95-771 Data Structure and Algorithms for Information Processing Spring 2012

Homework 6 Due: Midnight, Thursday, May 3, 2012

Write a Java program that simulates a Turing Machine.

The Turing machine that we will simulate can be formally defined as M = (Q,(,(,(,q0,B): where

Q, a finite set of states. For this program Q = { 0,1,2,…n-1} and is selected

 by the client programmer.

(= { 0,1,B } is the finite set of allowable tape symbols
B, a symbol of (, is the blank

(= { 0,1}, a subset of (not including B, is the set of input symbols
(: Q x ((Q x (x {L, R} ((may, however, be undefined for some

 arguments)

q0 = 0 is the initial state

For example, suppose that we wanted our program to simulate the machine with the following values for delta:

 ((q0,0) = (q0,1,R)

 ((q0,1) = (q0,0,R)

 ((q0,B) = (q1,B,R)

This machine reads the tape from left to right and replaces any 1’s with 0’s and any 0’s with 1’s. It stops, by entering the halt state, when it encounters a B in the input.

The main routine of your solution would look like the following:

public static void main(String args[]) {

 Turing machine = new Turing(1); // This machine will have one state.

 Transition one = new Transition('0',Transition.RIGHT, 0);

 Transition two = new Transition('1',Transition.RIGHT, 0);

 Transition three = new Transition('B', Transition.RIGHT,1);

 machine.addTransition(0, '0', two);

 machine.addTransition(0, '1', one);

 machine.addTransition(0, 'B', three);

 String inTape = "11111100010101BBBBBB";

 System.out.println(inTape);

 String outTape = machine.execute(inTape);

 System.out.println(outTape);

 }

And the output of this program is shown below:

C:\McCarthy\www\95-771\TuringMachine>java Turing

11111100010101BBBBBB

00000011101010BBBBBB

Below is an example Turing machine program.

Proper subtraction m – n is defined to be m – n for m >= n, and zero for m < n. The TM

M = ({q0,q1,...,q6}, {0,1}, {0,1,B}, (, q0, B, {})

defined below, if started with 0m10n on its tape, halts with 0m-n on its tape. M repeatedly replaces its leading 0 by blank, then searches right for a 1 followed by a 0 and changes the 0 to a 1. Next, M moves left until it encounters a blank and then repeats the cycle. The repetition ends if

i) Searching right for a 0, M encounters a blank. Then, the n 0’s in 0m10n have all been changed to 1’s, and n+1 of the m 0’s have been changed to B. M replaces the n+1 1’s by a 0 and n B’s, leaving m-n 0’s on its tape.

ii) Beginning the cycle, M cannot find a 0 to change to a blank, because the first m 0’s already have been changed. Then n >= m, so m – n = 0. M replaces all remaing 1’s and 0’s by B.

The function (is described below.

((q0,0) = (q1,B,R) Begin. Replace the leading 0 by B.

((q1,0) = (q1,0,R) Search right looking for the first 1.

((q1,1) = (q2,1,R)

((q2,1) = (q2,1,R) Search right past 1’s until encountering a 0. Change that 0 to 1.

((q2,0) = (q3,1,L)

((q3,0) = (q3,0,L) Move left to a blank. Enter state q0 to repeat the cycle.

((q3,1) = (q3,1,L)

((q3,B) = (q0,B,R)

 If in state q2 a B is encountered before a 0, we have situation i

 described above. Enter state q4 and move left, changing all 1’s

 to B’s until encountering a B. This B is changed back to a 0,

 state q6 is entered and M halts.

((q2,B) = (q4,B,L)

((q4,1) = (q4,B,L)

((q4,0) = (q4,0,L)

((q4,B) = (q6,0,R)

 If in state q0 a 1 is encountered instead of a 0, the first block

 of 0’s has been exhausted, as in situation (ii) above. M enters

 state q5 to erase the rest of the tape, then enters q6 and halts.

((q0,1) = (q5,B,R)

((q5,0) = (q5,B,R)

((q5,1) = (q5,B,R)

((q5,B) = (q6,B,R)

In this homework, you will write a Turing machine and execute it on your simulator.

Your machine will descide the language of unary multiplication of positive integers.

We will define the language

 UnaryMult = { 1nB1MB1nXm | m,n are integers greater than 0 }

Your simulator will read strings and accept all and only those strings that are members of UnaryMult.

Your Java program will be interactive and its execution will appear as follows :

Java UnaryMultTester

Enter input tape : 11111B11B1111111111B
Output tape : 1

Java UnaryMultTester

Enter input tape : 11B11B111B
Output tape : 0

After examining the string, your Turing machine will leave only a 0 or a 1 on the input tape (and, perhaps, followed by some B’s). This will be the value returned by the execute method of your Turing machine.

Submit to Blackboard the documented Java code that you used to simulate the machine. Your main routine should look almost identical to the main routine above. The only major differences should be the way the input tape is established (we are reading these data from the user), the size of the machine (it will have mores states) and the assignments to delta via addTransition(). These assignments will represent the Turing machine that is being simulated.

It is important that the class Turing not know anything about multiplication. It should be programmed with the delta transitions to perform all of its application specific activities.

90-723 Data Structures and Algorithms

Page 1 of 3

