is in $O(n)$.

Why?

$$
13 n+7 \leq 14 n \text { for } n \geq 7
$$

So the definition is satisfied with $c=14, n_{0}=7$.
$1000 n \in O\left(.0001 n^{2}\right)$
Why?

$$
\begin{aligned}
& \text { Let } c=10^{7} \text { and } n_{0}=0 \text { in the definition of } O() \\
& f(n)=n \\
& f(n) \in O\left(n^{2}\right)
\end{aligned}
$$

Little o

For any function $g, 0(g)$ is the set of all functions that are dominated by g. That is, the set of all functions f such that for each constant $\boldsymbol{c}>0$ there is an $\boldsymbol{n}_{0}>0$ such that

$$
f(n)<c \cdot g(n) \text { for all } n>n_{0} .
$$

Examples:

$$
\begin{aligned}
& \text { Let } f(n)=n \text { and } g(n)=n^{2} \text { then } \\
& f(n) \in O(g(n)) \\
& \text { Let } f(n)=n^{2} \text { and } g(n)=2^{n} \text { then } \\
& f(n) \in O(g(n))
\end{aligned}
$$

Theorem: Growth Rates

1. The power n^{α} is in $O\left(n^{\beta}\right)$ if and only if $\alpha \leq \beta(\alpha, \beta>0)$; and n^{α} is in $\theta\left(n^{\beta}\right)$ if and only if $\alpha<\beta$.

Examples:

$$
\begin{aligned}
& \mathrm{n} \in \boldsymbol{O}\left(\boldsymbol{n}^{3}\right) \\
& \mathrm{n} \in \boldsymbol{O}\left(\boldsymbol{n}^{3}\right)
\end{aligned}
$$

Intuitively

$$
\begin{gathered}
n<=n^{3} \\
n<n^{3}
\end{gathered}
$$

2. $\log _{b} n \in o\left(n^{\alpha}\right)$ for any b and α_{0}

Examples:

$\log _{10} n \in O(n)$
$\log _{2} n \in O\left(n^{1 / 2}\right)$

Carnegie
Mellón
3. $n^{\alpha} \in o\left(c^{n}\right)$ for any $\alpha>0$ and $c>1$.

Examples:
$n^{2} \in O\left(4^{n}\right)$
$n^{100} \in O\left(2^{n}\right)$

Carnegie
Mellón
4. $\log _{\mathrm{a}} n \in O\left(\log _{b} n\right)$ for any a and b.

$$
\log _{2} n \in O\left(\log _{10} n\right)
$$

$\log _{10} n \in O\left(\log _{2} n\right)$

Carnegie
Mellón

5. $c^{n} \in O\left(d^{n}\right)$ if and only if $c \leq d$, and $c^{n} \in o\left(d^{n}\right)$ if and only if $c<d$.

Examples:
$3^{n} \in O\left(4^{n}\right)$
$3^{n} \in O\left(4^{n}\right)$

Carnegie
Mellog

6. Any constant function $f(n)=c$ is in $O(1)$.

For example:
A 32-bit add instruction $\mathrm{O}(1)$.

Big-O only provides an upper bound.

For example:

$17 n^{2} \in \mathbf{O}\left(n^{2}\right)$ but
$17 n^{2} \in \mathbf{O}\left(n^{37}\right)$
$17 n^{2} \in \mathbf{O}\left(2^{\mathrm{n}}\right)$

Carnegie
Mellön

Big Omega (Big- Ω):

Big- Ω notation is exactly the converse of Big-O notation; $f \in \Omega(g)$ if and only if $g \in O(f)$.
$f \in O(g)$ implies that f grows at most as quickly as g. $f \in \Omega(g)$ implies that f grows at least as quickly as g.

Examples:
$$
\operatorname{let} f(n)=n
$$
$$
\mathrm{f}(\mathrm{n}) \in O\left(n^{2}\right)
$$
$$
n^{2} \in \Omega(\mathrm{n})
$$

Carnegie
Mellog

Big theta $(\operatorname{Big} \theta):$

$$
\theta(f)=\mathbf{O}(f) \cap \Omega(f)
$$

Example:

$$
\begin{aligned}
& \text { Let } f(n)=4 n \text { then } \\
& f(n) \in O(n) \\
& f(n) \in \Omega(n) \\
& \text { so } \\
& f(n) \in \theta(n)
\end{aligned}
$$

The set of functions $\theta(f)$ is the order of f.

