95-771 Data Structure and Algorithms Summer 2001

Homework 4 Due: August 2

Part I: Write a Java program that simulates a Turing Machine.

The Turing machine that we will simulate can be formally defined as M = (Q,(,(,(,q0,B): where

Q, a finite set of states. For this program Q = { 0,1,2,…n-1} and is selected

 by the client programmer.

(= { 0,1,B } is the finite set of allowable tape symbols
B, a symbol of (, is the blank

(= { 0,1}, a subset of (not including B, is the set of input symbols
(: Q x ((Q x (x {L, R} ((may, however, be undefined for some

 arguments)

q0 = 0 is the initial state

For example, suppose that we wanted our program to simulate the machine with the following values for delta:

 ((q0,0) = (q0,1,R)

 ((q0,1) = (q0,0,R)

 ((q0,B) = (q1,B,R)

This machine reads the tape from left to right and replaces any 1’s with 0’s and any 0’s with 1’s. It stops, by entering the halt state, when it encounters a B in the input.

The main routine of your solution would look like the following:

public static void main(String args[]) {

 Turing machine = new Turing(1); // This machine will have one state.

 Transition one = new Transition('0',Transition.RIGHT, 0);

 Transition two = new Transition('1',Transition.RIGHT, 0);

 Transition three = new Transition('B', Transition.RIGHT,1);

 machine.addTransition(0, '0', two);

 machine.addTransition(0, '1', one);

 machine.addTransition(0, 'B', three);

 String inTape = "11111100010101BBBBBB";

 System.out.println(inTape);

 String outTape = machine.execute(inTape);

 System.out.println(outTape);

 }

And the output of this program is shown below:

C:\Novacky\TuringMachine>java Turing

11111100010101BBBBBB

00000011101010BBBBBB

Write your program so that it simulates the following machine:

Proper subtraction m – n is defined to be m – n for m >= n, and zero for m < n. The TM

M = ({q0,q1,...,q6}, {0,1}, {0,1,B}, (, q0, B, {})

defined below, if started with 0m10n on its tape, halts with 0m-n on its tape. M repeatedly replaces its leading 0 by blank, then searches right for a 1 followed by a 0 and changes the 0 to a 1. Next, M moves left until it encounters a blank and then repeats the cycle. The repetition ends if

i) Searching right for a 0, M encounters a blank. Then, the n 0’s in 0m10n have all been changed to 1’s, and n+1 of the m 0’s have been changed to B. M replaces the n+1 1’s by a 0 and n B’s, leaving m-n 0’s on its tape.

ii) Beginning the cycle, M cannot find a 0 to change to a blank, because the first m 0’s already have been changed. Then n >= m, so m – n = 0. M replaces all remaing 1’s and 0’s by B.

The function (is described below.

((q0,0) = (q1,B,R) Begin. Replace the leading 0 by B.

((q1,0) = (q1,0,R) Search right looking for the first 1.

((q1,1) = (q2,1,R)

((q2,1) = (q2,1,R) Search right past 1’s until encountering a 0. Change that 0 to 1.

((q2,0) = (q3,1,L)

((q3,0) = (q3,0,L) Move left to a blank. Enter state q0 to repeat the cycle.

((q3,1) = (q3,1,L)

((q3,B) = (q0,B,R)

 If in state q2 a B is encountered before a 0, we have situation i

 described above. Enter state q4 and move left, changing all 1’s

 to B’s until encountering a B. This B is changed back to a 0,

 state q6 is entered and M halts.

((q2,B) = (q4,B,L)

((q4,1) = (q4,B,L)

((q4,0) = (q4,0,L)

((q4,B) = (q6,0,R)

 If in state q0 a 1 is encountered instead of a 0, the first block

 of 0’s has been exhausted, as in situation (ii) above. M enters

 state q5 to erase the rest of the tape, then enters q6 and halts.

((q0,1) = (q5,B,R)

((q5,0) = (q5,B,R)

((q5,1) = (q5,B,R)

((q5,B) = (q6,B,R)

Please submit a disk containing all of the Java code (.java files only) that used to simulate the machine. For grading, we must be able to edit the main java file Turing.java so that we can test your program against various input tapes. The main routine should look almost identical to the main routine above. The only difference should be the size of the machine and the assignments to delta via addTransition().

Part II: Finite-State Machine Simulator Assignment

Directions: Using the simulator Turing.exe (found on the Schedule), construct a machine for each of the following problems. Save all solutions in a folder in the root directory of a diskette called Machines. Name the solutions machine1, machine2, machine3, and machine4. Use the text tool (T) to document your machines.

Deterministic Finite-State Machines

1) Design a one-way DFSM that accepts strings of 0s, 1s, and 2s if and only if the string contains an odd number of each numeral. Thus it should accept the string 1121022, but not 1120022.

2) Imagine a knight on a journey through a land infested with dragons (Ds) and evil trolls (Ts), as well as, friendly civilians (Fs). He starts his journey with no weapons, but along the way he can find swords ((s), used to slay dragons, and acquire spells (#s), used to enchant the stupid trolls. He can carry at most one of each of these at any one time, and they are gone once he uses them. Luckily, people seem to have dropped a lot of swords and spells around the landscape. Design a one-way DFSM that accepts a string if and only if the string represents a journey on which the knight survives. Thus, for example, it should accept F(FD#(TFD but it should reject F(FD#(TFDT.

Turing Machines

3) In building complex machines, it is often important to be able to copy a string of symbols. Design and implement a Turing machine that will start on the left of a string s consisting of As and Bs and ends with a string ss, that is, it ends with two copies of s, with no space between them. You may use auxiliary symbols.

4) Build a Turing machine that begins at the left of a (possibly empty) string of As and Bs and writes GOOD if the string is of the form AnBn (i.e., has zero or more As followed by the very same number of Bs), but writes BAD otherwise.

Page 4 of 4