Carnegie
Mellgn

A Quiz

Suppose we use a phone book to look up a number in the standard way. Let $T(n)$ be the number of operations (comparisons) required.

In the worst case $\mathrm{T}(\mathrm{n}) \in \boldsymbol{O}(\boldsymbol{\operatorname { L o g }} \boldsymbol{N})$.

True or False:
Also, in the worst case,
$\mathbf{T}(\mathrm{n}) \in \mathbf{O}(\mathrm{n})$
$\mathbf{T}(\mathrm{n}) \in \theta(\mathrm{n})$
$\mathrm{T}(\mathrm{n}) \in \Omega(\mathrm{n})$

A Quiz

Suppose we use a phone book to look up a number in the standard way. Let $\mathrm{T}(\mathrm{n})$ be the number of operations (comparisons) required.

In the worst case $\mathrm{T}(\mathrm{n}) \in \boldsymbol{O}(\boldsymbol{\operatorname { L o g }} \boldsymbol{N})$.

True or False:

$$
\begin{array}{ll}
\text { Also, in the worst case, } \\
T(n) \in O(n) & \text { True } \\
T(n) \in \theta(n) & \text { False } \\
T(n) \in \Omega(n) & \text { False }
\end{array}
$$

A Quiz

Suppose we use a phone book to look up a number. Let $\mathrm{T}(\mathrm{n})$ be the number of operations (comparisons) required.

In the best case $T(n) \in \boldsymbol{O}(1)$.
True or False:
Also, in the best case,
$T(n) \in O(n)$
$T(n) \in \theta(n)$
$T(n) \in \Omega(n)$

A Quiz

Suppose we use a phone book to look up a number. Let $\mathrm{T}(\mathrm{n})$ be the number of operations (comparisons) required.

In the best case $T(n) \in \boldsymbol{O}(1)$.

True or False:

$$
\begin{array}{ll}
\text { Also, in the best case, } \\
T(n) \in O(n) & \text { True } \\
T(n) \in \theta(n) & \text { False } \\
T(n) \in \Omega(n) & \text { False }
\end{array}
$$

A Quiz

Suppose we want to delete the last item on a singly linked list. Let $\mathrm{T}(\mathrm{n})$ be the number of operations (comparisons) required.

There are no cases to consider: $T(n) \in \boldsymbol{O}(\boldsymbol{n})$.

True or False:

$$
\begin{aligned}
& T(n) \in O(\operatorname{Lg} n) \\
& T(n) \in \theta(n) \\
& T(n) \in \Omega(L g n)
\end{aligned}
$$

A Quiz

Suppose we want to delete the last item on a singly linked list. Let $\mathrm{T}(\mathrm{n})$ be the number of operations (comparisons) required.

There are no cases to consider: $\mathrm{T}(\mathrm{n}) \in \boldsymbol{O}(\boldsymbol{n})$.

True or False:

$$
\begin{aligned}
& T(n) \in O(\operatorname{Lg} n) \quad \text { False } \\
& T(n) \in \theta(n) \quad \text { True } \\
& T(n) \in \Omega(\operatorname{Lg} n) \quad \text { True }
\end{aligned}
$$

Remember

When working with Big O, Big $\boldsymbol{\theta}$ and Big Ω, be sure to always consider only large n.

In addition, pin the case down first and then consider Big O, Big $\boldsymbol{\theta}$, and Big Ω

Lastly, remember that sometimes "case" does not apply.

Algorithms and Problems

In this class, we will mostly be analyzing algorithms (counting operations) in terms of $\operatorname{Big} \mathrm{O}, \operatorname{Big} \theta$ and $\operatorname{Big} \Omega$.

Problems may also be analyzed. The lower bound for a particular problem is the worst case running time of the fastest algorithm that solves that problem.

Later, we will look at an argument that comparison based sorting is $\Omega(\mathrm{n} \log \mathrm{n})$. What does that mean?

